You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgeqp3.c 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  217. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  218. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  219. #define sig_die(s, kill) { exit(1); }
  220. #define s_stop(s, n) {exit(0);}
  221. #define z_abs(z) (cabs(Cd(z)))
  222. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  223. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  224. #define myexit_() break;
  225. #define mycycle() continue;
  226. #define myceiling(w) {ceil(w)}
  227. #define myhuge(w) {HUGE_VAL}
  228. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  229. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  230. /* -- translated by f2c (version 20000121).
  231. You must link the resulting object file with the libraries:
  232. -lf2c -lm (in that order)
  233. */
  234. /* Table of constant values */
  235. static integer c__1 = 1;
  236. static integer c_n1 = -1;
  237. static integer c__3 = 3;
  238. static integer c__2 = 2;
  239. /* > \brief \b SGEQP3 */
  240. /* =========== DOCUMENTATION =========== */
  241. /* Online html documentation available at */
  242. /* http://www.netlib.org/lapack/explore-html/ */
  243. /* > \htmlonly */
  244. /* > Download SGEQP3 + dependencies */
  245. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqp3.
  246. f"> */
  247. /* > [TGZ]</a> */
  248. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqp3.
  249. f"> */
  250. /* > [ZIP]</a> */
  251. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqp3.
  252. f"> */
  253. /* > [TXT]</a> */
  254. /* > \endhtmlonly */
  255. /* Definition: */
  256. /* =========== */
  257. /* SUBROUTINE SGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO ) */
  258. /* INTEGER INFO, LDA, LWORK, M, N */
  259. /* INTEGER JPVT( * ) */
  260. /* REAL A( LDA, * ), TAU( * ), WORK( * ) */
  261. /* > \par Purpose: */
  262. /* ============= */
  263. /* > */
  264. /* > \verbatim */
  265. /* > */
  266. /* > SGEQP3 computes a QR factorization with column pivoting of a */
  267. /* > matrix A: A*P = Q*R using Level 3 BLAS. */
  268. /* > \endverbatim */
  269. /* Arguments: */
  270. /* ========== */
  271. /* > \param[in] M */
  272. /* > \verbatim */
  273. /* > M is INTEGER */
  274. /* > The number of rows of the matrix A. M >= 0. */
  275. /* > \endverbatim */
  276. /* > */
  277. /* > \param[in] N */
  278. /* > \verbatim */
  279. /* > N is INTEGER */
  280. /* > The number of columns of the matrix A. N >= 0. */
  281. /* > \endverbatim */
  282. /* > */
  283. /* > \param[in,out] A */
  284. /* > \verbatim */
  285. /* > A is REAL array, dimension (LDA,N) */
  286. /* > On entry, the M-by-N matrix A. */
  287. /* > On exit, the upper triangle of the array contains the */
  288. /* > f2cmin(M,N)-by-N upper trapezoidal matrix R; the elements below */
  289. /* > the diagonal, together with the array TAU, represent the */
  290. /* > orthogonal matrix Q as a product of f2cmin(M,N) elementary */
  291. /* > reflectors. */
  292. /* > \endverbatim */
  293. /* > */
  294. /* > \param[in] LDA */
  295. /* > \verbatim */
  296. /* > LDA is INTEGER */
  297. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  298. /* > \endverbatim */
  299. /* > */
  300. /* > \param[in,out] JPVT */
  301. /* > \verbatim */
  302. /* > JPVT is INTEGER array, dimension (N) */
  303. /* > On entry, if JPVT(J).ne.0, the J-th column of A is permuted */
  304. /* > to the front of A*P (a leading column); if JPVT(J)=0, */
  305. /* > the J-th column of A is a free column. */
  306. /* > On exit, if JPVT(J)=K, then the J-th column of A*P was the */
  307. /* > the K-th column of A. */
  308. /* > \endverbatim */
  309. /* > */
  310. /* > \param[out] TAU */
  311. /* > \verbatim */
  312. /* > TAU is REAL array, dimension (f2cmin(M,N)) */
  313. /* > The scalar factors of the elementary reflectors. */
  314. /* > \endverbatim */
  315. /* > */
  316. /* > \param[out] WORK */
  317. /* > \verbatim */
  318. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  319. /* > On exit, if INFO=0, WORK(1) returns the optimal LWORK. */
  320. /* > \endverbatim */
  321. /* > */
  322. /* > \param[in] LWORK */
  323. /* > \verbatim */
  324. /* > LWORK is INTEGER */
