You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlals0.c 32 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b5 = -1.;
  485. static integer c__1 = 1;
  486. static doublereal c_b11 = 1.;
  487. static doublereal c_b13 = 0.;
  488. static integer c__0 = 0;
  489. /* > \brief \b DLALS0 applies back multiplying factors in solving the least squares problem using divide and c
  490. onquer SVD approach. Used by sgelsd. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DLALS0 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlals0.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlals0.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlals0.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, */
  509. /* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */
  510. /* POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO ) */
  511. /* INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, */
  512. /* $ LDGNUM, NL, NR, NRHS, SQRE */
  513. /* DOUBLE PRECISION C, S */
  514. /* INTEGER GIVCOL( LDGCOL, * ), PERM( * ) */
  515. /* DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), DIFL( * ), */
  516. /* $ DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ), */
  517. /* $ POLES( LDGNUM, * ), WORK( * ), Z( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > DLALS0 applies back the multiplying factors of either the left or the */
  524. /* > right singular vector matrix of a diagonal matrix appended by a row */
  525. /* > to the right hand side matrix B in solving the least squares problem */
  526. /* > using the divide-and-conquer SVD approach. */
  527. /* > */
  528. /* > For the left singular vector matrix, three types of orthogonal */
  529. /* > matrices are involved: */
  530. /* > */
  531. /* > (1L) Givens rotations: the number of such rotations is GIVPTR; the */
  532. /* > pairs of columns/rows they were applied to are stored in GIVCOL; */
  533. /* > and the C- and S-values of these rotations are stored in GIVNUM. */
  534. /* > */
  535. /* > (2L) Permutation. The (NL+1)-st row of B is to be moved to the first */
  536. /* > row, and for J=2:N, PERM(J)-th row of B is to be moved to the */
  537. /* > J-th row. */
  538. /* > */
  539. /* > (3L) The left singular vector matrix of the remaining matrix. */
  540. /* > */
  541. /* > For the right singular vector matrix, four types of orthogonal */
  542. /* > matrices are involved: */
  543. /* > */
  544. /* > (1R) The right singular vector matrix of the remaining matrix. */
  545. /* > */
  546. /* > (2R) If SQRE = 1, one extra Givens rotation to generate the right */
  547. /* > null space. */
  548. /* > */
  549. /* > (3R) The inverse transformation of (2L). */
  550. /* > */
  551. /* > (4R) The inverse transformation of (1L). */
  552. /* > \endverbatim */
  553. /* Arguments: */
  554. /* ========== */
  555. /* > \param[in] ICOMPQ */
  556. /* > \verbatim */
  557. /* > ICOMPQ is INTEGER */
  558. /* > Specifies whether singular vectors are to be computed in */
  559. /* > factored form: */
  560. /* > = 0: Left singular vector matrix. */
  561. /* > = 1: Right singular vector matrix. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] NL */
  565. /* > \verbatim */
  566. /* > NL is INTEGER */
  567. /* > The row dimension of the upper block. NL >= 1. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] NR */
  571. /* > \verbatim */
  572. /* > NR is INTEGER */
  573. /* > The row dimension of the lower block. NR >= 1. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] SQRE */
  577. /* > \verbatim */
  578. /* > SQRE is INTEGER */
  579. /* > = 0: the lower block is an NR-by-NR square matrix. */
  580. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  581. /* > */
  582. /* > The bidiagonal matrix has row dimension N = NL + NR + 1, */
  583. /* > and column dimension M = N + SQRE. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] NRHS */
  587. /* > \verbatim */
  588. /* > NRHS is INTEGER */
  589. /* > The number of columns of B and BX. NRHS must be at least 1. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in,out] B */
  593. /* > \verbatim */
  594. /* > B is DOUBLE PRECISION array, dimension ( LDB, NRHS ) */
  595. /* > On input, B contains the right hand sides of the least */
  596. /* > squares problem in rows 1 through M. On output, B contains */
  597. /* > the solution X in rows 1 through N. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] LDB */
  601. /* > \verbatim */
  602. /* > LDB is INTEGER */
  603. /* > The leading dimension of B. LDB must be at least */
  604. /* > f2cmax(1,MAX( M, N ) ). */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] BX */
