|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__9 = 9;
- static integer c__0 = 0;
- static integer c__6 = 6;
- static integer c_n1 = -1;
- static integer c__1 = 1;
- static real c_b81 = 0.f;
-
- /* > \brief <b> SGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b
- > */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SGELSD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, */
- /* RANK, WORK, LWORK, IWORK, INFO ) */
-
- /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
- /* REAL RCOND */
- /* INTEGER IWORK( * ) */
- /* REAL A( LDA, * ), B( LDB, * ), S( * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SGELSD computes the minimum-norm solution to a real linear least */
- /* > squares problem: */
- /* > minimize 2-norm(| b - A*x |) */
- /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
- /* > matrix which may be rank-deficient. */
- /* > */
- /* > Several right hand side vectors b and solution vectors x can be */
- /* > handled in a single call; they are stored as the columns of the */
- /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
- /* > matrix X. */
- /* > */
- /* > The problem is solved in three steps: */
- /* > (1) Reduce the coefficient matrix A to bidiagonal form with */
- /* > Householder transformations, reducing the original problem */
- /* > into a "bidiagonal least squares problem" (BLS) */
- /* > (2) Solve the BLS using a divide and conquer approach. */
- /* > (3) Apply back all the Householder transformations to solve */
- /* > the original least squares problem. */
- /* > */
- /* > The effective rank of A is determined by treating as zero those */
- /* > singular values which are less than RCOND times the largest singular */
- /* > value. */
- /* > */
- /* > The divide and conquer algorithm makes very mild assumptions about */
- /* > floating point arithmetic. It will work on machines with a guard */
- /* > digit in add/subtract, or on those binary machines without guard */
- /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
- /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
- /* > without guard digits, but we know of none. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right hand sides, i.e., the number of columns */
- /* > of the matrices B and X. NRHS >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,N) */
- /* > On entry, the M-by-N matrix A. */
- /* > On exit, A has been destroyed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB,NRHS) */
- /* > On entry, the M-by-NRHS right hand side matrix B. */
- /* > On exit, B is overwritten by the N-by-NRHS solution */
- /* > matrix X. If m >= n and RANK = n, the residual */
- /* > sum-of-squares for the solution in the i-th column is given */
- /* > by the sum of squares of elements n+1:m in that column. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,f2cmax(M,N)). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is REAL array, dimension (f2cmin(M,N)) */
- /* > The singular values of A in decreasing order. */
- /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RCOND */
- /* > \verbatim */
- /* > RCOND is REAL */
- /* > RCOND is used to determine the effective rank of A. */
- /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
- /* > If RCOND < 0, machine precision is used instead. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RANK */
- /* > \verbatim */
- /* > RANK is INTEGER */
- /* > The effective rank of A, i.e., the number of singular values */
- /* > which are greater than RCOND*S(1). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK must be at least 1. */
- /* > The exact minimum amount of workspace needed depends on M, */
- /* > N and NRHS. As long as LWORK is at least */
- /* > 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2, */
- /* > if M is greater than or equal to N or */
- /* > 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2, */
- /* > if M is less than N, the code will execute correctly. */
- /* > SMLSIZ is returned by ILAENV and is equal to the maximum */
- /* > size of the subproblems at the bottom of the computation */