  325. /* > The dimension of the array WORK. LWORK >= 3*N+1. */
  326. /* > For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB */
  327. /* > is the optimal blocksize. */
  328. /* > */
  329. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  330. /* > only calculates the optimal size of the WORK array, returns */
  331. /* > this value as the first entry of the WORK array, and no error */
  332. /* > message related to LWORK is issued by XERBLA. */
  333. /* > \endverbatim */
  334. /* > */
  335. /* > \param[out] INFO */
  336. /* > \verbatim */
  337. /* > INFO is INTEGER */
  338. /* > = 0: successful exit. */
  339. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  340. /* > \endverbatim */
  341. /* Authors: */
  342. /* ======== */
  343. /* > \author Univ. of Tennessee */
  344. /* > \author Univ. of California Berkeley */
  345. /* > \author Univ. of Colorado Denver */
  346. /* > \author NAG Ltd. */
  347. /* > \date December 2016 */
  348. /* > \ingroup realGEcomputational */
  349. /* > \par Further Details: */
  350. /* ===================== */
  351. /* > */
  352. /* > \verbatim */
  353. /* > */
  354. /* > The matrix Q is represented as a product of elementary reflectors */
  355. /* > */
  356. /* > Q = H(1) H(2) . . . H(k), where k = f2cmin(m,n). */
  357. /* > */
  358. /* > Each H(i) has the form */
  359. /* > */
  360. /* > H(i) = I - tau * v * v**T */
  361. /* > */
  362. /* > where tau is a real scalar, and v is a real/complex vector */
  363. /* > with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in */
  364. /* > A(i+1:m,i), and tau in TAU(i). */
  365. /* > \endverbatim */
  366. /* > \par Contributors: */
  367. /* ================== */
  368. /* > */
  369. /* > G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
  370. /* > X. Sun, Computer Science Dept., Duke University, USA */
  371. /* > */
  372. /* ===================================================================== */
  373. /* Subroutine */ void sgeqp3_(integer *m, integer *n, real *a, integer *lda,
  374. integer *jpvt, real *tau, real *work, integer *lwork, integer *info)
  375. {
  376. /* System generated locals */
  377. integer a_dim1, a_offset, i__1, i__2, i__3;
  378. /* Local variables */
  379. integer nfxd;
  380. extern real snrm2_(integer *, real *, integer *);
  381. integer j, nbmin, minmn, minws;
  382. extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *,
  383. integer *), slaqp2_(integer *, integer *, integer *, real *,
  384. integer *, integer *, real *, real *, real *, real *);
  385. integer jb, na, nb, sm, sn, nx;
  386. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  387. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  388. integer *, integer *, ftnlen, ftnlen);
  389. extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer
  390. *, real *, real *, integer *, integer *);
  391. integer topbmn, sminmn;
  392. extern /* Subroutine */ void slaqps_(integer *, integer *, integer *,
  393. integer *, integer *, real *, integer *, integer *, real *, real *
  394. , real *, real *, real *, integer *);
  395. integer lwkopt;
  396. logical lquery;
  397. extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
  398. integer *, real *, integer *, real *, real *, integer *, real *,
  399. integer *, integer *);
  400. integer fjb, iws;
  401. /* -- LAPACK computational routine (version 3.7.0) -- */
  402. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  403. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  404. /* December 2016 */
  405. /* ===================================================================== */
  406. /* Test input arguments */
  407. /* ==================== */
  408. /* Parameter adjustments */
  409. a_dim1 = *lda;
  410. a_offset = 1 + a_dim1 * 1;
  411. a -= a_offset;
  412. --jpvt;
  413. --tau;
  414. --work;
  415. /* Function Body */
  416. *info = 0;
  417. lquery = *lwork == -1;
  418. if (*m < 0) {
  419. *info = -1;
  420. } else if (*n < 0) {
  421. *info = -2;
  422. } else if (*lda < f2cmax(1,*m)) {
  423. *info = -4;
  424. }
  425. if (*info == 0) {
  426. minmn = f2cmin(*m,*n);
  427. if (minmn == 0) {
  428. iws = 1;
  429. lwkopt = 1;
  430. } else {
  431. iws = *n * 3 + 1;
  432. nb = ilaenv_(&c__1, "SGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
