You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_syrfsx_extended.c 41 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static doublereal c_b12 = -1.;
  486. static doublereal c_b14 = 1.;
  487. /* > \brief \b DLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetri
  488. c indefinite matrices by performing extra-precise iterative refinement and provides error bounds and b
  489. ackward error estimates for the solution. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DLA_SYRFSX_EXTENDED + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syr
  496. fsx_extended.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syr
  499. fsx_extended.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syr
  502. fsx_extended.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA, */
  508. /* AF, LDAF, IPIV, COLEQU, C, B, LDB, */
  509. /* Y, LDY, BERR_OUT, N_NORMS, */
  510. /* ERR_BNDS_NORM, ERR_BNDS_COMP, RES, */
  511. /* AYB, DY, Y_TAIL, RCOND, ITHRESH, */
  512. /* RTHRESH, DZ_UB, IGNORE_CWISE, */
  513. /* INFO ) */
  514. /* INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE, */
  515. /* $ N_NORMS, ITHRESH */
  516. /* CHARACTER UPLO */
  517. /* LOGICAL COLEQU, IGNORE_CWISE */
  518. /* DOUBLE PRECISION RTHRESH, DZ_UB */
  519. /* INTEGER IPIV( * ) */
  520. /* DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
  521. /* $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * ) */
  522. /* DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ), */
  523. /* $ ERR_BNDS_NORM( NRHS, * ), */
  524. /* $ ERR_BNDS_COMP( NRHS, * ) */
  525. /* > \par Purpose: */
  526. /* ============= */
  527. /* > */
  528. /* > \verbatim */
  529. /* > */
  530. /* > */
  531. /* > DLA_SYRFSX_EXTENDED improves the computed solution to a system of */
  532. /* > linear equations by performing extra-precise iterative refinement */
  533. /* > and provides error bounds and backward error estimates for the solution. */
  534. /* > This subroutine is called by DSYRFSX to perform iterative refinement. */
  535. /* > In addition to normwise error bound, the code provides maximum */
  536. /* > componentwise error bound if possible. See comments for ERR_BNDS_NORM */
  537. /* > and ERR_BNDS_COMP for details of the error bounds. Note that this */
  538. /* > subroutine is only resonsible for setting the second fields of */
  539. /* > ERR_BNDS_NORM and ERR_BNDS_COMP. */
  540. /* > \endverbatim */
  541. /* Arguments: */
  542. /* ========== */
  543. /* > \param[in] PREC_TYPE */
  544. /* > \verbatim */
  545. /* > PREC_TYPE is INTEGER */
  546. /* > Specifies the intermediate precision to be used in refinement. */
  547. /* > The value is defined by ILAPREC(P) where P is a CHARACTER and P */
  548. /* > = 'S': Single */
  549. /* > = 'D': Double */
  550. /* > = 'I': Indigenous */
  551. /* > = 'X' or 'E': Extra */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] UPLO */
  555. /* > \verbatim */
  556. /* > UPLO is CHARACTER*1 */
  557. /* > = 'U': Upper triangle of A is stored; */
  558. /* > = 'L': Lower triangle of A is stored. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] N */
  562. /* > \verbatim */
  563. /* > N is INTEGER */
  564. /* > The number of linear equations, i.e., the order of the */
  565. /* > matrix A. N >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] NRHS */
  569. /* > \verbatim */
  570. /* > NRHS is INTEGER */
  571. /* > The number of right-hand-sides, i.e., the number of columns of the */
  572. /* > matrix B. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] A */
  576. /* > \verbatim */
  577. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  578. /* > On entry, the N-by-N matrix A. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] LDA */
  582. /* > \verbatim */
  583. /* > LDA is INTEGER */
  584. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] AF */
  588. /* > \verbatim */
  589. /* > AF is DOUBLE PRECISION array, dimension (LDAF,N) */
