You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorcsd.c 39 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c_n1 = -1;
  485. static logical c_false = FALSE_;
  486. /* > \brief \b SORCSD */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download SORCSD + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorcsd.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorcsd.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorcsd.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE SORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, */
  505. /* SIGNS, M, P, Q, X11, LDX11, X12, */
  506. /* LDX12, X21, LDX21, X22, LDX22, THETA, */
  507. /* U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, */
  508. /* LDV2T, WORK, LWORK, IWORK, INFO ) */
  509. /* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS */
  510. /* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12, */
  511. /* $ LDX21, LDX22, LWORK, M, P, Q */
  512. /* INTEGER IWORK( * ) */
  513. /* REAL THETA( * ) */
  514. /* REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), */
  515. /* $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ), */
  516. /* $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22, */
  517. /* $ * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > SORCSD computes the CS decomposition of an M-by-M partitioned */
  524. /* > orthogonal matrix X: */
  525. /* > */
  526. /* > [ I 0 0 | 0 0 0 ] */
  527. /* > [ 0 C 0 | 0 -S 0 ] */
  528. /* > [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T */
  529. /* > X = [-----------] = [---------] [---------------------] [---------] . */
  530. /* > [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] */
  531. /* > [ 0 S 0 | 0 C 0 ] */
  532. /* > [ 0 0 I | 0 0 0 ] */
  533. /* > */
  534. /* > X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P, */
  535. /* > (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are */
  536. /* > R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in */
  537. /* > which R = MIN(P,M-P,Q,M-Q). */
  538. /* > \endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] JOBU1 */
  542. /* > \verbatim */
  543. /* > JOBU1 is CHARACTER */
  544. /* > = 'Y': U1 is computed; */
  545. /* > otherwise: U1 is not computed. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] JOBU2 */
  549. /* > \verbatim */
  550. /* > JOBU2 is CHARACTER */
  551. /* > = 'Y': U2 is computed; */
  552. /* > otherwise: U2 is not computed. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] JOBV1T */
  556. /* > \verbatim */
  557. /* > JOBV1T is CHARACTER */
  558. /* > = 'Y': V1T is computed; */
  559. /* > otherwise: V1T is not computed. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] JOBV2T */
  563. /* > \verbatim */
  564. /* > JOBV2T is CHARACTER */
  565. /* > = 'Y': V2T is computed; */
  566. /* > otherwise: V2T is not computed. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] TRANS */
  570. /* > \verbatim */
  571. /* > TRANS is CHARACTER */
  572. /* > = 'T': X, U1, U2, V1T, and V2T are stored in row-major */
  573. /* > order; */
  574. /* > otherwise: X, U1, U2, V1T, and V2T are stored in column- */
  575. /* > major order. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] SIGNS */
  579. /* > \verbatim */
  580. /* > SIGNS is CHARACTER */
