You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsteqr.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b9 = 0.;
  485. static doublereal c_b10 = 1.;
  486. static integer c__0 = 0;
  487. static integer c__1 = 1;
  488. static integer c__2 = 2;
  489. /* > \brief \b DSTEQR */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DSTEQR + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsteqr.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsteqr.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsteqr.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) */
  508. /* CHARACTER COMPZ */
  509. /* INTEGER INFO, LDZ, N */
  510. /* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > DSTEQR computes all eigenvalues and, optionally, eigenvectors of a */
  517. /* > symmetric tridiagonal matrix using the implicit QL or QR method. */
  518. /* > The eigenvectors of a full or band symmetric matrix can also be found */
  519. /* > if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to */
  520. /* > tridiagonal form. */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] COMPZ */
  525. /* > \verbatim */
  526. /* > COMPZ is CHARACTER*1 */
  527. /* > = 'N': Compute eigenvalues only. */
  528. /* > = 'V': Compute eigenvalues and eigenvectors of the original */
  529. /* > symmetric matrix. On entry, Z must contain the */
  530. /* > orthogonal matrix used to reduce the original matrix */
  531. /* > to tridiagonal form. */
  532. /* > = 'I': Compute eigenvalues and eigenvectors of the */
  533. /* > tridiagonal matrix. Z is initialized to the identity */
  534. /* > matrix. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] N */
  538. /* > \verbatim */
  539. /* > N is INTEGER */
  540. /* > The order of the matrix. N >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in,out] D */
  544. /* > \verbatim */
  545. /* > D is DOUBLE PRECISION array, dimension (N) */
  546. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  547. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in,out] E */
  551. /* > \verbatim */
  552. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  553. /* > On entry, the (n-1) subdiagonal elements of the tridiagonal */
  554. /* > matrix. */
  555. /* > On exit, E has been destroyed. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in,out] Z */
  559. /* > \verbatim */
  560. /* > Z is DOUBLE PRECISION array, dimension (LDZ, N) */
  561. /* > On entry, if COMPZ = 'V', then Z contains the orthogonal */
  562. /* > matrix used in the reduction to tridiagonal form. */
  563. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  564. /* > orthonormal eigenvectors of the original symmetric matrix, */
  565. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  566. /* > of the symmetric tridiagonal matrix. */
  567. /* > If COMPZ = 'N', then Z is not referenced. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDZ */
  571. /* > \verbatim */
  572. /* > LDZ is INTEGER */
  573. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  574. /* > eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[out] WORK */
  578. /* > \verbatim */
  579. /* > WORK is DOUBLE PRECISION array, dimension (f2cmax(1,2*N-2)) */
  580. /* > If COMPZ = 'N', then WORK is not referenced. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[out] INFO */
  584. /* > \verbatim */
  585. /* > INFO is INTEGER */
  586. /* > = 0: successful exit */
  587. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  588. /* > > 0: the algorithm has failed to find all the eigenvalues in */
  589. /* > a total of 30*N iterations; if INFO = i, then i */
  590. /* > elements of E have not converged to zero; on exit, D */
  591. /* > and E contain the elements of a symmetric tridiagonal */
  592. /* > matrix which is orthogonally similar to the original */
  593. /* > matrix. */
  594. /* > \endverbatim */
  595. /* Authors: */
  596. /* ======== */
  597. /* > \author Univ. of Tennessee */
  598. /* > \author Univ. of California Berkeley */
  599. /* > \author Univ. of Colorado Denver */
  600. /* > \author NAG Ltd. */
  601. /* > \date December 2016 */