  590. /* > The block diagonal matrix D and the multipliers used to */
  591. /* > obtain the factor U or L as computed by DSYTRF. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDAF */
  595. /* > \verbatim */
  596. /* > LDAF is INTEGER */
  597. /* > The leading dimension of the array AF. LDAF >= f2cmax(1,N). */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] IPIV */
  601. /* > \verbatim */
  602. /* > IPIV is INTEGER array, dimension (N) */
  603. /* > Details of the interchanges and the block structure of D */
  604. /* > as determined by DSYTRF. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] COLEQU */
  608. /* > \verbatim */
  609. /* > COLEQU is LOGICAL */
  610. /* > If .TRUE. then column equilibration was done to A before calling */
  611. /* > this routine. This is needed to compute the solution and error */
  612. /* > bounds correctly. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] C */
  616. /* > \verbatim */
  617. /* > C is DOUBLE PRECISION array, dimension (N) */
  618. /* > The column scale factors for A. If COLEQU = .FALSE., C */
  619. /* > is not accessed. If C is input, each element of C should be a power */
  620. /* > of the radix to ensure a reliable solution and error estimates. */
  621. /* > Scaling by powers of the radix does not cause rounding errors unless */
  622. /* > the result underflows or overflows. Rounding errors during scaling */
  623. /* > lead to refining with a matrix that is not equivalent to the */
  624. /* > input matrix, producing error estimates that may not be */
  625. /* > reliable. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] B */
  629. /* > \verbatim */
  630. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  631. /* > The right-hand-side matrix B. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in] LDB */
  635. /* > \verbatim */
  636. /* > LDB is INTEGER */
  637. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in,out] Y */
  641. /* > \verbatim */
  642. /* > Y is DOUBLE PRECISION array, dimension (LDY,NRHS) */
  643. /* > On entry, the solution matrix X, as computed by DSYTRS. */
  644. /* > On exit, the improved solution matrix Y. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] LDY */
  648. /* > \verbatim */
  649. /* > LDY is INTEGER */
  650. /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] BERR_OUT */
  654. /* > \verbatim */
  655. /* > BERR_OUT is DOUBLE PRECISION array, dimension (NRHS) */
  656. /* > On exit, BERR_OUT(j) contains the componentwise relative backward */
  657. /* > error for right-hand-side j from the formula */
  658. /* > f2cmax(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
  659. /* > where abs(Z) is the componentwise absolute value of the matrix */
  660. /* > or vector Z. This is computed by DLA_LIN_BERR. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] N_NORMS */
  664. /* > \verbatim */
  665. /* > N_NORMS is INTEGER */
  666. /* > Determines which error bounds to return (see ERR_BNDS_NORM */
  667. /* > and ERR_BNDS_COMP). */
  668. /* > If N_NORMS >= 1 return normwise error bounds. */
  669. /* > If N_NORMS >= 2 return componentwise error bounds. */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[in,out] ERR_BNDS_NORM */
  673. /* > \verbatim */
  674. /* > ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
  675. /* > For each right-hand side, this array contains information about */
  676. /* > various error bounds and condition numbers corresponding to the */
  677. /* > normwise relative error, which is defined as follows: */
  678. /* > */
  679. /* > Normwise relative error in the ith solution vector: */
  680. /* > max_j (abs(XTRUE(j,i) - X(j,i))) */
  681. /* > ------------------------------ */
  682. /* > max_j abs(X(j,i)) */
  683. /* > */
  684. /* > The array is indexed by the type of error information as described */
  685. /* > below. There currently are up to three pieces of information */
  686. /* > returned. */