- /* > tree (usually about 25), and */
- /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
- /* > For good performance, LWORK should generally be larger. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the array WORK and the */
- /* > minimum size of the array IWORK, and returns these values as */
- /* > the first entries of the WORK and IWORK arrays, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
- /* > LIWORK >= f2cmax(1, 3*MINMN*NLVL + 11*MINMN), */
- /* > where MINMN = MIN( M,N ). */
- /* > On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: the algorithm for computing the SVD failed to converge; */
- /* > if INFO = i, i off-diagonal elements of an intermediate */
- /* > bidiagonal form did not converge to zero. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup realGEsolve */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
- /* > California at Berkeley, USA \n */
- /* > Osni Marques, LBNL/NERSC, USA \n */
-
- /* ===================================================================== */
- /* Subroutine */ void sgelsd_(integer *m, integer *n, integer *nrhs, real *a,
- integer *lda, real *b, integer *ldb, real *s, real *rcond, integer *
- rank, real *work, integer *lwork, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- real anrm, bnrm;
- integer itau, nlvl, iascl, ibscl;
- real sfmin;
- integer minmn, maxmn, itaup, itauq, mnthr, nwork, ie, il;
- extern /* Subroutine */ void slabad_(real *, real *);
- integer mm;
- extern /* Subroutine */ void sgebrd_(integer *, integer *, real *, integer
- *, real *, real *, real *, real *, real *, integer *, integer *);
- extern real slamch_(char *), slange_(char *, integer *, integer *,
- real *, integer *, real *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- real bignum;
- extern /* Subroutine */ void sgelqf_(integer *, integer *, real *, integer
- *, real *, real *, integer *, integer *), slalsd_(char *, integer
- *, integer *, integer *, real *, real *, real *, integer *, real *
- , integer *, real *, integer *, integer *), slascl_(char *
- , integer *, integer *, real *, real *, integer *, integer *,
- real *, integer *, integer *);
- integer wlalsd;
- extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer
- *, real *, real *, integer *, integer *), slacpy_(char *, integer
- *, integer *, real *, integer *, real *, integer *),
- slaset_(char *, integer *, integer *, real *, real *, real *,
- integer *);
- integer ldwork;
- extern /* Subroutine */ void sormbr_(char *, char *, char *, integer *,
- integer *, integer *, real *, integer *, real *, real *, integer *
- , real *, integer *, integer *);
- integer liwork, minwrk, maxwrk;
- real smlnum;
- extern /* Subroutine */ void sormlq_(char *, char *, integer *, integer *,
- integer *, real *, integer *, real *, real *, integer *, real *,
- integer *, integer *);
- logical lquery;
- integer smlsiz;
- extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
- integer *, real *, integer *, real *, real *, integer *, real *,
- integer *, integer *);
- real eps;
-
-
- /* -- LAPACK driver routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --s;
- --work;
- --iwork;
- fprintf(stdout,"start of SGELSD\n");
- /* Function Body */
- *info = 0;
- minmn = f2cmin(*m,*n);
- maxmn = f2cmax(*m,*n);
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -5;
- } else if (*ldb < f2cmax(1,maxmn)) {
- *info = -7;
- }
-
- /* Compute workspace. */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* NB refers to the optimal block size for the immediately */
- /* following subroutine, as returned by ILAENV.) */
-
- if (*info == 0) {
- minwrk = 1;
- maxwrk = 1;
- liwork = 1;
- if (minmn > 0) {
- smlsiz = ilaenv_(&c__9, "SGELSD", " ", &c__0, &c__0, &c__0, &c__0,
- (ftnlen)6, (ftnlen)1);
- mnthr = ilaenv_(&c__6, "SGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- /* Computing MAX */
- i__1 = (integer) (logf((real) minmn / (real) (smlsiz + 1)) / logf(
- 2.f)) + 1;
- nlvl = f2cmax(i__1,0);
- liwork = minmn * 3 * nlvl + minmn * 11;
- mm = *m;