  608. /* > \verbatim */
  609. /* > BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS ) */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] LDBX */
  613. /* > \verbatim */
  614. /* > LDBX is INTEGER */
  615. /* > The leading dimension of BX. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] PERM */
  619. /* > \verbatim */
  620. /* > PERM is INTEGER array, dimension ( N ) */
  621. /* > The permutations (from deflation and sorting) applied */
  622. /* > to the two blocks. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] GIVPTR */
  626. /* > \verbatim */
  627. /* > GIVPTR is INTEGER */
  628. /* > The number of Givens rotations which took place in this */
  629. /* > subproblem. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[in] GIVCOL */
  633. /* > \verbatim */
  634. /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
  635. /* > Each pair of numbers indicates a pair of rows/columns */
  636. /* > involved in a Givens rotation. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[in] LDGCOL */
  640. /* > \verbatim */
  641. /* > LDGCOL is INTEGER */
  642. /* > The leading dimension of GIVCOL, must be at least N. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[in] GIVNUM */
  646. /* > \verbatim */
  647. /* > GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
  648. /* > Each number indicates the C or S value used in the */
  649. /* > corresponding Givens rotation. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LDGNUM */
  653. /* > \verbatim */
  654. /* > LDGNUM is INTEGER */
  655. /* > The leading dimension of arrays DIFR, POLES and */
  656. /* > GIVNUM, must be at least K. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[in] POLES */
  660. /* > \verbatim */
  661. /* > POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
  662. /* > On entry, POLES(1:K, 1) contains the new singular */
  663. /* > values obtained from solving the secular equation, and */
  664. /* > POLES(1:K, 2) is an array containing the poles in the secular */
  665. /* > equation. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[in] DIFL */
  669. /* > \verbatim */
  670. /* > DIFL is DOUBLE PRECISION array, dimension ( K ). */
  671. /* > On entry, DIFL(I) is the distance between I-th updated */
  672. /* > (undeflated) singular value and the I-th (undeflated) old */
  673. /* > singular value. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[in] DIFR */
  677. /* > \verbatim */
  678. /* > DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). */
  679. /* > On entry, DIFR(I, 1) contains the distances between I-th */
  680. /* > updated (undeflated) singular value and the I+1-th */
  681. /* > (undeflated) old singular value. And DIFR(I, 2) is the */
  682. /* > normalizing factor for the I-th right singular vector. */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[in] Z */
  686. /* > \verbatim */
  687. /* > Z is DOUBLE PRECISION array, dimension ( K ) */
  688. /* > Contain the components of the deflation-adjusted updating row */
  689. /* > vector. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in] K */
  693. /* > \verbatim */
  694. /* > K is INTEGER */
  695. /* > Contains the dimension of the non-deflated matrix, */
  696. /* > This is the order of the related secular equation. 1 <= K <=N. */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[in] C */
  700. /* > \verbatim */
  701. /* > C is DOUBLE PRECISION */
  702. /* > C contains garbage if SQRE =0 and the C-value of a Givens */
  703. /* > rotation related to the right null space if SQRE = 1. */
  704. /* > \endverbatim */
  705. /* > */
  706. /* > \param[in] S */
  707. /* > \verbatim */
  708. /* > S is DOUBLE PRECISION */
  709. /* > S contains garbage if SQRE =0 and the S-value of a Givens */
  710. /* > rotation related to the right null space if SQRE = 1. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[out] WORK */
  714. /* > \verbatim */
  715. /* > WORK is DOUBLE PRECISION array, dimension ( K ) */
  716. /* > \endverbatim */
  717. /* > */
  718. /* > \param[out] INFO */
  719. /* > \verbatim */
  720. /* > INFO is INTEGER */
  721. /* > = 0: successful exit. */
  722. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  723. /* > \endverbatim */
  724. /* Authors: */
  725. /* ======== */
  726. /* > \author Univ. of Tennessee */
  727. /* > \author Univ. of California Berkeley */
  728. /* > \author Univ. of Colorado Denver */
  729. /* > \author NAG Ltd. */
  730. /* > \date December 2016 */
  731. /* > \ingroup doubleOTHERcomputational */
  732. /* > \par Contributors: */
  733. /* ================== */
  734. /* > */
