You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

spstrf.c 28 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c_n1 = -1;
  486. static real c_b23 = -1.f;
  487. static real c_b25 = 1.f;
  488. /* > \brief \b SPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive
  489. semidefinite matrix. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SPSTRF + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spstrf.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spstrf.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spstrf.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO ) */
  508. /* REAL TOL */
  509. /* INTEGER INFO, LDA, N, RANK */
  510. /* CHARACTER UPLO */
  511. /* REAL A( LDA, * ), WORK( 2*N ) */
  512. /* INTEGER PIV( N ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > SPSTRF computes the Cholesky factorization with complete */
  519. /* > pivoting of a real symmetric positive semidefinite matrix A. */
  520. /* > */
  521. /* > The factorization has the form */
  522. /* > P**T * A * P = U**T * U , if UPLO = 'U', */
  523. /* > P**T * A * P = L * L**T, if UPLO = 'L', */
  524. /* > where U is an upper triangular matrix and L is lower triangular, and */
  525. /* > P is stored as vector PIV. */
  526. /* > */
  527. /* > This algorithm does not attempt to check that A is positive */
  528. /* > semidefinite. This version of the algorithm calls level 3 BLAS. */
  529. /* > \endverbatim */
  530. /* Arguments: */
  531. /* ========== */
  532. /* > \param[in] UPLO */
  533. /* > \verbatim */
  534. /* > UPLO is CHARACTER*1 */
  535. /* > Specifies whether the upper or lower triangular part of the */
  536. /* > symmetric matrix A is stored. */
  537. /* > = 'U': Upper triangular */
  538. /* > = 'L': Lower triangular */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] N */
  542. /* > \verbatim */
  543. /* > N is INTEGER */
  544. /* > The order of the matrix A. N >= 0. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in,out] A */
  548. /* > \verbatim */
  549. /* > A is REAL array, dimension (LDA,N) */
  550. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  551. /* > n by n upper triangular part of A contains the upper */
  552. /* > triangular part of the matrix A, and the strictly lower */
  553. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  554. /* > leading n by n lower triangular part of A contains the lower */
  555. /* > triangular part of the matrix A, and the strictly upper */
  556. /* > triangular part of A is not referenced. */
  557. /* > */
  558. /* > On exit, if INFO = 0, the factor U or L from the Cholesky */
  559. /* > factorization as above. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] LDA */
  563. /* > \verbatim */
  564. /* > LDA is INTEGER */
  565. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[out] PIV */
  569. /* > \verbatim */
  570. /* > PIV is INTEGER array, dimension (N) */
  571. /* > PIV is such that the nonzero entries are P( PIV(K), K ) = 1. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[out] RANK */
  575. /* > \verbatim */
  576. /* > RANK is INTEGER */
  577. /* > The rank of A given by the number of steps the algorithm */
  578. /* > completed. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] TOL */
  582. /* > \verbatim */
  583. /* > TOL is REAL */
  584. /* > User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) ) */
  585. /* > will be used. The algorithm terminates at the (K-1)st step */