  433. (ftnlen)1);
  434. lwkopt = (*n << 1) + (*n + 1) * nb;
  435. }
  436. work[1] = (real) lwkopt;
  437. if (*lwork < iws && ! lquery) {
  438. *info = -8;
  439. }
  440. }
  441. if (*info != 0) {
  442. i__1 = -(*info);
  443. xerbla_("SGEQP3", &i__1, (ftnlen)6);
  444. return;
  445. } else if (lquery) {
  446. return;
  447. }
  448. /* Move initial columns up front. */
  449. nfxd = 1;
  450. i__1 = *n;
  451. for (j = 1; j <= i__1; ++j) {
  452. if (jpvt[j] != 0) {
  453. if (j != nfxd) {
  454. sswap_(m, &a[j * a_dim1 + 1], &c__1, &a[nfxd * a_dim1 + 1], &
  455. c__1);
  456. jpvt[j] = jpvt[nfxd];
  457. jpvt[nfxd] = j;
  458. } else {
  459. jpvt[j] = j;
  460. }
  461. ++nfxd;
  462. } else {
  463. jpvt[j] = j;
  464. }
  465. /* L10: */
  466. }
  467. --nfxd;
  468. /* Factorize fixed columns */
  469. /* ======================= */
  470. /* Compute the QR factorization of fixed columns and update */
  471. /* remaining columns. */
  472. if (nfxd > 0) {
  473. na = f2cmin(*m,nfxd);
  474. /* CC CALL SGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) */
  475. sgeqrf_(m, &na, &a[a_offset], lda, &tau[1], &work[1], lwork, info);
  476. /* Computing MAX */
  477. i__1 = iws, i__2 = (integer) work[1];
  478. iws = f2cmax(i__1,i__2);
  479. if (na < *n) {
  480. /* CC CALL SORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA, */
  481. /* CC $ TAU, A( 1, NA+1 ), LDA, WORK, INFO ) */
  482. i__1 = *n - na;
  483. sormqr_("Left", "Transpose", m, &i__1, &na, &a[a_offset], lda, &
  484. tau[1], &a[(na + 1) * a_dim1 + 1], lda, &work[1], lwork,
  485. info);
  486. /* Computing MAX */
  487. i__1 = iws, i__2 = (integer) work[1];
  488. iws = f2cmax(i__1,i__2);
  489. }
  490. }
  491. /* Factorize free columns */
  492. /* ====================== */
  493. if (nfxd < minmn) {
  494. sm = *m - nfxd;
  495. sn = *n - nfxd;
  496. sminmn = minmn - nfxd;
  497. /* Determine the block size. */
  498. nb = ilaenv_(&c__1, "SGEQRF", " ", &sm, &sn, &c_n1, &c_n1, (ftnlen)6,
  499. (ftnlen)1);
  500. nbmin = 2;
  501. nx = 0;
  502. if (nb > 1 && nb < sminmn) {
  503. /* Determine when to cross over from blocked to unblocked code. */
  504. /* Computing MAX */
  505. i__1 = 0, i__2 = ilaenv_(&c__3, "SGEQRF", " ", &sm, &sn, &c_n1, &
  506. c_n1, (ftnlen)6, (ftnlen)1);
  507. nx = f2cmax(i__1,i__2);
  508. if (nx < sminmn) {
  509. /* Determine if workspace is large enough for blocked code. */
  510. minws = (sn << 1) + (sn + 1) * nb;
  511. iws = f2cmax(iws,minws);
  512. if (*lwork < minws) {
  513. /* Not enough workspace to use optimal NB: Reduce NB and */
  514. /* determine the minimum value of NB. */
  515. nb = (*lwork - (sn << 1)) / (sn + 1);
  516. /* Computing MAX */
  517. i__1 = 2, i__2 = ilaenv_(&c__2, "SGEQRF", " ", &sm, &sn, &
  518. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  519. nbmin = f2cmax(i__1,i__2);
  520. }
  521. }
  522. }
  523. /* Initialize partial column norms. The first N elements of work */
  524. /* store the exact column norms. */
  525. i__1 = *n;
  526. for (j = nfxd + 1; j <= i__1; ++j) {
  527. work[j] = snrm2_(&sm, &a[nfxd + 1 + j * a_dim1], &c__1);
  528. work[*n + j] = work[j];
  529. /* L20: */
  530. }
  531. if (nb >= nbmin && nb < sminmn && nx < sminmn) {
  532. /* Use blocked code initially. */
  533. j = nfxd + 1;
  534. /* Compute factorization: while loop. */
  535. topbmn = minmn - nx;
  536. L30:
  537. if (j <= topbmn) {
  538. /* Computing MIN */
  539. i__1 = nb, i__2 = topbmn - j + 1;
  540. jb = f2cmin(i__1,i__2);
  541. /* Factorize JB columns among columns J:N. */
  542. i__1 = *n - j + 1;
  543. i__2 = j - 1;
  544. i__3 = *n - j + 1;
  545. slaqps_(m, &i__1, &i__2, &jb, &fjb, &a[j * a_dim1 + 1], lda, &
  546. jpvt[j], &tau[j], &work[j], &work[*n + j], &work[(*n
  547. << 1) + 1], &work[(*n << 1) + jb + 1], &i__3);
  548. j += fjb;
  549. goto L30;
  550. }
  551. } else {
  552. j = nfxd + 1;
  553. }
  554. /* Use unblocked code to factor the last or only block. */
  555. if (j <= minmn) {
  556. i__1 = *n - j + 1;
  557. i__2 = j - 1;
  558. slaqp2_(m, &i__1, &i__2, &a[j * a_dim1 + 1], lda, &jpvt[j], &tau[
  559. j], &work[j], &work[*n + j], &work[(*n << 1) + 1]);
  560. }
  561. }
  562. work[1] = (real) iws;
  563. return;
  564. /* End of SGEQP3 */
  565. } /* sgeqp3_ */