  602. /* > \ingroup auxOTHERcomputational */
  603. /* ===================================================================== */
  604. /* Subroutine */ void dsteqr_(char *compz, integer *n, doublereal *d__,
  605. doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
  606. integer *info)
  607. {
  608. /* System generated locals */
  609. integer z_dim1, z_offset, i__1, i__2;
  610. doublereal d__1, d__2;
  611. /* Local variables */
  612. integer lend, jtot;
  613. extern /* Subroutine */ void dlae2_(doublereal *, doublereal *, doublereal
  614. *, doublereal *, doublereal *);
  615. doublereal b, c__, f, g;
  616. integer i__, j, k, l, m;
  617. doublereal p, r__, s;
  618. extern logical lsame_(char *, char *);
  619. extern /* Subroutine */ void dlasr_(char *, char *, char *, integer *,
  620. integer *, doublereal *, doublereal *, doublereal *, integer *);
  621. doublereal anorm;
  622. extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *,
  623. doublereal *, integer *);
  624. integer l1;
  625. extern /* Subroutine */ void dlaev2_(doublereal *, doublereal *,
  626. doublereal *, doublereal *, doublereal *, doublereal *,
  627. doublereal *);
  628. integer lendm1, lendp1;
  629. extern doublereal dlapy2_(doublereal *, doublereal *);
  630. integer ii;
  631. extern doublereal dlamch_(char *);
  632. integer mm, iscale;
  633. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  634. doublereal *, doublereal *, integer *, integer *, doublereal *,
  635. integer *, integer *), dlaset_(char *, integer *, integer
  636. *, doublereal *, doublereal *, doublereal *, integer *);
  637. doublereal safmin;
  638. extern /* Subroutine */ void dlartg_(doublereal *, doublereal *,
  639. doublereal *, doublereal *, doublereal *);
  640. doublereal safmax;
  641. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  642. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  643. extern /* Subroutine */ void dlasrt_(char *, integer *, doublereal *,
  644. integer *);
  645. integer lendsv;
  646. doublereal ssfmin;
  647. integer nmaxit, icompz;
  648. doublereal ssfmax;
  649. integer lm1, mm1, nm1;
  650. doublereal rt1, rt2, eps;
  651. integer lsv;
  652. doublereal tst, eps2;
  653. /* -- LAPACK computational routine (version 3.7.0) -- */
  654. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  655. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  656. /* December 2016 */
  657. /* ===================================================================== */
  658. /* Test the input parameters. */
  659. /* Parameter adjustments */
  660. --d__;
  661. --e;
  662. z_dim1 = *ldz;
  663. z_offset = 1 + z_dim1 * 1;
  664. z__ -= z_offset;
  665. --work;
  666. /* Function Body */
  667. *info = 0;
  668. if (lsame_(compz, "N")) {
  669. icompz = 0;
  670. } else if (lsame_(compz, "V")) {
  671. icompz = 1;
  672. } else if (lsame_(compz, "I")) {
  673. icompz = 2;
  674. } else {
  675. icompz = -1;
  676. }
  677. if (icompz < 0) {
  678. *info = -1;
  679. } else if (*n < 0) {
  680. *info = -2;
  681. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  682. *info = -6;
  683. }
  684. if (*info != 0) {
  685. i__1 = -(*info);
  686. xerbla_("DSTEQR", &i__1, (ftnlen)6);
  687. return;
  688. }
  689. /* Quick return if possible */
  690. if (*n == 0) {
  691. return;
  692. }
  693. if (*n == 1) {
  694. if (icompz == 2) {
  695. z__[z_dim1 + 1] = 1.;
  696. }
  697. return;
  698. }
  699. /* Determine the unit roundoff and over/underflow thresholds. */
  700. eps = dlamch_("E");
  701. /* Computing 2nd power */
  702. d__1 = eps;
  703. eps2 = d__1 * d__1;
  704. safmin = dlamch_("S");
  705. safmax = 1. / safmin;
  706. ssfmax = sqrt(safmax) / 3.;
  707. ssfmin = sqrt(safmin) / eps2;
  708. /* Compute the eigenvalues and eigenvectors of the tridiagonal */
  709. /* matrix. */
  710. if (icompz == 2) {
  711. dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
  712. }
  713. nmaxit = *n * 30;
  714. jtot = 0;
  715. /* Determine where the matrix splits and choose QL or QR iteration */
  716. /* for each block, according to whether top or bottom diagonal */
  717. /* element is smaller. */