  586. /* > if the pivot <= TOL. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[out] WORK */
  590. /* > \verbatim */
  591. /* > WORK is REAL array, dimension (2*N) */
  592. /* > Work space. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[out] INFO */
  596. /* > \verbatim */
  597. /* > INFO is INTEGER */
  598. /* > < 0: If INFO = -K, the K-th argument had an illegal value, */
  599. /* > = 0: algorithm completed successfully, and */
  600. /* > > 0: the matrix A is either rank deficient with computed rank */
  601. /* > as returned in RANK, or is not positive semidefinite. See */
  602. /* > Section 7 of LAPACK Working Note #161 for further */
  603. /* > information. */
  604. /* > \endverbatim */
  605. /* Authors: */
  606. /* ======== */
  607. /* > \author Univ. of Tennessee */
  608. /* > \author Univ. of California Berkeley */
  609. /* > \author Univ. of Colorado Denver */
  610. /* > \author NAG Ltd. */
  611. /* > \date December 2016 */
  612. /* > \ingroup realOTHERcomputational */
  613. /* ===================================================================== */
  614. /* Subroutine */ void spstrf_(char *uplo, integer *n, real *a, integer *lda,
  615. integer *piv, integer *rank, real *tol, real *work, integer *info)
  616. {
  617. /* System generated locals */
  618. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
  619. real r__1;
  620. /* Local variables */
  621. integer i__, j, k;
  622. extern logical lsame_(char *, char *);
  623. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  624. integer itemp;
  625. extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *,
  626. real *, integer *, real *, integer *, real *, real *, integer *);
  627. real stemp;
  628. logical upper;
  629. extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *,
  630. integer *);
  631. real sstop;
  632. extern /* Subroutine */ void ssyrk_(char *, char *, integer *, integer *,
  633. real *, real *, integer *, real *, real *, integer *);
  634. integer jb, nb;
  635. extern /* Subroutine */ void spstf2_(char *, integer *, real *, integer *,
  636. integer *, integer *, real *, real *, integer *);
  637. extern real slamch_(char *);
  638. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  639. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  640. integer *, integer *, ftnlen, ftnlen);
  641. extern logical sisnan_(real *);
  642. real ajj;
  643. integer pvt;
  644. /* -- LAPACK computational routine (version 3.7.0) -- */
  645. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  646. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  647. /* December 2016 */
  648. /* ===================================================================== */
  649. /* Test the input parameters. */
  650. /* Parameter adjustments */
  651. --work;
  652. --piv;
  653. a_dim1 = *lda;
  654. a_offset = 1 + a_dim1 * 1;
  655. a -= a_offset;
  656. /* Function Body */
  657. *info = 0;
  658. upper = lsame_(uplo, "U");
  659. if (! upper && ! lsame_(uplo, "L")) {
  660. *info = -1;
  661. } else if (*n < 0) {
  662. *info = -2;
  663. } else if (*lda < f2cmax(1,*n)) {
  664. *info = -4;
  665. }
  666. if (*info != 0) {
  667. i__1 = -(*info);
  668. xerbla_("SPSTRF", &i__1, (ftnlen)6);
  669. return;
  670. }
  671. /* Quick return if possible */
  672. if (*n == 0) {
  673. return;
  674. }
  675. /* Get block size */
  676. nb = ilaenv_(&c__1, "SPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