  687. /* > */
  688. /* > The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
  689. /* > right-hand side. */
  690. /* > */
  691. /* > The second index in ERR_BNDS_NORM(:,err) contains the following */
  692. /* > three fields: */
  693. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  694. /* > reciprocal condition number is less than the threshold */
  695. /* > sqrt(n) * slamch('Epsilon'). */
  696. /* > */
  697. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  698. /* > almost certainly within a factor of 10 of the true error */
  699. /* > so long as the next entry is greater than the threshold */
  700. /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
  701. /* > be trusted if the previous boolean is true. */
  702. /* > */
  703. /* > err = 3 Reciprocal condition number: Estimated normwise */
  704. /* > reciprocal condition number. Compared with the threshold */
  705. /* > sqrt(n) * slamch('Epsilon') to determine if the error */
  706. /* > estimate is "guaranteed". These reciprocal condition */
  707. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  708. /* > appropriately scaled matrix Z. */
  709. /* > Let Z = S*A, where S scales each row by a power of the */
  710. /* > radix so all absolute row sums of Z are approximately 1. */
  711. /* > */
  712. /* > This subroutine is only responsible for setting the second field */
  713. /* > above. */
  714. /* > See Lapack Working Note 165 for further details and extra */
  715. /* > cautions. */
  716. /* > \endverbatim */
  717. /* > */
  718. /* > \param[in,out] ERR_BNDS_COMP */
  719. /* > \verbatim */
  720. /* > ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
  721. /* > For each right-hand side, this array contains information about */
  722. /* > various error bounds and condition numbers corresponding to the */
  723. /* > componentwise relative error, which is defined as follows: */
  724. /* > */
  725. /* > Componentwise relative error in the ith solution vector: */
  726. /* > abs(XTRUE(j,i) - X(j,i)) */
  727. /* > max_j ---------------------- */
  728. /* > abs(X(j,i)) */
  729. /* > */
  730. /* > The array is indexed by the right-hand side i (on which the */
  731. /* > componentwise relative error depends), and the type of error */
  732. /* > information as described below. There currently are up to three */
  733. /* > pieces of information returned for each right-hand side. If */
  734. /* > componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
  735. /* > ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most */
  736. /* > the first (:,N_ERR_BNDS) entries are returned. */
  737. /* > */
  738. /* > The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
  739. /* > right-hand side. */
  740. /* > */
  741. /* > The second index in ERR_BNDS_COMP(:,err) contains the following */
  742. /* > three fields: */
  743. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  744. /* > reciprocal condition number is less than the threshold */
  745. /* > sqrt(n) * slamch('Epsilon'). */
  746. /* > */
  747. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  748. /* > almost certainly within a factor of 10 of the true error */
  749. /* > so long as the next entry is greater than the threshold */
  750. /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
  751. /* > be trusted if the previous boolean is true. */
  752. /* > */
  753. /* > err = 3 Reciprocal condition number: Estimated componentwise */
  754. /* > reciprocal condition number. Compared with the threshold */
  755. /* > sqrt(n) * slamch('Epsilon') to determine if the error */
  756. /* > estimate is "guaranteed". These reciprocal condition */
  757. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  758. /* > appropriately scaled matrix Z. */
  759. /* > Let Z = S*(A*diag(x)), where x is the solution for the */
  760. /* > current right-hand side and S scales each row of */
  761. /* > A*diag(x) by a power of the radix so all absolute row */
