You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaqr2.c 38 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c_n1 = -1;
  486. static real c_b12 = 0.f;
  487. static real c_b13 = 1.f;
  488. static logical c_true = TRUE_;
  489. /* > \brief \b SLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and d
  490. eflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
  491. */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download SLAQR2 + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr2.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr2.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr2.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE SLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
  510. /* IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, */
  511. /* LDT, NV, WV, LDWV, WORK, LWORK ) */
  512. /* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
  513. /* $ LDZ, LWORK, N, ND, NH, NS, NV, NW */
  514. /* LOGICAL WANTT, WANTZ */
  515. /* REAL H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), */
  516. /* $ V( LDV, * ), WORK( * ), WV( LDWV, * ), */
  517. /* $ Z( LDZ, * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > SLAQR2 is identical to SLAQR3 except that it avoids */
  524. /* > recursion by calling SLAHQR instead of SLAQR4. */
  525. /* > */
  526. /* > Aggressive early deflation: */
  527. /* > */
  528. /* > This subroutine accepts as input an upper Hessenberg matrix */
  529. /* > H and performs an orthogonal similarity transformation */
  530. /* > designed to detect and deflate fully converged eigenvalues from */
  531. /* > a trailing principal submatrix. On output H has been over- */
  532. /* > written by a new Hessenberg matrix that is a perturbation of */
  533. /* > an orthogonal similarity transformation of H. It is to be */
  534. /* > hoped that the final version of H has many zero subdiagonal */
  535. /* > entries. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] WANTT */
  540. /* > \verbatim */
  541. /* > WANTT is LOGICAL */
  542. /* > If .TRUE., then the Hessenberg matrix H is fully updated */
  543. /* > so that the quasi-triangular Schur factor may be */
  544. /* > computed (in cooperation with the calling subroutine). */
  545. /* > If .FALSE., then only enough of H is updated to preserve */
  546. /* > the eigenvalues. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] WANTZ */
  550. /* > \verbatim */
  551. /* > WANTZ is LOGICAL */
  552. /* > If .TRUE., then the orthogonal matrix Z is updated so */
  553. /* > so that the orthogonal Schur factor may be computed */
  554. /* > (in cooperation with the calling subroutine). */
  555. /* > If .FALSE., then Z is not referenced. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The order of the matrix H and (if WANTZ is .TRUE.) the */
  562. /* > order of the orthogonal matrix Z. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] KTOP */
  566. /* > \verbatim */
  567. /* > KTOP is INTEGER */
  568. /* > It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
  569. /* > KBOT and KTOP together determine an isolated block */
  570. /* > along the diagonal of the Hessenberg matrix. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] KBOT */
  574. /* > \verbatim */
  575. /* > KBOT is INTEGER */
  576. /* > It is assumed without a check that either */
  577. /* > KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
  578. /* > determine an isolated block along the diagonal of the */
  579. /* > Hessenberg matrix. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] NW */
  583. /* > \verbatim */
  584. /* > NW is INTEGER */
  585. /* > Deflation window size. 1 <= NW <= (KBOT-KTOP+1). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] H */
  589. /* > \verbatim */
  590. /* > H is REAL array, dimension (LDH,N) */
  591. /* > On input the initial N-by-N section of H stores the */
  592. /* > Hessenberg matrix undergoing aggressive early deflation. */
  593. /* > On output H has been transformed by an orthogonal */
  594. /* > similarity transformation, perturbed, and the returned */