- if (*m >= *n && *m >= mnthr) {
-
- /* Path 1a - overdetermined, with many more rows than */
- /* columns. */
-
- mm = *n;
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF",
- " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "SORMQR",
- "LT", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
- maxwrk = f2cmax(i__1,i__2);
- }
- if (*m >= *n) {
-
- /* Path 1 - overdetermined or exactly determined. */
-
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n * 3 + (mm + *n) * ilaenv_(&c__1,
- "SGEBRD", " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n * 3 + *nrhs * ilaenv_(&c__1, "SORMBR"
- , "QLT", &mm, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n * 3 + (*n - 1) * ilaenv_(&c__1,
- "SORMBR", "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing 2nd power */
- i__1 = smlsiz + 1;
- wlalsd = *n * 9 + (*n << 1) * smlsiz + (*n << 3) * nlvl + *n *
- *nrhs + i__1 * i__1;
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n * 3 + wlalsd;
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = f2cmax(i__1,
- i__2), i__2 = *n * 3 + wlalsd;
- minwrk = f2cmax(i__1,i__2);
- }
- if (*n > *m) {
- /* Computing 2nd power */
- i__1 = smlsiz + 1;
- wlalsd = *m * 9 + (*m << 1) * smlsiz + (*m << 3) * nlvl + *m *
- *nrhs + i__1 * i__1;
- if (*n >= mnthr) {
-
- /* Path 2a - underdetermined, with many more columns */
- /* than rows. */
-
- maxwrk = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) *
- ilaenv_(&c__1, "SGEBRD", " ", m, m, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs *
- ilaenv_(&c__1, "SORMBR", "QLT", m, nrhs, m, &c_n1,
- (ftnlen)6, (ftnlen)3);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) *
- ilaenv_(&c__1, "SORMBR", "PLN", m, nrhs, m, &c_n1,
- (ftnlen)6, (ftnlen)3);
- maxwrk = f2cmax(i__1,i__2);
- if (*nrhs > 1) {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
- maxwrk = f2cmax(i__1,i__2);
- } else {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
- maxwrk = f2cmax(i__1,i__2);
- }
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m + *nrhs * ilaenv_(&c__1, "SORMLQ"
- , "LT", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)2);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + wlalsd;
- maxwrk = f2cmax(i__1,i__2);
- /* XXX: Ensure the Path 2a case below is triggered. The workspace */
- /* calculation should use queries for all routines eventually. */
- /* Computing MAX */
- /* Computing MAX */
- i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4),
- i__3 = f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
- i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + f2cmax(i__3,i__4)
- ;
- maxwrk = f2cmax(i__1,i__2);
- } else {
-
- /* Path 2 - remaining underdetermined cases. */
-
- maxwrk = *m * 3 + (*n + *m) * ilaenv_(&c__1, "SGEBRD",
- " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * 3 + *nrhs * ilaenv_(&c__1,
- "SORMBR", "QLT", m, nrhs, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORM"
- "BR", "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)
- 3);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * 3 + wlalsd;
- maxwrk = f2cmax(i__1,i__2);
- }
- /* Computing MAX */
- i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *m, i__1 = f2cmax(i__1,
- i__2), i__2 = *m * 3 + wlalsd;
- minwrk = f2cmax(i__1,i__2);
- }
- }
- minwrk = f2cmin(minwrk,maxwrk);
- work[1] = (real) maxwrk;
- iwork[1] = liwork;
-
- if (*lwork < minwrk && ! lquery) {
- *info = -12;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SGELSD", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible. */
-
- if (*m == 0 || *n == 0) {
- fprintf(stdout,"SGELSD quickreturn rank=0\n");
- *rank = 0;
- return;
- }
-
- /* Get machine parameters. */
-
- eps = slamch_("P");
- sfmin = slamch_("S");
- smlnum = sfmin / eps;
- bignum = 1.f / smlnum;
- // FILE *bla=fopen("/tmp/bla","w");
- //fprintf(bla,"SGELSD eps=%g sfmin=%g smlnum=%g bignum=%g\n",eps,sfmin,smlnum,bignum);
- //fclose(bla);
- slabad_(&smlnum, &bignum);
-
- /* Scale A if f2cmax entry outside range [SMLNUM,BIGNUM]. */
-
- anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]);