  762. /* > sums of Z are approximately 1. */
  763. /* > */
  764. /* > This subroutine is only responsible for setting the second field */
  765. /* > above. */
  766. /* > See Lapack Working Note 165 for further details and extra */
  767. /* > cautions. */
  768. /* > \endverbatim */
  769. /* > */
  770. /* > \param[in] RES */
  771. /* > \verbatim */
  772. /* > RES is DOUBLE PRECISION array, dimension (N) */
  773. /* > Workspace to hold the intermediate residual. */
  774. /* > \endverbatim */
  775. /* > */
  776. /* > \param[in] AYB */
  777. /* > \verbatim */
  778. /* > AYB is DOUBLE PRECISION array, dimension (N) */
  779. /* > Workspace. This can be the same workspace passed for Y_TAIL. */
  780. /* > \endverbatim */
  781. /* > */
  782. /* > \param[in] DY */
  783. /* > \verbatim */
  784. /* > DY is DOUBLE PRECISION array, dimension (N) */
  785. /* > Workspace to hold the intermediate solution. */
  786. /* > \endverbatim */
  787. /* > */
  788. /* > \param[in] Y_TAIL */
  789. /* > \verbatim */
  790. /* > Y_TAIL is DOUBLE PRECISION array, dimension (N) */
  791. /* > Workspace to hold the trailing bits of the intermediate solution. */
  792. /* > \endverbatim */
  793. /* > */
  794. /* > \param[in] RCOND */
  795. /* > \verbatim */
  796. /* > RCOND is DOUBLE PRECISION */
  797. /* > Reciprocal scaled condition number. This is an estimate of the */
  798. /* > reciprocal Skeel condition number of the matrix A after */
  799. /* > equilibration (if done). If this is less than the machine */
  800. /* > precision (in particular, if it is zero), the matrix is singular */
  801. /* > to working precision. Note that the error may still be small even */
  802. /* > if this number is very small and the matrix appears ill- */
  803. /* > conditioned. */
  804. /* > \endverbatim */
  805. /* > */
  806. /* > \param[in] ITHRESH */
  807. /* > \verbatim */
  808. /* > ITHRESH is INTEGER */
  809. /* > The maximum number of residual computations allowed for */
  810. /* > refinement. The default is 10. For 'aggressive' set to 100 to */
  811. /* > permit convergence using approximate factorizations or */
  812. /* > factorizations other than LU. If the factorization uses a */
  813. /* > technique other than Gaussian elimination, the guarantees in */
  814. /* > ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. */
  815. /* > \endverbatim */
  816. /* > */
  817. /* > \param[in] RTHRESH */
  818. /* > \verbatim */
  819. /* > RTHRESH is DOUBLE PRECISION */
  820. /* > Determines when to stop refinement if the error estimate stops */
  821. /* > decreasing. Refinement will stop when the next solution no longer */
  822. /* > satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */
  823. /* > the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */
  824. /* > default value is 0.5. For 'aggressive' set to 0.9 to permit */
  825. /* > convergence on extremely ill-conditioned matrices. See LAWN 165 */
  826. /* > for more details. */
  827. /* > \endverbatim */
  828. /* > */
  829. /* > \param[in] DZ_UB */
  830. /* > \verbatim */
  831. /* > DZ_UB is DOUBLE PRECISION */
  832. /* > Determines when to start considering componentwise convergence. */
  833. /* > Componentwise convergence is only considered after each component */
  834. /* > of the solution Y is stable, which we definte as the relative */
  835. /* > change in each component being less than DZ_UB. The default value */
  836. /* > is 0.25, requiring the first bit to be stable. See LAWN 165 for */
  837. /* > more details. */
  838. /* > \endverbatim */
  839. /* > */
  840. /* > \param[in] IGNORE_CWISE */
  841. /* > \verbatim */
  842. /* > IGNORE_CWISE is LOGICAL */
  843. /* > If .TRUE. then ignore componentwise convergence. Default value */
  844. /* > is .FALSE.. */
  845. /* > \endverbatim */
  846. /* > */
  847. /* > \param[out] INFO */
  848. /* > \verbatim */
  849. /* > INFO is INTEGER */