  581. /* > = 'O': The lower-left block is made nonpositive (the */
  582. /* > "other" convention); */
  583. /* > otherwise: The upper-right block is made nonpositive (the */
  584. /* > "default" convention). */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] M */
  588. /* > \verbatim */
  589. /* > M is INTEGER */
  590. /* > The number of rows and columns in X. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] P */
  594. /* > \verbatim */
  595. /* > P is INTEGER */
  596. /* > The number of rows in X11 and X12. 0 <= P <= M. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] Q */
  600. /* > \verbatim */
  601. /* > Q is INTEGER */
  602. /* > The number of columns in X11 and X21. 0 <= Q <= M. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in,out] X11 */
  606. /* > \verbatim */
  607. /* > X11 is REAL array, dimension (LDX11,Q) */
  608. /* > On entry, part of the orthogonal matrix whose CSD is desired. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] LDX11 */
  612. /* > \verbatim */
  613. /* > LDX11 is INTEGER */
  614. /* > The leading dimension of X11. LDX11 >= MAX(1,P). */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in,out] X12 */
  618. /* > \verbatim */
  619. /* > X12 is REAL array, dimension (LDX12,M-Q) */
  620. /* > On entry, part of the orthogonal matrix whose CSD is desired. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in] LDX12 */
  624. /* > \verbatim */
  625. /* > LDX12 is INTEGER */
  626. /* > The leading dimension of X12. LDX12 >= MAX(1,P). */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[in,out] X21 */
  630. /* > \verbatim */
  631. /* > X21 is REAL array, dimension (LDX21,Q) */
  632. /* > On entry, part of the orthogonal matrix whose CSD is desired. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] LDX21 */
  636. /* > \verbatim */
  637. /* > LDX21 is INTEGER */
  638. /* > The leading dimension of X11. LDX21 >= MAX(1,M-P). */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in,out] X22 */
  642. /* > \verbatim */
  643. /* > X22 is REAL array, dimension (LDX22,M-Q) */
  644. /* > On entry, part of the orthogonal matrix whose CSD is desired. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] LDX22 */
  648. /* > \verbatim */
  649. /* > LDX22 is INTEGER */
  650. /* > The leading dimension of X11. LDX22 >= MAX(1,M-P). */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] THETA */
  654. /* > \verbatim */
  655. /* > THETA is REAL array, dimension (R), in which R = */
  656. /* > MIN(P,M-P,Q,M-Q). */
  657. /* > C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and */
  658. /* > S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[out] U1 */
  662. /* > \verbatim */
  663. /* > U1 is REAL array, dimension (LDU1,P) */
  664. /* > If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[in] LDU1 */
  668. /* > \verbatim */
  669. /* > LDU1 is INTEGER */
  670. /* > The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= */
  671. /* > MAX(1,P). */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] U2 */
  675. /* > \verbatim */
  676. /* > U2 is REAL array, dimension (LDU2,M-P) */
  677. /* > If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal */
  678. /* > matrix U2. */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[in] LDU2 */
  682. /* > \verbatim */