  718. l1 = 1;
  719. nm1 = *n - 1;
  720. L10:
  721. if (l1 > *n) {
  722. goto L160;
  723. }
  724. if (l1 > 1) {
  725. e[l1 - 1] = 0.;
  726. }
  727. if (l1 <= nm1) {
  728. i__1 = nm1;
  729. for (m = l1; m <= i__1; ++m) {
  730. tst = (d__1 = e[m], abs(d__1));
  731. if (tst == 0.) {
  732. goto L30;
  733. }
  734. if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
  735. + 1], abs(d__2))) * eps) {
  736. e[m] = 0.;
  737. goto L30;
  738. }
  739. /* L20: */
  740. }
  741. }
  742. m = *n;
  743. L30:
  744. l = l1;
  745. lsv = l;
  746. lend = m;
  747. lendsv = lend;
  748. l1 = m + 1;
  749. if (lend == l) {
  750. goto L10;
  751. }
  752. /* Scale submatrix in rows and columns L to LEND */
  753. i__1 = lend - l + 1;
  754. anorm = dlanst_("M", &i__1, &d__[l], &e[l]);
  755. iscale = 0;
  756. if (anorm == 0.) {
  757. goto L10;
  758. }
  759. if (anorm > ssfmax) {
  760. iscale = 1;
  761. i__1 = lend - l + 1;
  762. dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
  763. info);
  764. i__1 = lend - l;
  765. dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
  766. info);
  767. } else if (anorm < ssfmin) {
  768. iscale = 2;
  769. i__1 = lend - l + 1;
  770. dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
  771. info);
  772. i__1 = lend - l;
  773. dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
  774. info);
  775. }
  776. /* Choose between QL and QR iteration */
  777. if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
  778. lend = lsv;
  779. l = lendsv;
  780. }
  781. if (lend > l) {
  782. /* QL Iteration */
  783. /* Look for small subdiagonal element. */
  784. L40:
  785. if (l != lend) {
  786. lendm1 = lend - 1;
  787. i__1 = lendm1;
  788. for (m = l; m <= i__1; ++m) {
  789. /* Computing 2nd power */
  790. d__2 = (d__1 = e[m], abs(d__1));
  791. tst = d__2 * d__2;
  792. if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
  793. + 1], abs(d__2)) + safmin) {
  794. goto L60;
  795. }
  796. /* L50: */
  797. }
  798. }
  799. m = lend;
  800. L60:
  801. if (m < lend) {
  802. e[m] = 0.;
  803. }
  804. p = d__[l];
  805. if (m == l) {
  806. goto L80;
  807. }
  808. /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
  809. /* to compute its eigensystem. */
  810. if (m == l + 1) {
  811. if (icompz > 0) {
  812. dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
  813. work[l] = c__;
  814. work[*n - 1 + l] = s;
  815. dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
  816. z__[l * z_dim1 + 1], ldz);
  817. } else {
  818. dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
  819. }
  820. d__[l] = rt1;
  821. d__[l + 1] = rt2;
  822. e[l] = 0.;
  823. l += 2;
  824. if (l <= lend) {
  825. goto L40;
  826. }
  827. goto L140;
  828. }
  829. if (jtot == nmaxit) {
  830. goto L140;
  831. }
  832. ++jtot;
  833. /* Form shift. */
  834. g = (d__[l + 1] - p) / (e[l] * 2.);
  835. r__ = dlapy2_(&g, &c_b10);
  836. g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
  837. s = 1.;
  838. c__ = 1.;
  839. p = 0.;
  840. /* Inner loop */
  841. mm1 = m - 1;
  842. i__1 = l;
  843. for (i__ = mm1; i__ >= i__1; --i__) {
  844. f = s * e[i__];
  845. b = c__ * e[i__];
  846. dlartg_(&g, &f, &c__, &s, &r__);
  847. if (i__ != m - 1) {
  848. e[i__ + 1] = r__;
  849. }
  850. g = d__[i__ + 1] - p;
  851. r__ = (d__[i__] - g) * s + c__ * 2. * b;
  852. p = s * r__;
  853. d__[i__ + 1] = g + p;
  854. g = c__ * r__ - b;
  855. /* If eigenvectors are desired, then save rotations. */
  856. if (icompz > 0) {
  857. work[i__] = c__;
  858. work[*n - 1 + i__] = -s;
  859. }
  860. /* L70: */
  861. }
  862. /* If eigenvectors are desired, then apply saved rotations. */
  863. if (icompz > 0) {
  864. mm = m - l + 1;
  865. dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
  866. * z_dim1 + 1], ldz);
  867. }
  868. d__[l] -= p;
  869. e[l] = g;
  870. goto L40;
  871. /* Eigenvalue found. */
  872. L80:
  873. d__[l] = p;
  874. ++l;
  875. if (l <= lend) {
  876. goto L40;
  877. }
  878. goto L140;
  879. } else {
  880. /* QR Iteration */
  881. /* Look for small superdiagonal element. */
