You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slag2.c 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief \b SLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as nece
  484. ssary to avoid over-/underflow. */
  485. /* =========== DOCUMENTATION =========== */
  486. /* Online html documentation available at */
  487. /* http://www.netlib.org/lapack/explore-html/ */
  488. /* > \htmlonly */
  489. /* > Download SLAG2 + dependencies */
  490. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slag2.f
  491. "> */
  492. /* > [TGZ]</a> */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slag2.f
  494. "> */
  495. /* > [ZIP]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slag2.f
  497. "> */
  498. /* > [TXT]</a> */
  499. /* > \endhtmlonly */
  500. /* Definition: */
  501. /* =========== */
  502. /* SUBROUTINE SLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, */
  503. /* WR2, WI ) */
  504. /* INTEGER LDA, LDB */
  505. /* REAL SAFMIN, SCALE1, SCALE2, WI, WR1, WR2 */
  506. /* REAL A( LDA, * ), B( LDB, * ) */
  507. /* > \par Purpose: */
  508. /* ============= */
  509. /* > */
  510. /* > \verbatim */
  511. /* > */
  512. /* > SLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue */
  513. /* > problem A - w B, with scaling as necessary to avoid over-/underflow. */
  514. /* > */
  515. /* > The scaling factor "s" results in a modified eigenvalue equation */
  516. /* > */
  517. /* > s A - w B */
  518. /* > */
  519. /* > where s is a non-negative scaling factor chosen so that w, w B, */
  520. /* > and s A do not overflow and, if possible, do not underflow, either. */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] A */
  525. /* > \verbatim */
  526. /* > A is REAL array, dimension (LDA, 2) */
  527. /* > On entry, the 2 x 2 matrix A. It is assumed that its 1-norm */
  528. /* > is less than 1/SAFMIN. Entries less than */
  529. /* > sqrt(SAFMIN)*norm(A) are subject to being treated as zero. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] LDA */
  533. /* > \verbatim */
  534. /* > LDA is INTEGER */
  535. /* > The leading dimension of the array A. LDA >= 2. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] B */
  539. /* > \verbatim */
  540. /* > B is REAL array, dimension (LDB, 2) */
  541. /* > On entry, the 2 x 2 upper triangular matrix B. It is */
  542. /* > assumed that the one-norm of B is less than 1/SAFMIN. The */
  543. /* > diagonals should be at least sqrt(SAFMIN) times the largest */
  544. /* > element of B (in absolute value); if a diagonal is smaller */
  545. /* > than that, then +/- sqrt(SAFMIN) will be used instead of */
  546. /* > that diagonal. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] LDB */
  550. /* > \verbatim */
  551. /* > LDB is INTEGER */
  552. /* > The leading dimension of the array B. LDB >= 2. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] SAFMIN */
  556. /* > \verbatim */
  557. /* > SAFMIN is REAL */
  558. /* > The smallest positive number s.t. 1/SAFMIN does not */
  559. /* > overflow. (This should always be SLAMCH('S') -- it is an */
  560. /* > argument in order to avoid having to call SLAMCH frequently.) */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[out] SCALE1 */
  564. /* > \verbatim */
  565. /* > SCALE1 is REAL */
  566. /* > A scaling factor used to avoid over-/underflow in the */
  567. /* > eigenvalue equation which defines the first eigenvalue. If */