  683. /* > LDU2 is INTEGER */
  684. /* > The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= */
  685. /* > MAX(1,M-P). */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[out] V1T */
  689. /* > \verbatim */
  690. /* > V1T is REAL array, dimension (LDV1T,Q) */
  691. /* > If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal */
  692. /* > matrix V1**T. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[in] LDV1T */
  696. /* > \verbatim */
  697. /* > LDV1T is INTEGER */
  698. /* > The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= */
  699. /* > MAX(1,Q). */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[out] V2T */
  703. /* > \verbatim */
  704. /* > V2T is REAL array, dimension (LDV2T,M-Q) */
  705. /* > If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal */
  706. /* > matrix V2**T. */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[in] LDV2T */
  710. /* > \verbatim */
  711. /* > LDV2T is INTEGER */
  712. /* > The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= */
  713. /* > MAX(1,M-Q). */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[out] WORK */
  717. /* > \verbatim */
  718. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  719. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  720. /* > If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), */
  721. /* > ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), */
  722. /* > define the matrix in intermediate bidiagonal-block form */
  723. /* > remaining after nonconvergence. INFO specifies the number */
  724. /* > of nonzero PHI's. */
  725. /* > \endverbatim */
  726. /* > */
  727. /* > \param[in] LWORK */
  728. /* > \verbatim */
  729. /* > LWORK is INTEGER */
  730. /* > The dimension of the array WORK. */
  731. /* > */
  732. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  733. /* > only calculates the optimal size of the WORK array, returns */
  734. /* > this value as the first entry of the work array, and no error */
  735. /* > message related to LWORK is issued by XERBLA. */
  736. /* > \endverbatim */
  737. /* > */
  738. /* > \param[out] IWORK */
  739. /* > \verbatim */
  740. /* > IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q)) */
  741. /* > \endverbatim */
  742. /* > */
  743. /* > \param[out] INFO */
  744. /* > \verbatim */
  745. /* > INFO is INTEGER */
  746. /* > = 0: successful exit. */
  747. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  748. /* > > 0: SBBCSD did not converge. See the description of WORK */
  749. /* > above for details. */
  750. /* > \endverbatim */
  751. /* > \par References: */
  752. /* ================ */
  753. /* > */
  754. /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
  755. /* > Algorithms, 50(1):33-65, 2009. */
  756. /* Authors: */
  757. /* ======== */
  758. /* > \author Univ. of Tennessee */
  759. /* > \author Univ. of California Berkeley */
  760. /* > \author Univ. of Colorado Denver */
  761. /* > \author NAG Ltd. */
  762. /* > \date June 2017 */
  763. /* > \ingroup realOTHERcomputational */
  764. /* ===================================================================== */
  765. /* Subroutine */ void sorcsd_(char *jobu1, char *jobu2, char *jobv1t, char *
  766. jobv2t, char *trans, char *signs, integer *m, integer *p, integer *q,