  595. /* > to Hessenberg form that (it is to be hoped) has some */
  596. /* > zero subdiagonal entries. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDH */
  600. /* > \verbatim */
  601. /* > LDH is INTEGER */
  602. /* > Leading dimension of H just as declared in the calling */
  603. /* > subroutine. N <= LDH */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] ILOZ */
  607. /* > \verbatim */
  608. /* > ILOZ is INTEGER */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] IHIZ */
  612. /* > \verbatim */
  613. /* > IHIZ is INTEGER */
  614. /* > Specify the rows of Z to which transformations must be */
  615. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in,out] Z */
  619. /* > \verbatim */
  620. /* > Z is REAL array, dimension (LDZ,N) */
  621. /* > IF WANTZ is .TRUE., then on output, the orthogonal */
  622. /* > similarity transformation mentioned above has been */
  623. /* > accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  624. /* > If WANTZ is .FALSE., then Z is unreferenced. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] LDZ */
  628. /* > \verbatim */
  629. /* > LDZ is INTEGER */
  630. /* > The leading dimension of Z just as declared in the */
  631. /* > calling subroutine. 1 <= LDZ. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] NS */
  635. /* > \verbatim */
  636. /* > NS is INTEGER */
  637. /* > The number of unconverged (ie approximate) eigenvalues */
  638. /* > returned in SR and SI that may be used as shifts by the */
  639. /* > calling subroutine. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] ND */
  643. /* > \verbatim */
  644. /* > ND is INTEGER */
  645. /* > The number of converged eigenvalues uncovered by this */
  646. /* > subroutine. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] SR */
  650. /* > \verbatim */
  651. /* > SR is REAL array, dimension (KBOT) */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] SI */
  655. /* > \verbatim */
  656. /* > SI is REAL array, dimension (KBOT) */
  657. /* > On output, the real and imaginary parts of approximate */
  658. /* > eigenvalues that may be used for shifts are stored in */
  659. /* > SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
  660. /* > SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
  661. /* > The real and imaginary parts of converged eigenvalues */
  662. /* > are stored in SR(KBOT-ND+1) through SR(KBOT) and */
  663. /* > SI(KBOT-ND+1) through SI(KBOT), respectively. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[out] V */
  667. /* > \verbatim */
  668. /* > V is REAL array, dimension (LDV,NW) */
  669. /* > An NW-by-NW work array. */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[in] LDV */
  673. /* > \verbatim */
  674. /* > LDV is INTEGER */
  675. /* > The leading dimension of V just as declared in the */
  676. /* > calling subroutine. NW <= LDV */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[in] NH */
  680. /* > \verbatim */
  681. /* > NH is INTEGER */
  682. /* > The number of columns of T. NH >= NW. */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] T */
  686. /* > \verbatim */
  687. /* > T is REAL array, dimension (LDT,NW) */
  688. /* > \endverbatim */
  689. /* > */
  690. /* > \param[in] LDT */
  691. /* > \verbatim */
  692. /* > LDT is INTEGER */
  693. /* > The leading dimension of T just as declared in the */
  694. /* > calling subroutine. NW <= LDT */
  695. /* > \endverbatim */
  696. /* > */
  697. /* > \param[in] NV */
  698. /* > \verbatim */
  699. /* > NV is INTEGER */
  700. /* > The number of rows of work array WV available for */
  701. /* > workspace. NV >= NW. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] WV */
  705. /* > \verbatim */
  706. /* > WV is REAL array, dimension (LDWV,NW) */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[in] LDWV */
  710. /* > \verbatim */
  711. /* > LDWV is INTEGER */
  712. /* > The leading dimension of W just as declared in the */
  713. /* > calling subroutine. NW <= LDV */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[out] WORK */
  717. /* > \verbatim */
  718. /* > WORK is REAL array, dimension (LWORK) */