  850. /* > = 0: Successful exit. */
  851. /* > < 0: if INFO = -i, the ith argument to DLA_SYRFSX_EXTENDED had an illegal */
  852. /* > value */
  853. /* > \endverbatim */
  854. /* Authors: */
  855. /* ======== */
  856. /* > \author Univ. of Tennessee */
  857. /* > \author Univ. of California Berkeley */
  858. /* > \author Univ. of Colorado Denver */
  859. /* > \author NAG Ltd. */
  860. /* > \date June 2017 */
  861. /* > \ingroup doubleSYcomputational */
  862. /* ===================================================================== */
  863. /* Subroutine */ void dla_syrfsx_extended_(integer *prec_type__, char *uplo,
  864. integer *n, integer *nrhs, doublereal *a, integer *lda, doublereal *
  865. af, integer *ldaf, integer *ipiv, logical *colequ, doublereal *c__,
  866. doublereal *b, integer *ldb, doublereal *y, integer *ldy, doublereal *
  867. berr_out__, integer *n_norms__, doublereal *err_bnds_norm__,
  868. doublereal *err_bnds_comp__, doublereal *res, doublereal *ayb,
  869. doublereal *dy, doublereal *y_tail__, doublereal *rcond, integer *
  870. ithresh, doublereal *rthresh, doublereal *dz_ub__, logical *
  871. ignore_cwise__, integer *info)
  872. {
  873. /* System generated locals */
  874. integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1,
  875. y_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
  876. err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2, i__3;
  877. doublereal d__1, d__2;
  878. /* Local variables */
  879. doublereal dx_x__, dz_z__;
  880. extern /* Subroutine */ void dla_lin_berr_(integer *, integer *, integer *
  881. , doublereal *, doublereal *, doublereal *);
  882. doublereal ymin, dxratmax, dzratmax;
  883. integer y_prec_state__;
  884. extern /* Subroutine */ void blas_dsymv_x_(integer *, integer *,
  885. doublereal *, doublereal *, integer *, doublereal *, integer *,
  886. doublereal *, doublereal *, integer *, integer *);
  887. integer uplo2, i__, j;
  888. extern logical lsame_(char *, char *);
  889. extern /* Subroutine */ void blas_dsymv2_x_(integer *, integer *,
  890. doublereal *, doublereal *, integer *, doublereal *, doublereal *,
  891. integer *, doublereal *, doublereal *, integer *, integer *),
  892. dcopy_(integer *, doublereal *, integer *, doublereal *, integer *
  893. );
  894. doublereal dxrat;
  895. logical incr_prec__;
  896. doublereal dzrat;
  897. extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *,
  898. integer *, doublereal *, integer *);
  899. logical upper;
  900. extern /* Subroutine */ void dla_syamv_(integer *, integer *, doublereal *
  901. , doublereal *, integer *, doublereal *, integer *, doublereal *,
  902. doublereal *, integer *), dsymv_(char *, integer *, doublereal *,
  903. doublereal *, integer *, doublereal *, integer *, doublereal *,
  904. doublereal *, integer *);
  905. doublereal normx, normy, myhugeval, prev_dz_z__;
  906. extern doublereal dlamch_(char *);
  907. doublereal yk;
  908. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  909. doublereal final_dx_x__;
  910. extern /* Subroutine */ void dla_wwaddw_(integer *, doublereal *,
  911. doublereal *, doublereal *);
  912. doublereal final_dz_z__, normdx;
  913. extern /* Subroutine */ void dsytrs_(char *, integer *, integer *,
  914. doublereal *, integer *, integer *, doublereal *, integer *,
  915. integer *);
  916. doublereal prevnormdx;
  917. integer cnt;
  918. doublereal dyk, eps;
  919. extern integer ilauplo_(char *);
  920. integer x_state__, z_state__;
  921. doublereal incr_thresh__;
  922. /* -- LAPACK computational routine (version 3.7.1) -- */
  923. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  924. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  925. /* June 2017 */
  926. /* ===================================================================== */
  927. /* Parameter adjustments */
  928. err_bnds_comp_dim1 = *nrhs;
  929. err_bnds_comp_offset = 1 + err_bnds_comp_dim1 * 1;