  767. real *x11, integer *ldx11, real *x12, integer *ldx12, real *x21,
  768. integer *ldx21, real *x22, integer *ldx22, real *theta, real *u1,
  769. integer *ldu1, real *u2, integer *ldu2, real *v1t, integer *ldv1t,
  770. real *v2t, integer *ldv2t, real *work, integer *lwork, integer *iwork,
  771. integer *info)
  772. {
  773. /* System generated locals */
  774. integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
  775. v2t_dim1, v2t_offset, x11_dim1, x11_offset, x12_dim1, x12_offset,
  776. x21_dim1, x21_offset, x22_dim1, x22_offset, i__1, i__2, i__3,
  777. i__4, i__5, i__6;
  778. /* Local variables */
  779. integer ib11d, ib11e, ib12d, ib12e, ib21d, ib21e, ib22d, ib22e, iphi;
  780. logical colmajor;
  781. integer lworkmin;
  782. logical defaultsigns;
  783. integer lworkopt, i__, j;
  784. extern logical lsame_(char *, char *);
  785. integer childinfo;
  786. real dummy[1];
  787. integer lbbcsdworkmin, itaup1, itaup2, itauq1, itauq2, lorbdbworkmin,
  788. lbbcsdworkopt;
  789. logical wantu1, wantu2;
  790. integer ibbcsd, lorbdbworkopt;
  791. extern /* Subroutine */ void sbbcsd_(char *, char *, char *, char *, char *
  792. , integer *, integer *, integer *, real *, real *, real *,
  793. integer *, real *, integer *, real *, integer *, real *, integer *
  794. , real *, real *, real *, real *, real *, real *, real *, real *,
  795. real *, integer *, integer *);
  796. integer iorbdb, lorglqworkmin, lorgqrworkmin;
  797. extern /* Subroutine */ void sorbdb_(char *, char *, integer *, integer *,
  798. integer *, real *, integer *, real *, integer *, real *, integer *
  799. , real *, integer *, real *, real *, real *, real *, real *, real
  800. *, real *, integer *, integer *);
  801. extern int xerbla_(char *, integer *, ftnlen);
  802. integer lorglqworkopt, lorgqrworkopt;
  803. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  804. integer *, real *, integer *);
  805. integer iorglq;
  806. extern /* Subroutine */ void slapmr_(logical *, integer *, integer *, real
  807. *, integer *, integer *), slapmt_(logical *, integer *, integer *,
  808. real *, integer *, integer *);
  809. integer iorgqr;
  810. char signst[1];
  811. extern /* Subroutine */ void sorglq_(integer *, integer *, integer *, real
  812. *, integer *, real *, real *, integer *, integer *);
  813. char transt[1];
  814. integer lbbcsdwork;
  815. extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real
  816. *, integer *, real *, real *, integer *, integer *);
  817. logical lquery;
  818. integer lorbdbwork, lorglqwork, lorgqrwork;
  819. logical wantv1t, wantv2t;
  820. /* -- LAPACK computational routine (version 3.7.1) -- */
  821. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  822. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  823. /* June 2017 */
  824. /* =================================================================== */
  825. /* Test input arguments */
  826. /* Parameter adjustments */
  827. x11_dim1 = *ldx11;
  828. x11_offset = 1 + x11_dim1 * 1;
  829. x11 -= x11_offset;
  830. x12_dim1 = *ldx12;
  831. x12_offset = 1 + x12_dim1 * 1;
  832. x12 -= x12_offset;
  833. x21_dim1 = *ldx21;
  834. x21_offset = 1 + x21_dim1 * 1;
  835. x21 -= x21_offset;
  836. x22_dim1 = *ldx22;
  837. x22_offset = 1 + x22_dim1 * 1;