  568. /* > the eigenvalues are complex, then the eigenvalues are */
  569. /* > ( WR1 +/- WI i ) / SCALE1 (which may lie outside the */
  570. /* > exponent range of the machine), SCALE1=SCALE2, and SCALE1 */
  571. /* > will always be positive. If the eigenvalues are real, then */
  572. /* > the first (real) eigenvalue is WR1 / SCALE1 , but this may */
  573. /* > overflow or underflow, and in fact, SCALE1 may be zero or */
  574. /* > less than the underflow threshold if the exact eigenvalue */
  575. /* > is sufficiently large. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[out] SCALE2 */
  579. /* > \verbatim */
  580. /* > SCALE2 is REAL */
  581. /* > A scaling factor used to avoid over-/underflow in the */
  582. /* > eigenvalue equation which defines the second eigenvalue. If */
  583. /* > the eigenvalues are complex, then SCALE2=SCALE1. If the */
  584. /* > eigenvalues are real, then the second (real) eigenvalue is */
  585. /* > WR2 / SCALE2 , but this may overflow or underflow, and in */
  586. /* > fact, SCALE2 may be zero or less than the underflow */
  587. /* > threshold if the exact eigenvalue is sufficiently large. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] WR1 */
  591. /* > \verbatim */
  592. /* > WR1 is REAL */
  593. /* > If the eigenvalue is real, then WR1 is SCALE1 times the */
  594. /* > eigenvalue closest to the (2,2) element of A B**(-1). If the */
  595. /* > eigenvalue is complex, then WR1=WR2 is SCALE1 times the real */
  596. /* > part of the eigenvalues. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[out] WR2 */
  600. /* > \verbatim */
  601. /* > WR2 is REAL */
  602. /* > If the eigenvalue is real, then WR2 is SCALE2 times the */
  603. /* > other eigenvalue. If the eigenvalue is complex, then */
  604. /* > WR1=WR2 is SCALE1 times the real part of the eigenvalues. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] WI */
  608. /* > \verbatim */
  609. /* > WI is REAL */
  610. /* > If the eigenvalue is real, then WI is zero. If the */
  611. /* > eigenvalue is complex, then WI is SCALE1 times the imaginary */
  612. /* > part of the eigenvalues. WI will always be non-negative. */
  613. /* > \endverbatim */
  614. /* Authors: */
  615. /* ======== */
  616. /* > \author Univ. of Tennessee */
  617. /* > \author Univ. of California Berkeley */
  618. /* > \author Univ. of Colorado Denver */
  619. /* > \author NAG Ltd. */
  620. /* > \date June 2016 */
  621. /* > \ingroup realOTHERauxiliary */
  622. /* ===================================================================== */
  623. /* Subroutine */ void slag2_(real *a, integer *lda, real *b, integer *ldb,
  624. real *safmin, real *scale1, real *scale2, real *wr1, real *wr2, real *
  625. wi)
  626. {
  627. /* System generated locals */
  628. integer a_dim1, a_offset, b_dim1, b_offset;
  629. real r__1, r__2, r__3, r__4, r__5, r__6;
  630. /* Local variables */
  631. real diff, bmin, wbig, wabs, wdet, r__, binv11, binv22, discr, anorm,
  632. bnorm, bsize, shift, c1, c2, c3, c4, c5, rtmin, rtmax, wsize, s1,
  633. s2, a11, a12, a21, a22, b11, b12, b22, ascale, bscale, pp, qq, ss,
  634. wscale, safmax, wsmall, as11, as12, as22, sum, abi22;
  635. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  636. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  637. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  638. /* June 2016 */