  930. err_bnds_comp__ -= err_bnds_comp_offset;
  931. err_bnds_norm_dim1 = *nrhs;
  932. err_bnds_norm_offset = 1 + err_bnds_norm_dim1 * 1;
  933. err_bnds_norm__ -= err_bnds_norm_offset;
  934. a_dim1 = *lda;
  935. a_offset = 1 + a_dim1 * 1;
  936. a -= a_offset;
  937. af_dim1 = *ldaf;
  938. af_offset = 1 + af_dim1 * 1;
  939. af -= af_offset;
  940. --ipiv;
  941. --c__;
  942. b_dim1 = *ldb;
  943. b_offset = 1 + b_dim1 * 1;
  944. b -= b_offset;
  945. y_dim1 = *ldy;
  946. y_offset = 1 + y_dim1 * 1;
  947. y -= y_offset;
  948. --berr_out__;
  949. --res;
  950. --ayb;
  951. --dy;
  952. --y_tail__;
  953. /* Function Body */
  954. *info = 0;
  955. upper = lsame_(uplo, "U");
  956. if (! upper && ! lsame_(uplo, "L")) {
  957. *info = -2;
  958. } else if (*n < 0) {
  959. *info = -3;
  960. } else if (*nrhs < 0) {
  961. *info = -4;
  962. } else if (*lda < f2cmax(1,*n)) {
  963. *info = -6;
  964. } else if (*ldaf < f2cmax(1,*n)) {
  965. *info = -8;
  966. } else if (*ldb < f2cmax(1,*n)) {
  967. *info = -13;
  968. } else if (*ldy < f2cmax(1,*n)) {
  969. *info = -15;
  970. }
  971. if (*info != 0) {
  972. i__1 = -(*info);
  973. xerbla_("DLA_SYRFSX_EXTENDED", &i__1, (ftnlen)19);
  974. return;
  975. }
  976. eps = dlamch_("Epsilon");
  977. myhugeval = dlamch_("Overflow");
  978. /* Force MYHUGEVAL to Inf */
  979. myhugeval *= myhugeval;
  980. /* Using MYHUGEVAL may lead to spurious underflows. */
  981. incr_thresh__ = (doublereal) (*n) * eps;
  982. if (lsame_(uplo, "L")) {
  983. uplo2 = ilauplo_("L");
  984. } else {
  985. uplo2 = ilauplo_("U");
  986. }
  987. i__1 = *nrhs;
  988. for (j = 1; j <= i__1; ++j) {
  989. y_prec_state__ = 1;
  990. if (y_prec_state__ == 2) {
  991. i__2 = *n;
  992. for (i__ = 1; i__ <= i__2; ++i__) {
  993. y_tail__[i__] = 0.;
  994. }
  995. }
  996. dxrat = 0.;
  997. dxratmax = 0.;
  998. dzrat = 0.;
  999. dzratmax = 0.;
  1000. final_dx_x__ = myhugeval;
  1001. final_dz_z__ = myhugeval;
  1002. prevnormdx = myhugeval;
  1003. prev_dz_z__ = myhugeval;
  1004. dz_z__ = myhugeval;
  1005. dx_x__ = myhugeval;
  1006. x_state__ = 1;
  1007. z_state__ = 0;
  1008. incr_prec__ = FALSE_;
  1009. i__2 = *ithresh;
  1010. for (cnt = 1; cnt <= i__2; ++cnt) {
  1011. /* Compute residual RES = B_s - op(A_s) * Y, */
  1012. /* op(A) = A, A**T, or A**H depending on TRANS (and type). */
  1013. dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
  1014. if (y_prec_state__ == 0) {
  1015. dsymv_(uplo, n, &c_b12, &a[a_offset], lda, &y[j * y_dim1 + 1],
  1016. &c__1, &c_b14, &res[1], &c__1);
  1017. } else if (y_prec_state__ == 1) {
  1018. blas_dsymv_x__(&uplo2, n, &c_b12, &a[a_offset], lda, &y[j *
  1019. y_dim1 + 1], &c__1, &c_b14, &res[1], &c__1,
  1020. prec_type__);
  1021. } else {
  1022. blas_dsymv2_x__(&uplo2, n, &c_b12, &a[a_offset], lda, &y[j *
  1023. y_dim1 + 1], &y_tail__[1], &c__1, &c_b14, &res[1], &
  1024. c__1, prec_type__);
  1025. }
  1026. /* XXX: RES is no longer needed. */
  1027. dcopy_(n, &res[1], &c__1, &dy[1], &c__1);
  1028. dsytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &dy[1], n,
  1029. info);
  1030. /* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */
  1031. normx = 0.;
  1032. normy = 0.;
  1033. normdx = 0.;
  1034. dz_z__ = 0.;
  1035. ymin = myhugeval;
  1036. i__3 = *n;
  1037. for (i__ = 1; i__ <= i__3; ++i__) {
  1038. yk = (d__1 = y[i__ + j * y_dim1], abs(d__1));
  1039. dyk = (d__1 = dy[i__], abs(d__1));
  1040. if (yk != 0.) {
  1041. /* Computing MAX */
  1042. d__1 = dz_z__, d__2 = dyk / yk;
  1043. dz_z__ = f2cmax(d__1,d__2);
  1044. } else if (dyk != 0.) {
  1045. dz_z__ = myhugeval;
  1046. }
  1047. ymin = f2cmin(ymin,yk);
  1048. normy = f2cmax(normy,yk);
  1049. if (*colequ) {
  1050. /* Computing MAX */
  1051. d__1 = normx, d__2 = yk * c__[i__];
  1052. normx = f2cmax(d__1,d__2);
  1053. /* Computing MAX */
  1054. d__1 = normdx, d__2 = dyk * c__[i__];
  1055. normdx = f2cmax(d__1,d__2);