  838. x22 -= x22_offset;
  839. --theta;
  840. u1_dim1 = *ldu1;
  841. u1_offset = 1 + u1_dim1 * 1;
  842. u1 -= u1_offset;
  843. u2_dim1 = *ldu2;
  844. u2_offset = 1 + u2_dim1 * 1;
  845. u2 -= u2_offset;
  846. v1t_dim1 = *ldv1t;
  847. v1t_offset = 1 + v1t_dim1 * 1;
  848. v1t -= v1t_offset;
  849. v2t_dim1 = *ldv2t;
  850. v2t_offset = 1 + v2t_dim1 * 1;
  851. v2t -= v2t_offset;
  852. --work;
  853. --iwork;
  854. /* Function Body */
  855. *info = 0;
  856. wantu1 = lsame_(jobu1, "Y");
  857. wantu2 = lsame_(jobu2, "Y");
  858. wantv1t = lsame_(jobv1t, "Y");
  859. wantv2t = lsame_(jobv2t, "Y");
  860. colmajor = ! lsame_(trans, "T");
  861. defaultsigns = ! lsame_(signs, "O");
  862. lquery = *lwork == -1;
  863. if (*m < 0) {
  864. *info = -7;
  865. } else if (*p < 0 || *p > *m) {
  866. *info = -8;
  867. } else if (*q < 0 || *q > *m) {
  868. *info = -9;
  869. } else if (colmajor && *ldx11 < f2cmax(1,*p)) {
  870. *info = -11;
  871. } else if (! colmajor && *ldx11 < f2cmax(1,*q)) {
  872. *info = -11;
  873. } else if (colmajor && *ldx12 < f2cmax(1,*p)) {
  874. *info = -13;
  875. } else /* if(complicated condition) */ {
  876. /* Computing MAX */
  877. i__1 = 1, i__2 = *m - *q;
  878. if (! colmajor && *ldx12 < f2cmax(i__1,i__2)) {
  879. *info = -13;
  880. } else /* if(complicated condition) */ {
  881. /* Computing MAX */
  882. i__1 = 1, i__2 = *m - *p;
  883. if (colmajor && *ldx21 < f2cmax(i__1,i__2)) {
  884. *info = -15;
  885. } else if (! colmajor && *ldx21 < f2cmax(1,*q)) {
  886. *info = -15;
  887. } else /* if(complicated condition) */ {
  888. /* Computing MAX */
  889. i__1 = 1, i__2 = *m - *p;
  890. if (colmajor && *ldx22 < f2cmax(i__1,i__2)) {
  891. *info = -17;
  892. } else /* if(complicated condition) */ {
  893. /* Computing MAX */
  894. i__1 = 1, i__2 = *m - *q;
  895. if (! colmajor && *ldx22 < f2cmax(i__1,i__2)) {
  896. *info = -17;
  897. } else if (wantu1 && *ldu1 < *p) {
  898. *info = -20;
  899. } else if (wantu2 && *ldu2 < *m - *p) {
  900. *info = -22;
  901. } else if (wantv1t && *ldv1t < *q) {
  902. *info = -24;
  903. } else if (wantv2t && *ldv2t < *m - *q) {
  904. *info = -26;
  905. }
  906. }
  907. }
  908. }
  909. }
  910. /* Work with transpose if convenient */
  911. /* Computing MIN */
  912. i__1 = *p, i__2 = *m - *p;
  913. /* Computing MIN */
  914. i__3 = *q, i__4 = *m - *q;
  915. if (*info == 0 && f2cmin(i__1,i__2) < f2cmin(i__3,i__4)) {
  916. if (colmajor) {
  917. *(unsigned char *)transt = 'T';
  918. } else {
  919. *(unsigned char *)transt = 'N';
  920. }
  921. if (defaultsigns) {
  922. *(unsigned char *)signst = 'O';
  923. } else {
  924. *(unsigned char *)signst = 'D';
  925. }
  926. sorcsd_(jobv1t, jobv2t, jobu1, jobu2, transt, signst, m, q, p, &x11[
  927. x11_offset], ldx11, &x21[x21_offset], ldx21, &x12[x12_offset],
  928. ldx12, &x22[x22_offset], ldx22, &theta[1], &v1t[v1t_offset],
  929. ldv1t, &v2t[v2t_offset], ldv2t, &u1[u1_offset], ldu1, &u2[
  930. u2_offset], ldu2, &work[1], lwork, &iwork[1], info);
  931. return;
  932. }
  933. /* Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if */
  934. /* convenient */
  935. if (*info == 0 && *m - *q < *q) {
  936. if (defaultsigns) {
  937. *(unsigned char *)signst = 'O';
  938. } else {
  939. *(unsigned char *)signst = 'D';