  719. /* > On exit, WORK(1) is set to an estimate of the optimal value */
  720. /* > of LWORK for the given values of N, NW, KTOP and KBOT. */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[in] LWORK */
  724. /* > \verbatim */
  725. /* > LWORK is INTEGER */
  726. /* > The dimension of the work array WORK. LWORK = 2*NW */
  727. /* > suffices, but greater efficiency may result from larger */
  728. /* > values of LWORK. */
  729. /* > */
  730. /* > If LWORK = -1, then a workspace query is assumed; SLAQR2 */
  731. /* > only estimates the optimal workspace size for the given */
  732. /* > values of N, NW, KTOP and KBOT. The estimate is returned */
  733. /* > in WORK(1). No error message related to LWORK is issued */
  734. /* > by XERBLA. Neither H nor Z are accessed. */
  735. /* > \endverbatim */
  736. /* Authors: */
  737. /* ======== */
  738. /* > \author Univ. of Tennessee */
  739. /* > \author Univ. of California Berkeley */
  740. /* > \author Univ. of Colorado Denver */
  741. /* > \author NAG Ltd. */
  742. /* > \date June 2017 */
  743. /* > \ingroup realOTHERauxiliary */
  744. /* > \par Contributors: */
  745. /* ================== */
  746. /* > */
  747. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  748. /* > University of Kansas, USA */
  749. /* > */
  750. /* ===================================================================== */
  751. /* Subroutine */ void slaqr2_(logical *wantt, logical *wantz, integer *n,
  752. integer *ktop, integer *kbot, integer *nw, real *h__, integer *ldh,
  753. integer *iloz, integer *ihiz, real *z__, integer *ldz, integer *ns,
  754. integer *nd, real *sr, real *si, real *v, integer *ldv, integer *nh,
  755. real *t, integer *ldt, integer *nv, real *wv, integer *ldwv, real *
  756. work, integer *lwork)
  757. {
  758. /* System generated locals */
  759. integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
  760. wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
  761. real r__1, r__2, r__3, r__4, r__5, r__6;
  762. /* Local variables */
  763. real beta;
  764. integer kend, kcol, info, ifst, ilst, ltop, krow, i__, j, k;
  765. real s;
  766. logical bulge;
  767. extern /* Subroutine */ void slarf_(char *, integer *, integer *, real *,
  768. integer *, real *, real *, integer *, real *), sgemm_(
  769. char *, char *, integer *, integer *, integer *, real *, real *,
  770. integer *, real *, integer *, real *, real *, integer *);
  771. integer infqr;
  772. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  773. integer *);
  774. integer kwtop;
  775. real aa, bb, cc;
  776. extern /* Subroutine */ void slanv2_(real *, real *, real *, real *, real *
  777. , real *, real *, real *, real *, real *);
  778. real dd, cs;
  779. extern /* Subroutine */ void slabad_(real *, real *);
  780. real sn;
  781. integer jw;
  782. extern real slamch_(char *);
  783. extern /* Subroutine */ void sgehrd_(integer *, integer *, integer *, real
  784. *, integer *, real *, real *, integer *, integer *);
  785. real safmin, safmax;
  786. extern /* Subroutine */ void slarfg_(integer *, real *, real *, integer *,
  787. real *), slahqr_(logical *, logical *, integer *, integer *,
  788. integer *, real *, integer *, real *, real *, integer *, integer *
  789. , real *, integer *, integer *), slacpy_(char *, integer *,
  790. integer *, real *, integer *, real *, integer *), slaset_(
  791. char *, integer *, integer *, real *, real *, real *, integer *);
  792. logical sorted;
  793. extern /* Subroutine */ void strexc_(char *, integer *, real *, integer *,
  794. real *, integer *, integer *, integer *, real *, integer *), sormhr_(char *, char *, integer *, integer *, integer *,
  795. integer *, real *, integer *, real *, real *, integer *, real *,
  796. integer *, integer *);
  797. real smlnum;
  798. integer lwkopt;
  799. real evi, evk, foo;
  800. integer kln;
  801. real tau, ulp;
  802. integer lwk1, lwk2;
  803. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  804. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  805. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  806. /* June 2017 */