  677. ftnlen)1);
  678. if (nb <= 1 || nb >= *n) {
  679. /* Use unblocked code */
  680. spstf2_(uplo, n, &a[a_dim1 + 1], lda, &piv[1], rank, tol, &work[1],
  681. info);
  682. goto L200;
  683. } else {
  684. /* Initialize PIV */
  685. i__1 = *n;
  686. for (i__ = 1; i__ <= i__1; ++i__) {
  687. piv[i__] = i__;
  688. /* L100: */
  689. }
  690. /* Compute stopping value */
  691. pvt = 1;
  692. ajj = a[pvt + pvt * a_dim1];
  693. i__1 = *n;
  694. for (i__ = 2; i__ <= i__1; ++i__) {
  695. if (a[i__ + i__ * a_dim1] > ajj) {
  696. pvt = i__;
  697. ajj = a[pvt + pvt * a_dim1];
  698. }
  699. }
  700. if (ajj <= 0.f || sisnan_(&ajj)) {
  701. *rank = 0;
  702. *info = 1;
  703. goto L200;
  704. }
  705. /* Compute stopping value if not supplied */
  706. if (*tol < 0.f) {
  707. sstop = *n * slamch_("Epsilon") * ajj;
  708. } else {
  709. sstop = *tol;
  710. }
  711. if (upper) {
  712. /* Compute the Cholesky factorization P**T * A * P = U**T * U */
  713. i__1 = *n;
  714. i__2 = nb;
  715. for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
  716. /* Account for last block not being NB wide */
  717. /* Computing MIN */
  718. i__3 = nb, i__4 = *n - k + 1;
  719. jb = f2cmin(i__3,i__4);
  720. /* Set relevant part of first half of WORK to zero, */
  721. /* holds dot products */
  722. i__3 = *n;
  723. for (i__ = k; i__ <= i__3; ++i__) {
  724. work[i__] = 0.f;
  725. /* L110: */
  726. }
  727. i__3 = k + jb - 1;
  728. for (j = k; j <= i__3; ++j) {
  729. /* Find pivot, test for exit, else swap rows and columns */
  730. /* Update dot products, compute possible pivots which are */
  731. /* stored in the second half of WORK */
  732. i__4 = *n;
  733. for (i__ = j; i__ <= i__4; ++i__) {
  734. if (j > k) {
  735. /* Computing 2nd power */
  736. r__1 = a[j - 1 + i__ * a_dim1];
  737. work[i__] += r__1 * r__1;
  738. }
  739. work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];
  740. /* L120: */
  741. }
  742. if (j > 1) {
  743. i__4 = *n + j;
  744. i__5 = *n << 1;
  745. itemp = mymaxloc_(&work[1], &i__4, &i__5, &c__1);
  746. pvt = itemp + j - 1;
  747. ajj = work[*n + pvt];
  748. if (ajj <= sstop || sisnan_(&ajj)) {
  749. a[j + j * a_dim1] = ajj;
  750. goto L190;
  751. }
  752. }
  753. if (j != pvt) {
  754. /* Pivot OK, so can now swap pivot rows and columns */
  755. a[pvt + pvt * a_dim1] = a[j + j * a_dim1];
  756. i__4 = j - 1;
  757. sswap_(&i__4, &a[j * a_dim1 + 1], &c__1, &a[pvt *
  758. a_dim1 + 1], &c__1);
  759. if (pvt < *n) {
  760. i__4 = *n - pvt;
  761. sswap_(&i__4, &a[j + (pvt + 1) * a_dim1], lda, &a[
  762. pvt + (pvt + 1) * a_dim1], lda);
  763. }
  764. i__4 = pvt - j - 1;
  765. sswap_(&i__4, &a[j + (j + 1) * a_dim1], lda, &a[j + 1
  766. + pvt * a_dim1], &c__1);
  767. /* Swap dot products and PIV */
  768. stemp = work[j];
  769. work[j] = work[pvt];
  770. work[pvt] = stemp;
  771. itemp = piv[pvt];
  772. piv[pvt] = piv[j];
  773. piv[j] = itemp;
  774. }
  775. ajj = sqrt(ajj);
  776. a[j + j * a_dim1] = ajj;
  777. /* Compute elements J+1:N of row J. */
  778. if (j < *n) {
  779. i__4 = j - k;
  780. i__5 = *n - j;
  781. sgemv_("Trans", &i__4, &i__5, &c_b23, &a[k + (j + 1) *
  782. a_dim1], lda, &a[k + j * a_dim1], &c__1, &
  783. c_b25, &a[j + (j + 1) * a_dim1], lda);
  784. i__4 = *n - j;
  785. r__1 = 1.f / ajj;
  786. sscal_(&i__4, &r__1, &a[j + (j + 1) * a_dim1], lda);
  787. }
  788. /* L130: */