  940. }
  941. i__1 = *m - *p;
  942. i__2 = *m - *q;
  943. sorcsd_(jobu2, jobu1, jobv2t, jobv1t, trans, signst, m, &i__1, &i__2,
  944. &x22[x22_offset], ldx22, &x21[x21_offset], ldx21, &x12[
  945. x12_offset], ldx12, &x11[x11_offset], ldx11, &theta[1], &u2[
  946. u2_offset], ldu2, &u1[u1_offset], ldu1, &v2t[v2t_offset],
  947. ldv2t, &v1t[v1t_offset], ldv1t, &work[1], lwork, &iwork[1],
  948. info);
  949. return;
  950. }
  951. /* Compute workspace */
  952. if (*info == 0) {
  953. iphi = 2;
  954. /* Computing MAX */
  955. i__1 = 1, i__2 = *q - 1;
  956. itaup1 = iphi + f2cmax(i__1,i__2);
  957. itaup2 = itaup1 + f2cmax(1,*p);
  958. /* Computing MAX */
  959. i__1 = 1, i__2 = *m - *p;
  960. itauq1 = itaup2 + f2cmax(i__1,i__2);
  961. itauq2 = itauq1 + f2cmax(1,*q);
  962. /* Computing MAX */
  963. i__1 = 1, i__2 = *m - *q;
  964. iorgqr = itauq2 + f2cmax(i__1,i__2);
  965. i__1 = *m - *q;
  966. i__2 = *m - *q;
  967. i__3 = *m - *q;
  968. /* Computing MAX */
  969. i__5 = 1, i__6 = *m - *q;
  970. i__4 = f2cmax(i__5,i__6);
  971. sorgqr_(&i__1, &i__2, &i__3, dummy, &i__4, dummy, &work[1], &c_n1, &
  972. childinfo);
  973. lorgqrworkopt = (integer) work[1];
  974. /* Computing MAX */
  975. i__1 = 1, i__2 = *m - *q;
  976. lorgqrworkmin = f2cmax(i__1,i__2);
  977. /* Computing MAX */
  978. i__1 = 1, i__2 = *m - *q;
  979. iorglq = itauq2 + f2cmax(i__1,i__2);
  980. i__1 = *m - *q;
  981. i__2 = *m - *q;
  982. i__3 = *m - *q;
  983. /* Computing MAX */
  984. i__5 = 1, i__6 = *m - *q;
  985. i__4 = f2cmax(i__5,i__6);
  986. sorglq_(&i__1, &i__2, &i__3, dummy, &i__4, dummy, &work[1], &c_n1, &
  987. childinfo);
  988. lorglqworkopt = (integer) work[1];
  989. /* Computing MAX */
  990. i__1 = 1, i__2 = *m - *q;
  991. lorglqworkmin = f2cmax(i__1,i__2);
  992. /* Computing MAX */
  993. i__1 = 1, i__2 = *m - *q;
  994. iorbdb = itauq2 + f2cmax(i__1,i__2);
  995. sorbdb_(trans, signs, m, p, q, &x11[x11_offset], ldx11, &x12[
  996. x12_offset], ldx12, &x21[x21_offset], ldx21, &x22[x22_offset],
  997. ldx22, dummy, dummy, dummy, dummy, dummy, dummy, &work[1], &
  998. c_n1, &childinfo);
  999. lorbdbworkopt = (integer) work[1];
  1000. lorbdbworkmin = lorbdbworkopt;
  1001. /* Computing MAX */
  1002. i__1 = 1, i__2 = *m - *q;
  1003. ib11d = itauq2 + f2cmax(i__1,i__2);
  1004. ib11e = ib11d + f2cmax(1,*q);
  1005. /* Computing MAX */
  1006. i__1 = 1, i__2 = *q - 1;
  1007. ib12d = ib11e + f2cmax(i__1,i__2);
  1008. ib12e = ib12d + f2cmax(1,*q);
  1009. /* Computing MAX */
  1010. i__1 = 1, i__2 = *q - 1;
  1011. ib21d = ib12e + f2cmax(i__1,i__2);
  1012. ib21e = ib21d + f2cmax(1,*q);
  1013. /* Computing MAX */
  1014. i__1 = 1, i__2 = *q - 1;
  1015. ib22d = ib21e + f2cmax(i__1,i__2);
  1016. ib22e = ib22d + f2cmax(1,*q);
  1017. /* Computing MAX */
  1018. i__1 = 1, i__2 = *q - 1;
  1019. ibbcsd = ib22e + f2cmax(i__1,i__2);
  1020. sbbcsd_(jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, dummy, dummy, &
  1021. u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[v1t_offset],
  1022. ldv1t, &v2t[v2t_offset], ldv2t, dummy, dummy, dummy, dummy,
  1023. dummy, dummy, dummy, dummy, &work[1], &c_n1, &childinfo);
  1024. lbbcsdworkopt = (integer) work[1];
  1025. lbbcsdworkmin = lbbcsdworkopt;
  1026. /* Computing MAX */