- iascl = 0;
- if (anrm > 0.f && anrm < smlnum) {
-
- /* Scale matrix norm up to SMLNUM. */
- fprintf(stdout,"scaling A up to SML\n");
- slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
- info);
- iascl = 1;
- } else if (anrm > bignum) {
-
- /* Scale matrix norm down to BIGNUM. */
-
- fprintf(stdout,"scaling A down to BIG\n");
- slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
- info);
- iascl = 2;
- } else if (anrm == 0.f) {
-
- /* Matrix all zero. Return zero solution. */
-
- fprintf(stdout,"A is zero soln\n");
- i__1 = f2cmax(*m,*n);
- slaset_("F", &i__1, nrhs, &c_b81, &c_b81, &b[b_offset], ldb);
- slaset_("F", &minmn, &c__1, &c_b81, &c_b81, &s[1], &c__1);
- *rank = 0;
- goto L10;
- }
-
- /* Scale B if f2cmax entry outside range [SMLNUM,BIGNUM]. */
-
- bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
- ibscl = 0;
- if (bnrm > 0.f && bnrm < smlnum) {
-
- /* Scale matrix norm up to SMLNUM. */
- fprintf(stdout,"scaling B up to SML\n");
-
- slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 1;
- } else if (bnrm > bignum) {
-
- /* Scale matrix norm down to BIGNUM. */
- fprintf(stdout,"scaling B down to BIG\n");
-
- slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 2;
- }
-
- /* If M < N make sure certain entries of B are zero. */
-
- if (*m < *n) {
- i__1 = *n - *m;
- fprintf(stdout,"zeroing parts of B \n");
- slaset_("F", &i__1, nrhs, &c_b81, &c_b81, &b[*m + 1 + b_dim1], ldb);
- }
-
- /* Overdetermined case. */
-
- if (*m >= *n) {
- fprintf(stdout,"overdetermined, path 1 \n");
-
- /* Path 1 - overdetermined or exactly determined. */
-
- mm = *m;
- if (*m >= mnthr) {
-
- /* Path 1a - overdetermined, with many more rows than columns. */
- fprintf(stdout,"overdetermined, path 1a \n");
-
- mm = *n;
- itau = 1;
- nwork = itau + *n;
-
- /* Compute A=Q*R. */
- /* (Workspace: need 2*N, prefer N+N*NB) */
-
- i__1 = *lwork - nwork + 1;
- sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
- info);
-
- /* Multiply B by transpose(Q). */
- /* (Workspace: need N+NRHS, prefer N+NRHS*NB) */
-
- i__1 = *lwork - nwork + 1;
- sormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
- b_offset], ldb, &work[nwork], &i__1, info);
-
- /* Zero out below R. */
-
- if (*n > 1) {
- i__1 = *n - 1;
- i__2 = *n - 1;
- slaset_("L", &i__1, &i__2, &c_b81, &c_b81, &a[a_dim1 + 2],
- lda);
- }
- }
-
- ie = 1;
- itauq = ie + *n;
- itaup = itauq + *n;
- nwork = itaup + *n;
-
- /* Bidiagonalize R in A. */
- /* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */
-
- i__1 = *lwork - nwork + 1;
- sgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
- work[itaup], &work[nwork], &i__1, info);
-
- /* Multiply B by transpose of left bidiagonalizing vectors of R. */
- /* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */
-
- i__1 = *lwork - nwork + 1;
- sormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
- &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- /* Solve the bidiagonal least squares problem. */
-
- slalsd_("U", &smlsiz, n, nrhs, &s[1], &work[ie], &b[b_offset], ldb,
- rcond, rank, &work[nwork], &iwork[1], info);
- if (*info != 0) {
- fprintf(stdout,"info !=0 nach slalsd\n");
- goto L10;
- }
-
- /* Multiply B by right bidiagonalizing vectors of R. */
-
- i__1 = *lwork - nwork + 1;
- sormbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
- b[b_offset], ldb, &work[nwork], &i__1, info);
-
- } else /* if(complicated condition) */ {
- fprintf(stdout,"not overdetermined \n");
- /* Computing MAX */
- i__1 = *m, i__2 = (*m << 1) - 4, i__1 = f2cmax(i__1,i__2), i__1 = f2cmax(
- i__1,*nrhs), i__2 = *n - *m * 3, i__1 = f2cmax(i__1,i__2);
- if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__1,wlalsd)) {
-
- /* Path 2a - underdetermined, with many more columns than rows */
- /* and sufficient workspace for an efficient algorithm. */
-
- fprintf(stdout,"not overdetermined, path 2a\n");
-
- ldwork = *m;
- /* Computing MAX */
- /* Computing MAX */
- i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 =
- f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