  639. /* ===================================================================== */
  640. /* Parameter adjustments */
  641. a_dim1 = *lda;
  642. a_offset = 1 + a_dim1 * 1;
  643. a -= a_offset;
  644. b_dim1 = *ldb;
  645. b_offset = 1 + b_dim1 * 1;
  646. b -= b_offset;
  647. /* Function Body */
  648. rtmin = sqrt(*safmin);
  649. rtmax = 1.f / rtmin;
  650. safmax = 1.f / *safmin;
  651. /* Scale A */
  652. /* Computing MAX */
  653. r__5 = (r__1 = a[a_dim1 + 1], abs(r__1)) + (r__2 = a[a_dim1 + 2], abs(
  654. r__2)), r__6 = (r__3 = a[(a_dim1 << 1) + 1], abs(r__3)) + (r__4 =
  655. a[(a_dim1 << 1) + 2], abs(r__4)), r__5 = f2cmax(r__5,r__6);
  656. anorm = f2cmax(r__5,*safmin);
  657. ascale = 1.f / anorm;
  658. a11 = ascale * a[a_dim1 + 1];
  659. a21 = ascale * a[a_dim1 + 2];
  660. a12 = ascale * a[(a_dim1 << 1) + 1];
  661. a22 = ascale * a[(a_dim1 << 1) + 2];
  662. /* Perturb B if necessary to insure non-singularity */
  663. b11 = b[b_dim1 + 1];
  664. b12 = b[(b_dim1 << 1) + 1];
  665. b22 = b[(b_dim1 << 1) + 2];
  666. /* Computing MAX */
  667. r__1 = abs(b11), r__2 = abs(b12), r__1 = f2cmax(r__1,r__2), r__2 = abs(b22),
  668. r__1 = f2cmax(r__1,r__2);
  669. bmin = rtmin * f2cmax(r__1,rtmin);
  670. if (abs(b11) < bmin) {
  671. b11 = r_sign(&bmin, &b11);
  672. }
  673. if (abs(b22) < bmin) {
  674. b22 = r_sign(&bmin, &b22);
  675. }
  676. /* Scale B */
  677. /* Computing MAX */
  678. r__1 = abs(b11), r__2 = abs(b12) + abs(b22), r__1 = f2cmax(r__1,r__2);
  679. bnorm = f2cmax(r__1,*safmin);
  680. /* Computing MAX */
  681. r__1 = abs(b11), r__2 = abs(b22);
  682. bsize = f2cmax(r__1,r__2);
  683. bscale = 1.f / bsize;
  684. b11 *= bscale;
  685. b12 *= bscale;
  686. b22 *= bscale;
  687. /* Compute larger eigenvalue by method described by C. van Loan */
  688. /* ( AS is A shifted by -SHIFT*B ) */
  689. binv11 = 1.f / b11;
  690. binv22 = 1.f / b22;
  691. s1 = a11 * binv11;
  692. s2 = a22 * binv22;
  693. if (abs(s1) <= abs(s2)) {
  694. as12 = a12 - s1 * b12;
  695. as22 = a22 - s1 * b22;
  696. ss = a21 * (binv11 * binv22);
  697. abi22 = as22 * binv22 - ss * b12;
  698. pp = abi22 * .5f;
  699. shift = s1;
  700. } else {
  701. as12 = a12 - s2 * b12;
  702. as11 = a11 - s2 * b11;
  703. ss = a21 * (binv11 * binv22);
  704. abi22 = -ss * b12;
  705. pp = (as11 * binv11 + abi22) * .5f;
  706. shift = s2;
  707. }
  708. qq = ss * as12;
  709. if ((r__1 = pp * rtmin, abs(r__1)) >= 1.f) {
  710. /* Computing 2nd power */
  711. r__1 = rtmin * pp;
  712. discr = r__1 * r__1 + qq * *safmin;
  713. r__ = sqrt((abs(discr))) * rtmax;
  714. } else {
  715. /* Computing 2nd power */
  716. r__1 = pp;
  717. if (r__1 * r__1 + abs(qq) <= *safmin) {
  718. /* Computing 2nd power */
  719. r__1 = rtmax * pp;
  720. discr = r__1 * r__1 + qq * safmax;
  721. r__ = sqrt((abs(discr))) * rtmin;
  722. } else {
  723. /* Computing 2nd power */
  724. r__1 = pp;
  725. discr = r__1 * r__1 + qq;
  726. r__ = sqrt((abs(discr)));
  727. }
  728. }
  729. /* Note: the test of R in the following IF is to cover the case when */
  730. /* DISCR is small and negative and is flushed to zero during */
  731. /* the calculation of R. On machines which have a consistent */
  732. /* flush-to-zero threshold and handle numbers above that */
  733. /* threshold correctly, it would not be necessary. */
  734. if (discr >= 0.f || r__ == 0.f) {
  735. sum = pp + r_sign(&r__, &pp);
  736. diff = pp - r_sign(&r__, &pp);
  737. wbig = shift + sum;