  735. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  736. /* > California at Berkeley, USA \n */
  737. /* > Osni Marques, LBNL/NERSC, USA \n */
  738. /* ===================================================================== */
  739. /* Subroutine */ void dlals0_(integer *icompq, integer *nl, integer *nr,
  740. integer *sqre, integer *nrhs, doublereal *b, integer *ldb, doublereal
  741. *bx, integer *ldbx, integer *perm, integer *givptr, integer *givcol,
  742. integer *ldgcol, doublereal *givnum, integer *ldgnum, doublereal *
  743. poles, doublereal *difl, doublereal *difr, doublereal *z__, integer *
  744. k, doublereal *c__, doublereal *s, doublereal *work, integer *info)
  745. {
  746. /* System generated locals */
  747. integer givcol_dim1, givcol_offset, b_dim1, b_offset, bx_dim1, bx_offset,
  748. difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1,
  749. poles_offset, i__1, i__2;
  750. doublereal d__1;
  751. /* Local variables */
  752. doublereal temp;
  753. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  754. doublereal *, integer *, doublereal *, doublereal *);
  755. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  756. integer i__, j, m, n;
  757. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  758. integer *);
  759. doublereal diflj, difrj, dsigj;
  760. extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
  761. doublereal *, doublereal *, integer *, doublereal *, integer *,
  762. doublereal *, doublereal *, integer *), dcopy_(integer *,
  763. doublereal *, integer *, doublereal *, integer *);
  764. extern doublereal dlamc3_(doublereal *, doublereal *);
  765. doublereal dj;
  766. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  767. doublereal *, doublereal *, integer *, integer *, doublereal *,
  768. integer *, integer *), dlacpy_(char *, integer *, integer
  769. *, doublereal *, integer *, doublereal *, integer *);
  770. extern int xerbla_(char *, integer *, ftnlen);
  771. doublereal dsigjp;
  772. integer nlp1;
  773. /* -- LAPACK computational routine (version 3.7.0) -- */
  774. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  775. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  776. /* December 2016 */
  777. /* ===================================================================== */
  778. /* Test the input parameters. */
  779. /* Parameter adjustments */
  780. b_dim1 = *ldb;
  781. b_offset = 1 + b_dim1 * 1;
  782. b -= b_offset;
  783. bx_dim1 = *ldbx;
  784. bx_offset = 1 + bx_dim1 * 1;
  785. bx -= bx_offset;
  786. --perm;
  787. givcol_dim1 = *ldgcol;
  788. givcol_offset = 1 + givcol_dim1 * 1;
  789. givcol -= givcol_offset;
  790. difr_dim1 = *ldgnum;
  791. difr_offset = 1 + difr_dim1 * 1;
  792. difr -= difr_offset;
  793. poles_dim1 = *ldgnum;
  794. poles_offset = 1 + poles_dim1 * 1;
  795. poles -= poles_offset;
  796. givnum_dim1 = *ldgnum;
  797. givnum_offset = 1 + givnum_dim1 * 1;
  798. givnum -= givnum_offset;
  799. --difl;
  800. --z__;
  801. --work;
  802. /* Function Body */
  803. *info = 0;
  804. n = *nl + *nr + 1;
  805. if (*icompq < 0 || *icompq > 1) {
  806. *info = -1;
  807. } else if (*nl < 1) {
  808. *info = -2;
  809. } else if (*nr < 1) {
  810. *info = -3;
  811. } else if (*sqre < 0 || *sqre > 1) {
  812. *info = -4;
  813. } else if (*nrhs < 1) {
  814. *info = -5;
  815. } else if (*ldb < n) {
  816. *info = -7;
  817. } else if (*ldbx < n) {
  818. *info = -9;
  819. } else if (*givptr < 0) {
  820. *info = -11;
  821. } else if (*ldgcol < n) {
  822. *info = -13;
  823. } else if (*ldgnum < n) {
  824. *info = -15;
  825. //} else if (*k < 1) {
  826. } else if (*k < 0) {
  827. *info = -20;
  828. }
  829. if (*info != 0) {
  830. i__1 = -(*info);
  831. xerbla_("DLALS0", &i__1, (ftnlen)6);
  832. return;
  833. }
  834. m = n + *sqre;
  835. nlp1 = *nl + 1;
  836. if (*icompq == 0) {
  837. /* Apply back orthogonal transformations from the left. */
  838. /* Step (1L): apply back the Givens rotations performed. */
  839. i__1 = *givptr;
  840. for (i__ = 1; i__ <= i__1; ++i__) {
  841. drot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
  842. b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ +
  843. (givnum_dim1 << 1)], &givnum[i__ + givnum_dim1]);
  844. /* L10: */
  845. }
  846. /* Step (2L): permute rows of B. */
  847. dcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);
  848. i__1 = n;
  849. for (i__ = 2; i__ <= i__1; ++i__) {
  850. dcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1],
  851. ldbx);
  852. /* L20: */
  853. }
  854. /* Step (3L): apply the inverse of the left singular vector */
  855. /* matrix to BX. */
  856. if (*k == 1) {
  857. dcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);