  882. L90:
  883. if (l != lend) {
  884. lendp1 = lend + 1;
  885. i__1 = lendp1;
  886. for (m = l; m >= i__1; --m) {
  887. /* Computing 2nd power */
  888. d__2 = (d__1 = e[m - 1], abs(d__1));
  889. tst = d__2 * d__2;
  890. if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
  891. - 1], abs(d__2)) + safmin) {
  892. goto L110;
  893. }
  894. /* L100: */
  895. }
  896. }
  897. m = lend;
  898. L110:
  899. if (m > lend) {
  900. e[m - 1] = 0.;
  901. }
  902. p = d__[l];
  903. if (m == l) {
  904. goto L130;
  905. }
  906. /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
  907. /* to compute its eigensystem. */
  908. if (m == l - 1) {
  909. if (icompz > 0) {
  910. dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
  911. ;
  912. work[m] = c__;
  913. work[*n - 1 + m] = s;
  914. dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
  915. z__[(l - 1) * z_dim1 + 1], ldz);
  916. } else {
  917. dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
  918. }
  919. d__[l - 1] = rt1;
  920. d__[l] = rt2;
  921. e[l - 1] = 0.;
  922. l += -2;
  923. if (l >= lend) {
  924. goto L90;
  925. }
  926. goto L140;
  927. }
  928. if (jtot == nmaxit) {
  929. goto L140;
  930. }
  931. ++jtot;
  932. /* Form shift. */
  933. g = (d__[l - 1] - p) / (e[l - 1] * 2.);
  934. r__ = dlapy2_(&g, &c_b10);
  935. g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
  936. s = 1.;
  937. c__ = 1.;
  938. p = 0.;
  939. /* Inner loop */
  940. lm1 = l - 1;
  941. i__1 = lm1;
  942. for (i__ = m; i__ <= i__1; ++i__) {
  943. f = s * e[i__];
  944. b = c__ * e[i__];
  945. dlartg_(&g, &f, &c__, &s, &r__);
  946. if (i__ != m) {
  947. e[i__ - 1] = r__;
  948. }
  949. g = d__[i__] - p;
  950. r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
  951. p = s * r__;
  952. d__[i__] = g + p;
  953. g = c__ * r__ - b;
  954. /* If eigenvectors are desired, then save rotations. */
  955. if (icompz > 0) {
  956. work[i__] = c__;
  957. work[*n - 1 + i__] = s;
  958. }
  959. /* L120: */
  960. }
  961. /* If eigenvectors are desired, then apply saved rotations. */
  962. if (icompz > 0) {
  963. mm = l - m + 1;
  964. dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
  965. * z_dim1 + 1], ldz);
  966. }
  967. d__[l] -= p;
  968. e[lm1] = g;
  969. goto L90;
  970. /* Eigenvalue found. */
  971. L130:
  972. d__[l] = p;
  973. --l;
  974. if (l >= lend) {
  975. goto L90;
  976. }
  977. goto L140;
  978. }
  979. /* Undo scaling if necessary */
  980. L140:
  981. if (iscale == 1) {
  982. i__1 = lendsv - lsv + 1;
  983. dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
  984. n, info);
  985. i__1 = lendsv - lsv;
  986. dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
  987. info);
  988. } else if (iscale == 2) {
  989. i__1 = lendsv - lsv + 1;
  990. dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
  991. n, info);
  992. i__1 = lendsv - lsv;
  993. dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
  994. info);
  995. }
  996. /* Check for no convergence to an eigenvalue after a total */
  997. /* of N*MAXIT iterations. */
  998. if (jtot < nmaxit) {
  999. goto L10;
  1000. }
  1001. i__1 = *n - 1;
  1002. for (i__ = 1; i__ <= i__1; ++i__) {
  1003. if (e[i__] != 0.) {
  1004. ++(*info);
  1005. }
  1006. /* L150: */
  1007. }
  1008. goto L190;
  1009. /* Order eigenvalues and eigenvectors. */
  1010. L160:
  1011. if (icompz == 0) {
  1012. /* Use Quick Sort */
  1013. dlasrt_("I", n, &d__[1], info);
  1014. } else {
  1015. /* Use Selection Sort to minimize swaps of eigenvectors */
  1016. i__1 = *n;
  1017. for (ii = 2; ii <= i__1; ++ii) {
  1018. i__ = ii - 1;
  1019. k = i__;
  1020. p = d__[i__];
  1021. i__2 = *n;
  1022. for (j = ii; j <= i__2; ++j) {
  1023. if (d__[j] < p) {
  1024. k = j;
  1025. p = d__[j];
  1026. }
  1027. /* L170: */
  1028. }
  1029. if (k != i__) {
  1030. d__[k] = d__[i__];
  1031. d__[i__] = p;
  1032. dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
  1033. &c__1);
  1034. }
  1035. /* L180: */
  1036. }
  1037. }
  1038. L190:
  1039. return;
  1040. /* End of DSTEQR */
  1041. } /* dsteqr_ */