  807. /* ================================================================ */
  808. /* ==== Estimate optimal workspace. ==== */
  809. /* Parameter adjustments */
  810. h_dim1 = *ldh;
  811. h_offset = 1 + h_dim1 * 1;
  812. h__ -= h_offset;
  813. z_dim1 = *ldz;
  814. z_offset = 1 + z_dim1 * 1;
  815. z__ -= z_offset;
  816. --sr;
  817. --si;
  818. v_dim1 = *ldv;
  819. v_offset = 1 + v_dim1 * 1;
  820. v -= v_offset;
  821. t_dim1 = *ldt;
  822. t_offset = 1 + t_dim1 * 1;
  823. t -= t_offset;
  824. wv_dim1 = *ldwv;
  825. wv_offset = 1 + wv_dim1 * 1;
  826. wv -= wv_offset;
  827. --work;
  828. /* Function Body */
  829. /* Computing MIN */
  830. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  831. jw = f2cmin(i__1,i__2);
  832. if (jw <= 2) {
  833. lwkopt = 1;
  834. } else {
  835. /* ==== Workspace query call to SGEHRD ==== */
  836. i__1 = jw - 1;
  837. sgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
  838. c_n1, &info);
  839. lwk1 = (integer) work[1];
  840. /* ==== Workspace query call to SORMHR ==== */
  841. i__1 = jw - 1;
  842. sormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
  843. &v[v_offset], ldv, &work[1], &c_n1, &info);
  844. lwk2 = (integer) work[1];
  845. /* ==== Optimal workspace ==== */
  846. lwkopt = jw + f2cmax(lwk1,lwk2);
  847. }
  848. /* ==== Quick return in case of workspace query. ==== */
  849. if (*lwork == -1) {
  850. work[1] = (real) lwkopt;
  851. return;
  852. }
  853. /* ==== Nothing to do ... */
  854. /* ... for an empty active block ... ==== */
  855. *ns = 0;
  856. *nd = 0;
  857. work[1] = 1.f;
  858. if (*ktop > *kbot) {
  859. return;
  860. }
  861. /* ... nor for an empty deflation window. ==== */
  862. if (*nw < 1) {
  863. return;
  864. }
  865. /* ==== Machine constants ==== */
  866. safmin = slamch_("SAFE MINIMUM");
  867. safmax = 1.f / safmin;
  868. slabad_(&safmin, &safmax);
  869. ulp = slamch_("PRECISION");
  870. smlnum = safmin * ((real) (*n) / ulp);
  871. /* ==== Setup deflation window ==== */
  872. /* Computing MIN */
  873. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  874. jw = f2cmin(i__1,i__2);
  875. kwtop = *kbot - jw + 1;
  876. if (kwtop == *ktop) {
  877. s = 0.f;
  878. } else {
  879. s = h__[kwtop + (kwtop - 1) * h_dim1];
  880. }
  881. if (*kbot == kwtop) {
  882. /* ==== 1-by-1 deflation window: not much to do ==== */
  883. sr[kwtop] = h__[kwtop + kwtop * h_dim1];
  884. si[kwtop] = 0.f;
  885. *ns = 1;
  886. *nd = 0;
  887. /* Computing MAX */
  888. r__2 = smlnum, r__3 = ulp * (r__1 = h__[kwtop + kwtop * h_dim1], abs(
  889. r__1));
  890. if (abs(s) <= f2cmax(r__2,r__3)) {
  891. *ns = 0;
  892. *nd = 1;
  893. if (kwtop > *ktop) {
  894. h__[kwtop + (kwtop - 1) * h_dim1] = 0.f;
  895. }
  896. }
  897. work[1] = 1.f;
  898. return;
  899. }
  900. /* ==== Convert to spike-triangular form. (In case of a */
  901. /* . rare QR failure, this routine continues to do */
  902. /* . aggressive early deflation using that part of */
  903. /* . the deflation window that converged using INFQR */
  904. /* . here and there to keep track.) ==== */
  905. slacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
  906. ldt);
  907. i__1 = jw - 1;
  908. i__2 = *ldh + 1;
  909. i__3 = *ldt + 1;
  910. scopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
  911. i__3);
  912. slaset_("A", &jw, &jw, &c_b12, &c_b13, &v[v_offset], ldv);
  913. slahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[kwtop],
  914. &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
  915. /* ==== STREXC needs a clean margin near the diagonal ==== */
  916. i__1 = jw - 3;
  917. for (j = 1; j <= i__1; ++j) {
  918. t[j + 2 + j * t_dim1] = 0.f;
  919. t[j + 3 + j * t_dim1] = 0.f;
  920. /* L10: */
  921. }
  922. if (jw > 2) {
  923. t[jw + (jw - 2) * t_dim1] = 0.f;
  924. }
  925. /* ==== Deflation detection loop ==== */
  926. *ns = jw;
  927. ilst = infqr + 1;
  928. L20:
  929. if (ilst <= *ns) {
  930. if (*ns == 1) {
  931. bulge = FALSE_;
  932. } else {
  933. bulge = t[*ns + (*ns - 1) * t_dim1] != 0.f;
  934. }
  935. /* ==== Small spike tip test for deflation ==== */