  1027. i__1 = iorgqr + lorgqrworkopt, i__2 = iorglq + lorglqworkopt, i__1 =
  1028. f2cmax(i__1,i__2), i__2 = iorbdb + lorbdbworkopt, i__1 = f2cmax(
  1029. i__1,i__2), i__2 = ibbcsd + lbbcsdworkopt;
  1030. lworkopt = f2cmax(i__1,i__2) - 1;
  1031. /* Computing MAX */
  1032. i__1 = iorgqr + lorgqrworkmin, i__2 = iorglq + lorglqworkmin, i__1 =
  1033. f2cmax(i__1,i__2), i__2 = iorbdb + lorbdbworkopt, i__1 = f2cmax(
  1034. i__1,i__2), i__2 = ibbcsd + lbbcsdworkmin;
  1035. lworkmin = f2cmax(i__1,i__2) - 1;
  1036. work[1] = (real) f2cmax(lworkopt,lworkmin);
  1037. if (*lwork < lworkmin && ! lquery) {
  1038. *info = -22;
  1039. } else {
  1040. lorgqrwork = *lwork - iorgqr + 1;
  1041. lorglqwork = *lwork - iorglq + 1;
  1042. lorbdbwork = *lwork - iorbdb + 1;
  1043. lbbcsdwork = *lwork - ibbcsd + 1;
  1044. }
  1045. }
  1046. /* Abort if any illegal arguments */
  1047. if (*info != 0) {
  1048. i__1 = -(*info);
  1049. xerbla_("SORCSD", &i__1, (ftnlen)6);
  1050. return;
  1051. } else if (lquery) {
  1052. return;
  1053. }
  1054. /* Transform to bidiagonal block form */
  1055. sorbdb_(trans, signs, m, p, q, &x11[x11_offset], ldx11, &x12[x12_offset],
  1056. ldx12, &x21[x21_offset], ldx21, &x22[x22_offset], ldx22, &theta[1]
  1057. , &work[iphi], &work[itaup1], &work[itaup2], &work[itauq1], &work[
  1058. itauq2], &work[iorbdb], &lorbdbwork, &childinfo);
  1059. /* Accumulate Householder reflectors */
  1060. if (colmajor) {
  1061. if (wantu1 && *p > 0) {
  1062. slacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1063. sorgqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1064. iorgqr], &lorgqrwork, info);
  1065. }
  1066. if (wantu2 && *m - *p > 0) {
  1067. i__1 = *m - *p;
  1068. slacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1069. ldu2);
  1070. i__1 = *m - *p;
  1071. i__2 = *m - *p;
  1072. sorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1073. work[iorgqr], &lorgqrwork, info);
  1074. }
  1075. if (wantv1t && *q > 0) {
  1076. i__1 = *q - 1;
  1077. i__2 = *q - 1;
  1078. slacpy_("U", &i__1, &i__2, &x11[(x11_dim1 << 1) + 1], ldx11, &v1t[
  1079. (v1t_dim1 << 1) + 2], ldv1t);
  1080. v1t[v1t_dim1 + 1] = 1.f;
  1081. i__1 = *q;
  1082. for (j = 2; j <= i__1; ++j) {
  1083. v1t[j * v1t_dim1 + 1] = 0.f;
  1084. v1t[j + v1t_dim1] = 0.f;
  1085. }
  1086. i__1 = *q - 1;
  1087. i__2 = *q - 1;
  1088. i__3 = *q - 1;
  1089. sorglq_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
  1090. work[itauq1], &work[iorglq], &lorglqwork, info);
  1091. }
  1092. if (wantv2t && *m - *q > 0) {
  1093. i__1 = *m - *q;
  1094. slacpy_("U", p, &i__1, &x12[x12_offset], ldx12, &v2t[v2t_offset],
  1095. ldv2t);
  1096. i__1 = *m - *p - *q;
  1097. i__2 = *m - *p - *q;
  1098. slacpy_("U", &i__1, &i__2, &x22[*q + 1 + (*p + 1) * x22_dim1],
  1099. ldx22, &v2t[*p + 1 + (*p + 1) * v2t_dim1], ldv2t);
  1100. i__1 = *m - *q;
  1101. i__2 = *m - *q;
  1102. i__3 = *m - *q;
  1103. sorglq_(&i__1, &i__2, &i__3, &v2t[v2t_offset], ldv2t, &work[
  1104. itauq2], &work[iorglq], &lorglqwork, info);
  1105. }
  1106. } else {
  1107. if (wantu1 && *p > 0) {
  1108. slacpy_("U", q, p, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1109. sorglq_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1110. iorglq], &lorglqwork, info);
  1111. }
  1112. if (wantu2 && *m - *p > 0) {
