You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlalsd.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static doublereal c_b6 = 0.;
  486. static integer c__0 = 0;
  487. static doublereal c_b11 = 1.;
  488. /* > \brief \b DLALSD uses the singular value decomposition of A to solve the least squares problem. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DLALSD + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsd.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsd.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsd.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, */
  507. /* RANK, WORK, IWORK, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ */
  510. /* DOUBLE PRECISION RCOND */
  511. /* INTEGER IWORK( * ) */
  512. /* DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > DLALSD uses the singular value decomposition of A to solve the least */
  519. /* > squares problem of finding X to minimize the Euclidean norm of each */
  520. /* > column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
  521. /* > are N-by-NRHS. The solution X overwrites B. */
  522. /* > */
  523. /* > The singular values of A smaller than RCOND times the largest */
  524. /* > singular value are treated as zero in solving the least squares */
  525. /* > problem; in this case a minimum norm solution is returned. */
  526. /* > The actual singular values are returned in D in ascending order. */
  527. /* > */
  528. /* > This code makes very mild assumptions about floating point */
  529. /* > arithmetic. It will work on machines with a guard digit in */
  530. /* > add/subtract, or on those binary machines without guard digits */
  531. /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
  532. /* > It could conceivably fail on hexadecimal or decimal machines */
  533. /* > without guard digits, but we know of none. */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > = 'U': D and E define an upper bidiagonal matrix. */
  541. /* > = 'L': D and E define a lower bidiagonal matrix. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] SMLSIZ */
  545. /* > \verbatim */
  546. /* > SMLSIZ is INTEGER */
  547. /* > The maximum size of the subproblems at the bottom of the */
  548. /* > computation tree. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] N */
  552. /* > \verbatim */
  553. /* > N is INTEGER */
  554. /* > The dimension of the bidiagonal matrix. N >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] NRHS */
  558. /* > \verbatim */
  559. /* > NRHS is INTEGER */
  560. /* > The number of columns of B. NRHS must be at least 1. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in,out] D */
  564. /* > \verbatim */
  565. /* > D is DOUBLE PRECISION array, dimension (N) */
  566. /* > On entry D contains the main diagonal of the bidiagonal */
  567. /* > matrix. On exit, if INFO = 0, D contains its singular values. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in,out] E */
  571. /* > \verbatim */
  572. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  573. /* > Contains the super-diagonal entries of the bidiagonal matrix. */
  574. /* > On exit, E has been destroyed. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in,out] B */
  578. /* > \verbatim */
  579. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  580. /* > On input, B contains the right hand sides of the least */
  581. /* > squares problem. On output, B contains the solution X. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDB */
  585. /* > \verbatim */
  586. /* > LDB is INTEGER */
  587. /* > The leading dimension of B in the calling subprogram. */
  588. /* > LDB must be at least f2cmax(1,N). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] RCOND */
  592. /* > \verbatim */
  593. /* > RCOND is DOUBLE PRECISION */
  594. /* > The singular values of A less than or equal to RCOND times */
  595. /* > the largest singular value are treated as zero in solving */
  596. /* > the least squares problem. If RCOND is negative, */
  597. /* > machine precision is used instead. */
  598. /* > For example, if diag(S)*X=B were the least squares problem, */
  599. /* > where diag(S) is a diagonal matrix of singular values, the */
  600. /* > solution would be X(i) = B(i) / S(i) if S(i) is greater than */
  601. /* > RCOND*f2cmax(S), and X(i) = 0 if S(i) is less than or equal to */
  602. /* > RCOND*f2cmax(S). */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[out] RANK */
  606. /* > \verbatim */
  607. /* > RANK is INTEGER */
  608. /* > The number of singular values of A greater than RCOND times */
  609. /* > the largest singular value. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] WORK */
  613. /* > \verbatim */