  789. }
  790. /* Update trailing matrix, J already incremented */
  791. if (k + jb <= *n) {
  792. i__3 = *n - j + 1;
  793. ssyrk_("Upper", "Trans", &i__3, &jb, &c_b23, &a[k + j *
  794. a_dim1], lda, &c_b25, &a[j + j * a_dim1], lda);
  795. }
  796. /* L140: */
  797. }
  798. } else {
  799. /* Compute the Cholesky factorization P**T * A * P = L * L**T */
  800. i__2 = *n;
  801. i__1 = nb;
  802. for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
  803. /* Account for last block not being NB wide */
  804. /* Computing MIN */
  805. i__3 = nb, i__4 = *n - k + 1;
  806. jb = f2cmin(i__3,i__4);
  807. /* Set relevant part of first half of WORK to zero, */
  808. /* holds dot products */
  809. i__3 = *n;
  810. for (i__ = k; i__ <= i__3; ++i__) {
  811. work[i__] = 0.f;
  812. /* L150: */
  813. }
  814. i__3 = k + jb - 1;
  815. for (j = k; j <= i__3; ++j) {
  816. /* Find pivot, test for exit, else swap rows and columns */
  817. /* Update dot products, compute possible pivots which are */
  818. /* stored in the second half of WORK */
  819. i__4 = *n;
  820. for (i__ = j; i__ <= i__4; ++i__) {
  821. if (j > k) {
  822. /* Computing 2nd power */
  823. r__1 = a[i__ + (j - 1) * a_dim1];
  824. work[i__] += r__1 * r__1;
  825. }
  826. work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];
  827. /* L160: */
  828. }
  829. if (j > 1) {
  830. i__4 = *n + j;
  831. i__5 = *n << 1;
  832. itemp = mymaxloc_(&work[1], &i__4, &i__5, &c__1);
  833. pvt = itemp + j - 1;
  834. ajj = work[*n + pvt];
  835. if (ajj <= sstop || sisnan_(&ajj)) {
  836. a[j + j * a_dim1] = ajj;
  837. goto L190;
  838. }
  839. }
  840. if (j != pvt) {
  841. /* Pivot OK, so can now swap pivot rows and columns */
  842. a[pvt + pvt * a_dim1] = a[j + j * a_dim1];
  843. i__4 = j - 1;
  844. sswap_(&i__4, &a[j + a_dim1], lda, &a[pvt + a_dim1],
  845. lda);
  846. if (pvt < *n) {
  847. i__4 = *n - pvt;
  848. sswap_(&i__4, &a[pvt + 1 + j * a_dim1], &c__1, &a[
  849. pvt + 1 + pvt * a_dim1], &c__1);
  850. }
  851. i__4 = pvt - j - 1;
  852. sswap_(&i__4, &a[j + 1 + j * a_dim1], &c__1, &a[pvt +
  853. (j + 1) * a_dim1], lda);
  854. /* Swap dot products and PIV */
  855. stemp = work[j];
  856. work[j] = work[pvt];
  857. work[pvt] = stemp;
  858. itemp = piv[pvt];
  859. piv[pvt] = piv[j];
  860. piv[j] = itemp;
  861. }
  862. ajj = sqrt(ajj);
  863. a[j + j * a_dim1] = ajj;
  864. /* Compute elements J+1:N of column J. */
  865. if (j < *n) {
  866. i__4 = *n - j;
  867. i__5 = j - k;
  868. sgemv_("No Trans", &i__4, &i__5, &c_b23, &a[j + 1 + k
  869. * a_dim1], lda, &a[j + k * a_dim1], lda, &
  870. c_b25, &a[j + 1 + j * a_dim1], &c__1);
  871. i__4 = *n - j;
  872. r__1 = 1.f / ajj;
  873. sscal_(&i__4, &r__1, &a[j + 1 + j * a_dim1], &c__1);
  874. }
  875. /* L170: */
  876. }
  877. /* Update trailing matrix, J already incremented */
  878. if (k + jb <= *n) {
  879. i__3 = *n - j + 1;
  880. ssyrk_("Lower", "No Trans", &i__3, &jb, &c_b23, &a[j + k *
  881. a_dim1], lda, &c_b25, &a[j + j * a_dim1], lda);
  882. }
  883. /* L180: */
  884. }
  885. }
  886. }
  887. /* Ran to completion, A has full rank */
  888. *rank = *n;
  889. goto L200;
  890. L190:
  891. /* Rank is the number of steps completed. Set INFO = 1 to signal */
  892. /* that the factorization cannot be used to solve a system. */
  893. *rank = j - 1;
  894. *info = 1;
  895. L200:
  896. return;
  897. /* End of SPSTRF */
  898. } /* spstrf_ */