- i__1 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__2 = *m * *lda +
- *m + *m * *nrhs, i__1 = f2cmax(i__1,i__2), i__2 = (*m << 2)
- + *m * *lda + wlalsd;
- if (*lwork >= f2cmax(i__1,i__2)) {
- ldwork = *lda;
- }
- itau = 1;
- nwork = *m + 1;
-
- /* Compute A=L*Q. */
- /* (Workspace: need 2*M, prefer M+M*NB) */
-
- i__1 = *lwork - nwork + 1;
- sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
- info);
- il = nwork;
-
- /* Copy L to WORK(IL), zeroing out above its diagonal. */
-
- slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
- i__1 = *m - 1;
- i__2 = *m - 1;
- slaset_("U", &i__1, &i__2, &c_b81, &c_b81, &work[il + ldwork], &
- ldwork);
- ie = il + ldwork * *m;
- itauq = ie + *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
- /* Bidiagonalize L in WORK(IL). */
- /* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */
-
- i__1 = *lwork - nwork + 1;
- sgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq],
- &work[itaup], &work[nwork], &i__1, info);
-
- /* Multiply B by transpose of left bidiagonalizing vectors of L. */
- /* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
-
- i__1 = *lwork - nwork + 1;
- sormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
- itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- /* Solve the bidiagonal least squares problem. */
-
- slalsd_("U", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset],
- ldb, rcond, rank, &work[nwork], &iwork[1], info);
- if (*info != 0) {
- goto L10;
- }
-
- /* Multiply B by right bidiagonalizing vectors of L. */
-
- i__1 = *lwork - nwork + 1;
- sormbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
- itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- /* Zero out below first M rows of B. */
-
- i__1 = *n - *m;
- slaset_("F", &i__1, nrhs, &c_b81, &c_b81, &b[*m + 1 + b_dim1],
- ldb);
- nwork = itau + *m;
-
- /* Multiply transpose(Q) by B. */
- /* (Workspace: need M+NRHS, prefer M+NRHS*NB) */
-
- i__1 = *lwork - nwork + 1;
- sormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
- b_offset], ldb, &work[nwork], &i__1, info);
-
- } else {
-
- /* Path 2 - remaining underdetermined cases. */
- fprintf(stdout,"other underdetermined, path 2");
-
- ie = 1;
- itauq = ie + *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
-
- /* Bidiagonalize A. */
- /* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */
-
- i__1 = *lwork - nwork + 1;
- sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
- work[itaup], &work[nwork], &i__1, info);
-
- /* Multiply B by transpose of left bidiagonalizing vectors. */
- /* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */
-
- i__1 = *lwork - nwork + 1;
- sormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
- , &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- /* Solve the bidiagonal least squares problem. */
-
- slalsd_("L", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset],
- ldb, rcond, rank, &work[nwork], &iwork[1], info);
- if (*info != 0) {
- goto L10;
- }
-
- /* Multiply B by right bidiagonalizing vectors of A. */
-
- i__1 = *lwork - nwork + 1;
- sormbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
- , &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- }
- }
-
- /* Undo scaling. */
-
- if (iascl == 1) {
- fprintf(stdout," unscaling a1\n");
- slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
- info);
- slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
- minmn, info);
- } else if (iascl == 2) {
- fprintf(stdout," unscaling a2\n");
- slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
- info);
- slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
- minmn, info);
- }
- if (ibscl == 1) {
- fprintf(stdout," unscaling b1\n");
- slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- } else if (ibscl == 2) {
- fprintf(stdout," unscaling b2\n");
- slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- }
-
- L10:
- work[1] = (real) maxwrk;
- iwork[1] = liwork;
- fprintf(stdout, "end of SGELSD\n");
- return;
-
- /* End of SGELSD */
-
- } /* sgelsd_ */
-
|