  614. /* > WORK is DOUBLE PRECISION array, dimension at least */
  615. /* > (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), */
  616. /* > where NLVL = f2cmax(0, INT(log_2 (N/(SMLSIZ+1))) + 1). */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] IWORK */
  620. /* > \verbatim */
  621. /* > IWORK is INTEGER array, dimension at least */
  622. /* > (3*N*NLVL + 11*N) */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INFO */
  626. /* > \verbatim */
  627. /* > INFO is INTEGER */
  628. /* > = 0: successful exit. */
  629. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  630. /* > > 0: The algorithm failed to compute a singular value while */
  631. /* > working on the submatrix lying in rows and columns */
  632. /* > INFO/(N+1) through MOD(INFO,N+1). */
  633. /* > \endverbatim */
  634. /* Authors: */
  635. /* ======== */
  636. /* > \author Univ. of Tennessee */
  637. /* > \author Univ. of California Berkeley */
  638. /* > \author Univ. of Colorado Denver */
  639. /* > \author NAG Ltd. */
  640. /* > \date December 2016 */
  641. /* > \ingroup doubleOTHERcomputational */
  642. /* > \par Contributors: */
  643. /* ================== */
  644. /* > */
  645. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  646. /* > California at Berkeley, USA \n */
  647. /* > Osni Marques, LBNL/NERSC, USA \n */
  648. /* ===================================================================== */
  649. /* Subroutine */ void dlalsd_(char *uplo, integer *smlsiz, integer *n, integer
  650. *nrhs, doublereal *d__, doublereal *e, doublereal *b, integer *ldb,
  651. doublereal *rcond, integer *rank, doublereal *work, integer *iwork,
  652. integer *info)
  653. {
  654. /* System generated locals */
  655. integer b_dim1, b_offset, i__1, i__2;
  656. doublereal d__1;
  657. /* Local variables */
  658. integer difl, difr;
  659. doublereal rcnd;
  660. integer perm, nsub;
  661. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  662. doublereal *, integer *, doublereal *, doublereal *);
  663. integer nlvl, sqre, bxst, c__, i__, j, k;
  664. doublereal r__;
  665. integer s, u;
  666. extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
  667. integer *, doublereal *, doublereal *, integer *, doublereal *,
  668. integer *, doublereal *, doublereal *, integer *);
  669. integer z__;
  670. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  671. doublereal *, integer *);
  672. integer poles, sizei, nsize, nwork, icmpq1, icmpq2;
  673. doublereal cs;
  674. extern doublereal dlamch_(char *);
  675. extern /* Subroutine */ void dlasda_(integer *, integer *, integer *,
  676. integer *, doublereal *, doublereal *, doublereal *, integer *,
  677. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  678. doublereal *, integer *, integer *, integer *, integer *,
  679. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  680. integer *);
  681. integer bx;
  682. extern /* Subroutine */ void dlalsa_(integer *, integer *, integer *,
  683. integer *, doublereal *, integer *, doublereal *, integer *,
  684. doublereal *, integer *, doublereal *, integer *, doublereal *,
  685. doublereal *, doublereal *, doublereal *, integer *, integer *,
  686. integer *, integer *, doublereal *, doublereal *, doublereal *,
  687. doublereal *, integer *, integer *);
  688. doublereal sn;
  689. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  690. doublereal *, doublereal *, integer *, integer *, doublereal *,
  691. integer *, integer *);
  692. extern integer idamax_(integer *, doublereal *, integer *);
  693. integer st;
  694. extern /* Subroutine */ void dlasdq_(char *, integer *, integer *, integer
  695. *, integer *, integer *, doublereal *, doublereal *, doublereal *,
  696. integer *, doublereal *, integer *, doublereal *, integer *,
  697. doublereal *, integer *);
  698. integer vt;
  699. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  700. doublereal *, integer *, doublereal *, integer *),
  701. dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  702. doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
  703. doublereal *, doublereal *, integer *);
  704. extern int xerbla_(char *, integer *, ftnlen);
  705. integer givcol;
  706. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  707. extern /* Subroutine */ void dlasrt_(char *, integer *, doublereal *,
  708. integer *);
  709. doublereal orgnrm;
  710. integer givnum, givptr, nm1, smlszp, st1;
  711. doublereal eps;
  712. integer iwk;
  713. doublereal tol;
  714. /* -- LAPACK computational routine (version 3.7.0) -- */
  715. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  716. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  717. /* December 2016 */