  738. /* Compute smaller eigenvalue */
  739. wsmall = shift + diff;
  740. /* Computing MAX */
  741. r__1 = abs(wsmall);
  742. if (abs(wbig) * .5f > f2cmax(r__1,*safmin)) {
  743. wdet = (a11 * a22 - a12 * a21) * (binv11 * binv22);
  744. wsmall = wdet / wbig;
  745. }
  746. /* Choose (real) eigenvalue closest to 2,2 element of A*B**(-1) */
  747. /* for WR1. */
  748. if (pp > abi22) {
  749. *wr1 = f2cmin(wbig,wsmall);
  750. *wr2 = f2cmax(wbig,wsmall);
  751. } else {
  752. *wr1 = f2cmax(wbig,wsmall);
  753. *wr2 = f2cmin(wbig,wsmall);
  754. }
  755. *wi = 0.f;
  756. } else {
  757. /* Complex eigenvalues */
  758. *wr1 = shift + pp;
  759. *wr2 = *wr1;
  760. *wi = r__;
  761. }
  762. /* Further scaling to avoid underflow and overflow in computing */
  763. /* SCALE1 and overflow in computing w*B. */
  764. /* This scale factor (WSCALE) is bounded from above using C1 and C2, */
  765. /* and from below using C3 and C4. */
  766. /* C1 implements the condition s A must never overflow. */
  767. /* C2 implements the condition w B must never overflow. */
  768. /* C3, with C2, */
  769. /* implement the condition that s A - w B must never overflow. */
  770. /* C4 implements the condition s should not underflow. */
  771. /* C5 implements the condition f2cmax(s,|w|) should be at least 2. */
  772. c1 = bsize * (*safmin * f2cmax(1.f,ascale));
  773. c2 = *safmin * f2cmax(1.f,bnorm);
  774. c3 = bsize * *safmin;
  775. if (ascale <= 1.f && bsize <= 1.f) {
  776. /* Computing MIN */
  777. r__1 = 1.f, r__2 = ascale / *safmin * bsize;
  778. c4 = f2cmin(r__1,r__2);
  779. } else {
  780. c4 = 1.f;
  781. }
  782. if (ascale <= 1.f || bsize <= 1.f) {
  783. /* Computing MIN */
  784. r__1 = 1.f, r__2 = ascale * bsize;
  785. c5 = f2cmin(r__1,r__2);
  786. } else {
  787. c5 = 1.f;
  788. }
  789. /* Scale first eigenvalue */
  790. wabs = abs(*wr1) + abs(*wi);
  791. /* Computing MAX */
  792. /* Computing MIN */
  793. r__3 = c4, r__4 = f2cmax(wabs,c5) * .5f;
  794. r__1 = f2cmax(*safmin,c1), r__2 = (wabs * c2 + c3) * 1.0000100000000001f,
  795. r__1 = f2cmax(r__1,r__2), r__2 = f2cmin(r__3,r__4);
  796. wsize = f2cmax(r__1,r__2);
  797. if (wsize != 1.f) {
  798. wscale = 1.f / wsize;
  799. if (wsize > 1.f) {
  800. *scale1 = f2cmax(ascale,bsize) * wscale * f2cmin(ascale,bsize);
  801. } else {
  802. *scale1 = f2cmin(ascale,bsize) * wscale * f2cmax(ascale,bsize);
  803. }
  804. *wr1 *= wscale;
  805. if (*wi != 0.f) {
  806. *wi *= wscale;
  807. *wr2 = *wr1;
  808. *scale2 = *scale1;
  809. }
  810. } else {
  811. *scale1 = ascale * bsize;
  812. *scale2 = *scale1;
  813. }
  814. /* Scale second eigenvalue (if real) */
  815. if (*wi == 0.f) {
  816. /* Computing MAX */
  817. /* Computing MIN */
  818. /* Computing MAX */
  819. r__5 = abs(*wr2);
  820. r__3 = c4, r__4 = f2cmax(r__5,c5) * .5f;
  821. r__1 = f2cmax(*safmin,c1), r__2 = (abs(*wr2) * c2 + c3) *
  822. 1.0000100000000001f, r__1 = f2cmax(r__1,r__2), r__2 = f2cmin(r__3,
  823. r__4);
  824. wsize = f2cmax(r__1,r__2);
  825. if (wsize != 1.f) {
  826. wscale = 1.f / wsize;
  827. if (wsize > 1.f) {
  828. *scale2 = f2cmax(ascale,bsize) * wscale * f2cmin(ascale,bsize);
  829. } else {
  830. *scale2 = f2cmin(ascale,bsize) * wscale * f2cmax(ascale,bsize);
  831. }
  832. *wr2 *= wscale;
  833. } else {
  834. *scale2 = ascale * bsize;
  835. }
  836. }
  837. /* End of SLAG2 */
  838. return;
  839. } /* slag2_ */