  1056. } else {
  1057. normx = normy;
  1058. normdx = f2cmax(normdx,dyk);
  1059. }
  1060. }
  1061. if (normx != 0.) {
  1062. dx_x__ = normdx / normx;
  1063. } else if (normdx == 0.) {
  1064. dx_x__ = 0.;
  1065. } else {
  1066. dx_x__ = myhugeval;
  1067. }
  1068. dxrat = normdx / prevnormdx;
  1069. dzrat = dz_z__ / prev_dz_z__;
  1070. /* Check termination criteria. */
  1071. if (ymin * *rcond < incr_thresh__ * normy && y_prec_state__ < 2) {
  1072. incr_prec__ = TRUE_;
  1073. }
  1074. if (x_state__ == 3 && dxrat <= *rthresh) {
  1075. x_state__ = 1;
  1076. }
  1077. if (x_state__ == 1) {
  1078. if (dx_x__ <= eps) {
  1079. x_state__ = 2;
  1080. } else if (dxrat > *rthresh) {
  1081. if (y_prec_state__ != 2) {
  1082. incr_prec__ = TRUE_;
  1083. } else {
  1084. x_state__ = 3;
  1085. }
  1086. } else {
  1087. if (dxrat > dxratmax) {
  1088. dxratmax = dxrat;
  1089. }
  1090. }
  1091. if (x_state__ > 1) {
  1092. final_dx_x__ = dx_x__;
  1093. }
  1094. }
  1095. if (z_state__ == 0 && dz_z__ <= *dz_ub__) {
  1096. z_state__ = 1;
  1097. }
  1098. if (z_state__ == 3 && dzrat <= *rthresh) {
  1099. z_state__ = 1;
  1100. }
  1101. if (z_state__ == 1) {
  1102. if (dz_z__ <= eps) {
  1103. z_state__ = 2;
  1104. } else if (dz_z__ > *dz_ub__) {
  1105. z_state__ = 0;
  1106. dzratmax = 0.;
  1107. final_dz_z__ = myhugeval;
  1108. } else if (dzrat > *rthresh) {
  1109. if (y_prec_state__ != 2) {
  1110. incr_prec__ = TRUE_;
  1111. } else {
  1112. z_state__ = 3;
  1113. }
  1114. } else {
  1115. if (dzrat > dzratmax) {
  1116. dzratmax = dzrat;
  1117. }
  1118. }
  1119. if (z_state__ > 1) {
  1120. final_dz_z__ = dz_z__;
  1121. }
  1122. }
  1123. if (x_state__ != 1 && (*ignore_cwise__ || z_state__ != 1)) {
  1124. goto L666;
  1125. }
  1126. if (incr_prec__) {
  1127. incr_prec__ = FALSE_;
  1128. ++y_prec_state__;
  1129. i__3 = *n;
  1130. for (i__ = 1; i__ <= i__3; ++i__) {
  1131. y_tail__[i__] = 0.;
  1132. }
  1133. }
  1134. prevnormdx = normdx;
  1135. prev_dz_z__ = dz_z__;
  1136. /* Update soluton. */
  1137. if (y_prec_state__ < 2) {
  1138. daxpy_(n, &c_b14, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);
  1139. } else {
  1140. dla_wwaddw_(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);
  1141. }
  1142. }
  1143. /* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't CALL MYEXIT. */
  1144. L666:
  1145. /* Set final_* when cnt hits ithresh. */
  1146. if (x_state__ == 1) {
  1147. final_dx_x__ = dx_x__;
  1148. }
  1149. if (z_state__ == 1) {
  1150. final_dz_z__ = dz_z__;
  1151. }
  1152. /* Compute error bounds. */
  1153. if (*n_norms__ >= 1) {
  1154. err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = final_dx_x__ / (
  1155. 1 - dxratmax);
  1156. }
  1157. if (*n_norms__ >= 2) {
  1158. err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = final_dz_z__ / (
  1159. 1 - dzratmax);
  1160. }
  1161. /* Compute componentwise relative backward error from formula */
  1162. /* f2cmax(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
  1163. /* where abs(Z) is the componentwise absolute value of the matrix */
  1164. /* or vector Z. */
  1165. /* Compute residual RES = B_s - op(A_s) * Y, */
  1166. /* op(A) = A, A**T, or A**H depending on TRANS (and type). */
  1167. dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
  1168. dsymv_(uplo, n, &c_b12, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1,
  1169. &c_b14, &res[1], &c__1);
  1170. i__2 = *n;
  1171. for (i__ = 1; i__ <= i__2; ++i__) {
  1172. ayb[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
  1173. }
  1174. /* Compute abs(op(A_s))*abs(Y) + abs(B_s). */
  1175. dla_syamv_(&uplo2, n, &c_b14, &a[a_offset], lda, &y[j * y_dim1 + 1],
  1176. &c__1, &c_b14, &ayb[1], &c__1);
  1177. dla_lin_berr_(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);
  1178. /* End of loop for each RHS. */
  1179. }
  1180. return;
  1181. } /* dla_syrfsx_extended__ */