  718. /* ===================================================================== */
  719. /* Test the input parameters. */
  720. /* Parameter adjustments */
  721. --d__;
  722. --e;
  723. b_dim1 = *ldb;
  724. b_offset = 1 + b_dim1 * 1;
  725. b -= b_offset;
  726. --work;
  727. --iwork;
  728. /* Function Body */
  729. *info = 0;
  730. if (*n < 0) {
  731. *info = -3;
  732. } else if (*nrhs < 1) {
  733. *info = -4;
  734. } else if (*ldb < 1 || *ldb < *n) {
  735. *info = -8;
  736. }
  737. if (*info != 0) {
  738. i__1 = -(*info);
  739. xerbla_("DLALSD", &i__1, (ftnlen)6);
  740. return;
  741. }
  742. eps = dlamch_("Epsilon");
  743. /* Set up the tolerance. */
  744. if (*rcond <= 0. || *rcond >= 1.) {
  745. rcnd = eps;
  746. } else {
  747. rcnd = *rcond;
  748. }
  749. *rank = 0;
  750. /* Quick return if possible. */
  751. if (*n == 0) {
  752. return;
  753. } else if (*n == 1) {
  754. if (d__[1] == 0.) {
  755. dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
  756. } else {
  757. *rank = 1;
  758. dlascl_("G", &c__0, &c__0, &d__[1], &c_b11, &c__1, nrhs, &b[
  759. b_offset], ldb, info);
  760. d__[1] = abs(d__[1]);
  761. }
  762. return;
  763. }
  764. /* Rotate the matrix if it is lower bidiagonal. */
  765. if (*(unsigned char *)uplo == 'L') {
  766. i__1 = *n - 1;
  767. for (i__ = 1; i__ <= i__1; ++i__) {
  768. dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  769. d__[i__] = r__;
  770. e[i__] = sn * d__[i__ + 1];
  771. d__[i__ + 1] = cs * d__[i__ + 1];
  772. if (*nrhs == 1) {
  773. drot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
  774. c__1, &cs, &sn);
  775. } else {
  776. work[(i__ << 1) - 1] = cs;
  777. work[i__ * 2] = sn;
  778. }
  779. /* L10: */
  780. }
  781. if (*nrhs > 1) {
  782. i__1 = *nrhs;
  783. for (i__ = 1; i__ <= i__1; ++i__) {
  784. i__2 = *n - 1;
  785. for (j = 1; j <= i__2; ++j) {
  786. cs = work[(j << 1) - 1];
  787. sn = work[j * 2];
  788. drot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *
  789. b_dim1], &c__1, &cs, &sn);
  790. /* L20: */
  791. }
  792. /* L30: */
  793. }
  794. }
  795. }
  796. /* Scale. */
  797. nm1 = *n - 1;
  798. orgnrm = dlanst_("M", n, &d__[1], &e[1]);
  799. if (orgnrm == 0.) {
  800. dlaset_("A", n, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
  801. return;
  802. }
  803. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, &c__1, &d__[1], n, info);
  804. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, &nm1, &c__1, &e[1], &nm1,
  805. info);
  806. /* If N is smaller than the minimum divide size SMLSIZ, then solve */
  807. /* the problem with another solver. */
  808. if (*n <= *smlsiz) {
  809. nwork = *n * *n + 1;
  810. dlaset_("A", n, n, &c_b6, &c_b11, &work[1], n);
  811. dlasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &
  812. work[1], n, &b[b_offset], ldb, &work[nwork], info);
  813. if (*info != 0) {
  814. return;
  815. }
  816. tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
  817. i__1 = *n;
  818. for (i__ = 1; i__ <= i__1; ++i__) {
  819. if (d__[i__] <= tol) {
  820. dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[i__ + b_dim1], ldb);
  821. } else {
  822. dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &b[
  823. i__ + b_dim1], ldb, info);
  824. ++(*rank);
  825. }
  826. /* L40: */
  827. }
  828. dgemm_("T", "N", n, nrhs, n, &c_b11, &work[1], n, &b[b_offset], ldb, &
  829. c_b6, &work[nwork], n);
  830. dlacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb);
  831. /* Unscale. */
  832. dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n,
  833. info);
  834. dlasrt_("D", n, &d__[1], info);
  835. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset],
  836. ldb, info);
  837. return;
  838. }
  839. /* Book-keeping and setting up some constants. */
  840. nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) /
  841. log(2.)) + 1;
  842. smlszp = *smlsiz + 1;
  843. u = 1;
  844. vt = *smlsiz * *n + 1;
  845. difl = vt + smlszp * *n;
  846. difr = difl + nlvl * *n;
  847. z__ = difr + (nlvl * *n << 1);
  848. c__ = z__ + nlvl * *n;
  849. s = c__ + *n;
  850. poles = s + *n;
  851. givnum = poles + (nlvl << 1) * *n;
  852. bx = givnum + (nlvl << 1) * *n;
  853. nwork = bx + *n * *nrhs;
  854. sizei = *n + 1;
  855. k = sizei + *n;
  856. givptr = k + *n;
  857. perm = givptr + *n;
  858. givcol = perm + nlvl * *n;
  859. iwk = givcol + (nlvl * *n << 1);
  860. st = 1;
  861. sqre = 0;
  862. icmpq1 = 1;
  863. icmpq2 = 0;
  864. nsub = 0;
  865. i__1 = *n;
  866. for (i__ = 1; i__ <= i__1; ++i__) {
  867. if ((d__1 = d__[i__], abs(d__1)) < eps) {
  868. d__[i__] = d_sign(&eps, &d__[i__]);
  869. }
  870. /* L50: */