  936. if (! bulge) {
  937. /* ==== Real eigenvalue ==== */
  938. foo = (r__1 = t[*ns + *ns * t_dim1], abs(r__1));
  939. if (foo == 0.f) {
  940. foo = abs(s);
  941. }
  942. /* Computing MAX */
  943. r__2 = smlnum, r__3 = ulp * foo;
  944. if ((r__1 = s * v[*ns * v_dim1 + 1], abs(r__1)) <= f2cmax(r__2,r__3))
  945. {
  946. /* ==== Deflatable ==== */
  947. --(*ns);
  948. } else {
  949. /* ==== Undeflatable. Move it up out of the way. */
  950. /* . (STREXC can not fail in this case.) ==== */
  951. ifst = *ns;
  952. strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  953. &ilst, &work[1], &info);
  954. ++ilst;
  955. }
  956. } else {
  957. /* ==== Complex conjugate pair ==== */
  958. foo = (r__3 = t[*ns + *ns * t_dim1], abs(r__3)) + sqrt((r__1 = t[*
  959. ns + (*ns - 1) * t_dim1], abs(r__1))) * sqrt((r__2 = t[*
  960. ns - 1 + *ns * t_dim1], abs(r__2)));
  961. if (foo == 0.f) {
  962. foo = abs(s);
  963. }
  964. /* Computing MAX */
  965. r__3 = (r__1 = s * v[*ns * v_dim1 + 1], abs(r__1)), r__4 = (r__2 =
  966. s * v[(*ns - 1) * v_dim1 + 1], abs(r__2));
  967. /* Computing MAX */
  968. r__5 = smlnum, r__6 = ulp * foo;
  969. if (f2cmax(r__3,r__4) <= f2cmax(r__5,r__6)) {
  970. /* ==== Deflatable ==== */
  971. *ns += -2;
  972. } else {
  973. /* ==== Undeflatable. Move them up out of the way. */
  974. /* . Fortunately, STREXC does the right thing with */
  975. /* . ILST in case of a rare exchange failure. ==== */
  976. ifst = *ns;
  977. strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  978. &ilst, &work[1], &info);
  979. ilst += 2;
  980. }
  981. }
  982. /* ==== End deflation detection loop ==== */
  983. goto L20;
  984. }
  985. /* ==== Return to Hessenberg form ==== */
  986. if (*ns == 0) {
  987. s = 0.f;
  988. }
  989. if (*ns < jw) {
  990. /* ==== sorting diagonal blocks of T improves accuracy for */
  991. /* . graded matrices. Bubble sort deals well with */
  992. /* . exchange failures. ==== */
  993. sorted = FALSE_;
  994. i__ = *ns + 1;
  995. L30:
  996. if (sorted) {
  997. goto L50;
  998. }
  999. sorted = TRUE_;
  1000. kend = i__ - 1;
  1001. i__ = infqr + 1;
  1002. if (i__ == *ns) {
  1003. k = i__ + 1;
  1004. } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
  1005. k = i__ + 1;
  1006. } else {
  1007. k = i__ + 2;
  1008. }
  1009. L40:
  1010. if (k <= kend) {
  1011. if (k == i__ + 1) {
  1012. evi = (r__1 = t[i__ + i__ * t_dim1], abs(r__1));
  1013. } else {
  1014. evi = (r__3 = t[i__ + i__ * t_dim1], abs(r__3)) + sqrt((r__1 =
  1015. t[i__ + 1 + i__ * t_dim1], abs(r__1))) * sqrt((r__2 =
  1016. t[i__ + (i__ + 1) * t_dim1], abs(r__2)));
  1017. }
  1018. if (k == kend) {
  1019. evk = (r__1 = t[k + k * t_dim1], abs(r__1));
  1020. } else if (t[k + 1 + k * t_dim1] == 0.f) {
  1021. evk = (r__1 = t[k + k * t_dim1], abs(r__1));
  1022. } else {
  1023. evk = (r__3 = t[k + k * t_dim1], abs(r__3)) + sqrt((r__1 = t[
  1024. k + 1 + k * t_dim1], abs(r__1))) * sqrt((r__2 = t[k +
  1025. (k + 1) * t_dim1], abs(r__2)));
  1026. }
  1027. if (evi >= evk) {
  1028. i__ = k;
  1029. } else {
  1030. sorted = FALSE_;
  1031. ifst = i__;
  1032. ilst = k;
  1033. strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  1034. &ilst, &work[1], &info);
  1035. if (info == 0) {
  1036. i__ = ilst;
  1037. } else {
  1038. i__ = k;
  1039. }
  1040. }
  1041. if (i__ == kend) {
  1042. k = i__ + 1;
  1043. } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
  1044. k = i__ + 1;
  1045. } else {
  1046. k = i__ + 2;
  1047. }
  1048. goto L40;
  1049. }
  1050. goto L30;
  1051. L50:
  1052. ;
  1053. }
  1054. /* ==== Restore shift/eigenvalue array from T ==== */
  1055. i__ = jw;
  1056. L60:
  1057. if (i__ >= infqr + 1) {
  1058. if (i__ == infqr + 1) {
  1059. sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
  1060. si[kwtop + i__ - 1] = 0.f;
  1061. --i__;
  1062. } else if (t[i__ + (i__ - 1) * t_dim1] == 0.f) {
  1063. sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
  1064. si[kwtop + i__ - 1] = 0.f;
  1065. --i__;
  1066. } else {
  1067. aa = t[i__ - 1 + (i__ - 1) * t_dim1];