  1113. i__1 = *m - *p;
  1114. slacpy_("U", q, &i__1, &x21[x21_offset], ldx21, &u2[u2_offset],
  1115. ldu2);
  1116. i__1 = *m - *p;
  1117. i__2 = *m - *p;
  1118. sorglq_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1119. work[iorglq], &lorglqwork, info);
  1120. }
  1121. if (wantv1t && *q > 0) {
  1122. i__1 = *q - 1;
  1123. i__2 = *q - 1;
  1124. slacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &v1t[(
  1125. v1t_dim1 << 1) + 2], ldv1t);
  1126. v1t[v1t_dim1 + 1] = 1.f;
  1127. i__1 = *q;
  1128. for (j = 2; j <= i__1; ++j) {
  1129. v1t[j * v1t_dim1 + 1] = 0.f;
  1130. v1t[j + v1t_dim1] = 0.f;
  1131. }
  1132. i__1 = *q - 1;
  1133. i__2 = *q - 1;
  1134. i__3 = *q - 1;
  1135. sorgqr_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
  1136. work[itauq1], &work[iorgqr], &lorgqrwork, info);
  1137. }
  1138. if (wantv2t && *m - *q > 0) {
  1139. i__1 = *m - *q;
  1140. slacpy_("L", &i__1, p, &x12[x12_offset], ldx12, &v2t[v2t_offset],
  1141. ldv2t);
  1142. i__1 = *m - *p - *q;
  1143. i__2 = *m - *p - *q;
  1144. slacpy_("L", &i__1, &i__2, &x22[*p + 1 + (*q + 1) * x22_dim1],
  1145. ldx22, &v2t[*p + 1 + (*p + 1) * v2t_dim1], ldv2t);
  1146. i__1 = *m - *q;
  1147. i__2 = *m - *q;
  1148. i__3 = *m - *q;
  1149. sorgqr_(&i__1, &i__2, &i__3, &v2t[v2t_offset], ldv2t, &work[
  1150. itauq2], &work[iorgqr], &lorgqrwork, info);
  1151. }
  1152. }
  1153. /* Compute the CSD of the matrix in bidiagonal-block form */
  1154. sbbcsd_(jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, &theta[1], &work[
  1155. iphi], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  1156. v1t_offset], ldv1t, &v2t[v2t_offset], ldv2t, &work[ib11d], &work[
  1157. ib11e], &work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &
  1158. work[ib22d], &work[ib22e], &work[ibbcsd], &lbbcsdwork, info);
  1159. /* Permute rows and columns to place identity submatrices in top- */
  1160. /* left corner of (1,1)-block and/or bottom-right corner of (1,2)- */
  1161. /* block and/or bottom-right corner of (2,1)-block and/or top-left */
  1162. /* corner of (2,2)-block */
  1163. if (*q > 0 && wantu2) {
  1164. i__1 = *q;
  1165. for (i__ = 1; i__ <= i__1; ++i__) {
  1166. iwork[i__] = *m - *p - *q + i__;
  1167. }
  1168. i__1 = *m - *p;
  1169. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1170. iwork[i__] = i__ - *q;
  1171. }
  1172. if (colmajor) {
  1173. i__1 = *m - *p;
  1174. i__2 = *m - *p;
  1175. slapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1176. } else {
  1177. i__1 = *m - *p;
  1178. i__2 = *m - *p;
  1179. slapmr_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1180. }
  1181. }
  1182. if (*m > 0 && wantv2t) {
  1183. i__1 = *p;
  1184. for (i__ = 1; i__ <= i__1; ++i__) {
  1185. iwork[i__] = *m - *p - *q + i__;
  1186. }
  1187. i__1 = *m - *q;
  1188. for (i__ = *p + 1; i__ <= i__1; ++i__) {
  1189. iwork[i__] = i__ - *p;
  1190. }
  1191. if (! colmajor) {
  1192. i__1 = *m - *q;
  1193. i__2 = *m - *q;
  1194. slapmt_(&c_false, &i__1, &i__2, &v2t[v2t_offset], ldv2t, &iwork[1]
  1195. );
  1196. } else {
  1197. i__1 = *m - *q;
  1198. i__2 = *m - *q;
  1199. slapmr_(&c_false, &i__1, &i__2, &v2t[v2t_offset], ldv2t, &iwork[1]
  1200. );
  1201. }
  1202. }
  1203. return;
  1204. /* End SORCSD */
  1205. } /* sorcsd_ */