  871. }
  872. i__1 = nm1;
  873. for (i__ = 1; i__ <= i__1; ++i__) {
  874. if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
  875. ++nsub;
  876. iwork[nsub] = st;
  877. /* Subproblem found. First determine its size and then */
  878. /* apply divide and conquer on it. */
  879. if (i__ < nm1) {
  880. /* A subproblem with E(I) small for I < NM1. */
  881. nsize = i__ - st + 1;
  882. iwork[sizei + nsub - 1] = nsize;
  883. } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
  884. /* A subproblem with E(NM1) not too small but I = NM1. */
  885. nsize = *n - st + 1;
  886. iwork[sizei + nsub - 1] = nsize;
  887. } else {
  888. /* A subproblem with E(NM1) small. This implies an */
  889. /* 1-by-1 subproblem at D(N), which is not solved */
  890. /* explicitly. */
  891. nsize = i__ - st + 1;
  892. iwork[sizei + nsub - 1] = nsize;
  893. ++nsub;
  894. iwork[nsub] = *n;
  895. iwork[sizei + nsub - 1] = 1;
  896. dcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
  897. }
  898. st1 = st - 1;
  899. if (nsize == 1) {
  900. /* This is a 1-by-1 subproblem and is not solved */
  901. /* explicitly. */
  902. dcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
  903. } else if (nsize <= *smlsiz) {
  904. /* This is a small subproblem and is solved by DLASDQ. */
  905. dlaset_("A", &nsize, &nsize, &c_b6, &c_b11, &work[vt + st1],
  906. n);
  907. dlasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[
  908. st], &work[vt + st1], n, &work[nwork], n, &b[st +
  909. b_dim1], ldb, &work[nwork], info);
  910. if (*info != 0) {
  911. return;
  912. }
  913. dlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
  914. st1], n);
  915. } else {
  916. /* A large problem. Solve it using divide and conquer. */
  917. dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
  918. work[u + st1], n, &work[vt + st1], &iwork[k + st1], &
  919. work[difl + st1], &work[difr + st1], &work[z__ + st1],
  920. &work[poles + st1], &iwork[givptr + st1], &iwork[
  921. givcol + st1], n, &iwork[perm + st1], &work[givnum +
  922. st1], &work[c__ + st1], &work[s + st1], &work[nwork],
  923. &iwork[iwk], info);
  924. if (*info != 0) {
  925. return;
  926. }
  927. bxst = bx + st1;
  928. dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
  929. work[bxst], n, &work[u + st1], n, &work[vt + st1], &
  930. iwork[k + st1], &work[difl + st1], &work[difr + st1],
  931. &work[z__ + st1], &work[poles + st1], &iwork[givptr +
  932. st1], &iwork[givcol + st1], n, &iwork[perm + st1], &
  933. work[givnum + st1], &work[c__ + st1], &work[s + st1],
  934. &work[nwork], &iwork[iwk], info);
  935. if (*info != 0) {
  936. return;
  937. }
  938. }
  939. st = i__ + 1;
  940. }
  941. /* L60: */
  942. }
  943. /* Apply the singular values and treat the tiny ones as zero. */
  944. tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
  945. i__1 = *n;
  946. for (i__ = 1; i__ <= i__1; ++i__) {
  947. /* Some of the elements in D can be negative because 1-by-1 */
  948. /* subproblems were not solved explicitly. */
  949. if ((d__1 = d__[i__], abs(d__1)) <= tol) {
  950. dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &work[bx + i__ - 1], n);
  951. } else {
  952. ++(*rank);
  953. dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &work[
  954. bx + i__ - 1], n, info);
  955. }
  956. d__[i__] = (d__1 = d__[i__], abs(d__1));
  957. /* L70: */
  958. }
  959. /* Now apply back the right singular vectors. */
  960. icmpq2 = 1;
  961. i__1 = nsub;
  962. for (i__ = 1; i__ <= i__1; ++i__) {
  963. st = iwork[i__];
  964. st1 = st - 1;
  965. nsize = iwork[sizei + i__ - 1];
  966. bxst = bx + st1;
  967. if (nsize == 1) {
  968. dcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
  969. } else if (nsize <= *smlsiz) {
  970. dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b11, &work[vt + st1], n,
  971. &work[bxst], n, &c_b6, &b[st + b_dim1], ldb);
  972. } else {
  973. dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
  974. b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[
  975. k + st1], &work[difl + st1], &work[difr + st1], &work[z__
  976. + st1], &work[poles + st1], &iwork[givptr + st1], &iwork[
  977. givcol + st1], n, &iwork[perm + st1], &work[givnum + st1],
  978. &work[c__ + st1], &work[s + st1], &work[nwork], &iwork[
  979. iwk], info);
  980. if (*info != 0) {
  981. return;
  982. }
  983. }
  984. /* L80: */
  985. }
  986. /* Unscale and sort the singular values. */
  987. dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, info);
  988. dlasrt_("D", n, &d__[1], info);
  989. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], ldb,
  990. info);
  991. return;
  992. /* End of DLALSD */
  993. } /* dlalsd_ */