  858. if (z__[1] < 0.) {
  859. dscal_(nrhs, &c_b5, &b[b_offset], ldb);
  860. }
  861. } else {
  862. i__1 = *k;
  863. for (j = 1; j <= i__1; ++j) {
  864. diflj = difl[j];
  865. dj = poles[j + poles_dim1];
  866. dsigj = -poles[j + (poles_dim1 << 1)];
  867. if (j < *k) {
  868. difrj = -difr[j + difr_dim1];
  869. dsigjp = -poles[j + 1 + (poles_dim1 << 1)];
  870. }
  871. if (z__[j] == 0. || poles[j + (poles_dim1 << 1)] == 0.) {
  872. work[j] = 0.;
  873. } else {
  874. work[j] = -poles[j + (poles_dim1 << 1)] * z__[j] / diflj /
  875. (poles[j + (poles_dim1 << 1)] + dj);
  876. }
  877. i__2 = j - 1;
  878. for (i__ = 1; i__ <= i__2; ++i__) {
  879. if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] ==
  880. 0.) {
  881. work[i__] = 0.;
  882. } else {
  883. work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
  884. / (dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
  885. dsigj) - diflj) / (poles[i__ + (poles_dim1 <<
  886. 1)] + dj);
  887. }
  888. /* L30: */
  889. }
  890. i__2 = *k;
  891. for (i__ = j + 1; i__ <= i__2; ++i__) {
  892. if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] ==
  893. 0.) {
  894. work[i__] = 0.;
  895. } else {
  896. work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
  897. / (dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
  898. dsigjp) + difrj) / (poles[i__ + (poles_dim1 <<
  899. 1)] + dj);
  900. }
  901. /* L40: */
  902. }
  903. work[1] = -1.;
  904. temp = dnrm2_(k, &work[1], &c__1);
  905. dgemv_("T", k, nrhs, &c_b11, &bx[bx_offset], ldbx, &work[1], &
  906. c__1, &c_b13, &b[j + b_dim1], ldb);
  907. dlascl_("G", &c__0, &c__0, &temp, &c_b11, &c__1, nrhs, &b[j +
  908. b_dim1], ldb, info);
  909. /* L50: */
  910. }
  911. }
  912. /* Move the deflated rows of BX to B also. */
  913. if (*k < f2cmax(m,n)) {
  914. i__1 = n - *k;
  915. dlacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1
  916. + b_dim1], ldb);
  917. }
  918. } else {
  919. /* Apply back the right orthogonal transformations. */
  920. /* Step (1R): apply back the new right singular vector matrix */
  921. /* to B. */
  922. if (*k == 1) {
  923. dcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);
  924. } else {
  925. i__1 = *k;
  926. for (j = 1; j <= i__1; ++j) {
  927. dsigj = poles[j + (poles_dim1 << 1)];
  928. if (z__[j] == 0.) {
  929. work[j] = 0.;
  930. } else {
  931. work[j] = -z__[j] / difl[j] / (dsigj + poles[j +
  932. poles_dim1]) / difr[j + (difr_dim1 << 1)];
  933. }
  934. i__2 = j - 1;
  935. for (i__ = 1; i__ <= i__2; ++i__) {
  936. if (z__[j] == 0.) {
  937. work[i__] = 0.;
  938. } else {
  939. d__1 = -poles[i__ + 1 + (poles_dim1 << 1)];
  940. work[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difr[
  941. i__ + difr_dim1]) / (dsigj + poles[i__ +
  942. poles_dim1]) / difr[i__ + (difr_dim1 << 1)];
  943. }
  944. /* L60: */
  945. }
  946. i__2 = *k;
  947. for (i__ = j + 1; i__ <= i__2; ++i__) {
  948. if (z__[j] == 0.) {
  949. work[i__] = 0.;
  950. } else {
  951. d__1 = -poles[i__ + (poles_dim1 << 1)];
  952. work[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difl[
  953. i__]) / (dsigj + poles[i__ + poles_dim1]) /
  954. difr[i__ + (difr_dim1 << 1)];
  955. }
  956. /* L70: */
  957. }
  958. dgemv_("T", k, nrhs, &c_b11, &b[b_offset], ldb, &work[1], &
  959. c__1, &c_b13, &bx[j + bx_dim1], ldbx);
  960. /* L80: */
  961. }
  962. }
  963. /* Step (2R): if SQRE = 1, apply back the rotation that is */
  964. /* related to the right null space of the subproblem. */
  965. if (*sqre == 1) {
  966. dcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);
  967. drot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__,
  968. s);
  969. }
  970. if (*k < f2cmax(m,n)) {
  971. i__1 = n - *k;
  972. dlacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 +
  973. bx_dim1], ldbx);
  974. }
  975. /* Step (3R): permute rows of B. */
  976. dcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);
  977. if (*sqre == 1) {
  978. dcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);
  979. }
  980. i__1 = n;
  981. for (i__ = 2; i__ <= i__1; ++i__) {
  982. dcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1],
  983. ldb);
  984. /* L90: */
  985. }
  986. /* Step (4R): apply back the Givens rotations performed. */
  987. for (i__ = *givptr; i__ >= 1; --i__) {
  988. d__1 = -givnum[i__ + givnum_dim1];
  989. drot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
  990. b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ +
  991. (givnum_dim1 << 1)], &d__1);
  992. /* L100: */
  993. }
  994. }
  995. return;
  996. /* End of DLALS0 */
  997. } /* dlals0_ */