  1068. cc = t[i__ + (i__ - 1) * t_dim1];
  1069. bb = t[i__ - 1 + i__ * t_dim1];
  1070. dd = t[i__ + i__ * t_dim1];
  1071. slanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__
  1072. - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
  1073. sn);
  1074. i__ += -2;
  1075. }
  1076. goto L60;
  1077. }
  1078. if (*ns < jw || s == 0.f) {
  1079. if (*ns > 1 && s != 0.f) {
  1080. /* ==== Reflect spike back into lower triangle ==== */
  1081. scopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
  1082. beta = work[1];
  1083. slarfg_(ns, &beta, &work[2], &c__1, &tau);
  1084. work[1] = 1.f;
  1085. i__1 = jw - 2;
  1086. i__2 = jw - 2;
  1087. slaset_("L", &i__1, &i__2, &c_b12, &c_b12, &t[t_dim1 + 3], ldt);
  1088. slarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1089. work[jw + 1]);
  1090. slarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1091. work[jw + 1]);
  1092. slarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
  1093. work[jw + 1]);
  1094. i__1 = *lwork - jw;
  1095. sgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
  1096. , &i__1, &info);
  1097. }
  1098. /* ==== Copy updated reduced window into place ==== */
  1099. if (kwtop > 1) {
  1100. h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
  1101. }
  1102. slacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
  1103. , ldh);
  1104. i__1 = jw - 1;
  1105. i__2 = *ldt + 1;
  1106. i__3 = *ldh + 1;
  1107. scopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
  1108. &i__3);
  1109. /* ==== Accumulate orthogonal matrix in order update */
  1110. /* . H and Z, if requested. ==== */
  1111. if (*ns > 1 && s != 0.f) {
  1112. i__1 = *lwork - jw;
  1113. sormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
  1114. &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
  1115. }
  1116. /* ==== Update vertical slab in H ==== */
  1117. if (*wantt) {
  1118. ltop = 1;
  1119. } else {
  1120. ltop = *ktop;
  1121. }
  1122. i__1 = kwtop - 1;
  1123. i__2 = *nv;
  1124. for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1125. i__2) {
  1126. /* Computing MIN */
  1127. i__3 = *nv, i__4 = kwtop - krow;
  1128. kln = f2cmin(i__3,i__4);
  1129. sgemm_("N", "N", &kln, &jw, &jw, &c_b13, &h__[krow + kwtop *
  1130. h_dim1], ldh, &v[v_offset], ldv, &c_b12, &wv[wv_offset],
  1131. ldwv);
  1132. slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
  1133. h_dim1], ldh);
  1134. /* L70: */
  1135. }
  1136. /* ==== Update horizontal slab in H ==== */
  1137. if (*wantt) {
  1138. i__2 = *n;
  1139. i__1 = *nh;
  1140. for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
  1141. kcol += i__1) {
  1142. /* Computing MIN */
  1143. i__3 = *nh, i__4 = *n - kcol + 1;
  1144. kln = f2cmin(i__3,i__4);
  1145. sgemm_("C", "N", &jw, &kln, &jw, &c_b13, &v[v_offset], ldv, &
  1146. h__[kwtop + kcol * h_dim1], ldh, &c_b12, &t[t_offset],
  1147. ldt);
  1148. slacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
  1149. h_dim1], ldh);
  1150. /* L80: */
  1151. }
  1152. }
  1153. /* ==== Update vertical slab in Z ==== */
  1154. if (*wantz) {
  1155. i__1 = *ihiz;
  1156. i__2 = *nv;
  1157. for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1158. i__2) {
  1159. /* Computing MIN */
  1160. i__3 = *nv, i__4 = *ihiz - krow + 1;
  1161. kln = f2cmin(i__3,i__4);
  1162. sgemm_("N", "N", &kln, &jw, &jw, &c_b13, &z__[krow + kwtop *
  1163. z_dim1], ldz, &v[v_offset], ldv, &c_b12, &wv[
  1164. wv_offset], ldwv);
  1165. slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
  1166. kwtop * z_dim1], ldz);
  1167. /* L90: */
  1168. }
  1169. }
  1170. }
  1171. /* ==== Return the number of deflations ... ==== */
  1172. *nd = jw - *ns;
  1173. /* ==== ... and the number of shifts. (Subtracting */
  1174. /* . INFQR from the spike length takes care */
  1175. /* . of the case of a rare QR failure while */
  1176. /* . calculating eigenvalues of the deflation */
  1177. /* . window.) ==== */
  1178. *ns -= infqr;
  1179. /* ==== Return optimal workspace. ==== */
  1180. work[1] = (real) lwkopt;
  1181. /* ==== End of SLAQR2 ==== */
  1182. return;
  1183. } /* slaqr2_ */