You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggevx.c 47 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__0 = 0;
  486. static doublereal c_b59 = 0.;
  487. static doublereal c_b60 = 1.;
  488. /* > \brief <b> DGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  489. rices</b> */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DGGEVX + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggevx.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggevx.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggevx.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB, */
  508. /* ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, */
  509. /* IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, */
  510. /* RCONDV, WORK, LWORK, IWORK, BWORK, INFO ) */
  511. /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
  512. /* INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  513. /* DOUBLE PRECISION ABNRM, BBNRM */
  514. /* LOGICAL BWORK( * ) */
  515. /* INTEGER IWORK( * ) */
  516. /* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  517. /* $ B( LDB, * ), BETA( * ), LSCALE( * ), */
  518. /* $ RCONDE( * ), RCONDV( * ), RSCALE( * ), */
  519. /* $ VL( LDVL, * ), VR( LDVR, * ), WORK( * ) */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
  526. /* > the generalized eigenvalues, and optionally, the left and/or right */
  527. /* > generalized eigenvectors. */
  528. /* > */
  529. /* > Optionally also, it computes a balancing transformation to improve */
  530. /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
  531. /* > LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
  532. /* > the eigenvalues (RCONDE), and reciprocal condition numbers for the */
  533. /* > right eigenvectors (RCONDV). */
  534. /* > */
  535. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  536. /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  537. /* > singular. It is usually represented as the pair (alpha,beta), as */
  538. /* > there is a reasonable interpretation for beta=0, and even for both */
  539. /* > being zero. */
  540. /* > */
  541. /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
  542. /* > of (A,B) satisfies */
  543. /* > */
  544. /* > A * v(j) = lambda(j) * B * v(j) . */
  545. /* > */
  546. /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
  547. /* > of (A,B) satisfies */
  548. /* > */
  549. /* > u(j)**H * A = lambda(j) * u(j)**H * B. */
  550. /* > */
  551. /* > where u(j)**H is the conjugate-transpose of u(j). */
  552. /* > */
  553. /* > \endverbatim */
  554. /* Arguments: */
  555. /* ========== */
  556. /* > \param[in] BALANC */
  557. /* > \verbatim */
  558. /* > BALANC is CHARACTER*1 */
  559. /* > Specifies the balance option to be performed. */
  560. /* > = 'N': do not diagonally scale or permute; */
  561. /* > = 'P': permute only; */
  562. /* > = 'S': scale only; */
  563. /* > = 'B': both permute and scale. */
  564. /* > Computed reciprocal condition numbers will be for the */
  565. /* > matrices after permuting and/or balancing. Permuting does */
  566. /* > not change condition numbers (in exact arithmetic), but */
  567. /* > balancing does. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] JOBVL */
  571. /* > \verbatim */
  572. /* > JOBVL is CHARACTER*1 */
  573. /* > = 'N': do not compute the left generalized eigenvectors; */
  574. /* > = 'V': compute the left generalized eigenvectors. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] JOBVR */
  578. /* > \verbatim */
  579. /* > JOBVR is CHARACTER*1 */
  580. /* > = 'N': do not compute the right generalized eigenvectors; */
  581. /* > = 'V': compute the right generalized eigenvectors. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] SENSE */
  585. /* > \verbatim */
  586. /* > SENSE is CHARACTER*1 */
  587. /* > Determines which reciprocal condition numbers are computed. */
  588. /* > = 'N': none are computed; */
  589. /* > = 'E': computed for eigenvalues only; */
  590. /* > = 'V': computed for eigenvectors only; */
  591. /* > = 'B': computed for eigenvalues and eigenvectors. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] N */
  595. /* > \verbatim */
  596. /* > N is INTEGER */
  597. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] A */
  601. /* > \verbatim */
  602. /* > A is DOUBLE PRECISION array, dimension (LDA, N) */
  603. /* > On entry, the matrix A in the pair (A,B). */
  604. /* > On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
  605. /* > or both, then A contains the first part of the real Schur */
  606. /* > form of the "balanced" versions of the input A and B. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LDA */
  610. /* > \verbatim */
  611. /* > LDA is INTEGER */
  612. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in,out] B */
  616. /* > \verbatim */
  617. /* > B is DOUBLE PRECISION array, dimension (LDB, N) */
  618. /* > On entry, the matrix B in the pair (A,B). */
  619. /* > On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
  620. /* > or both, then B contains the second part of the real Schur */
  621. /* > form of the "balanced" versions of the input A and B. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[in] LDB */
  625. /* > \verbatim */
  626. /* > LDB is INTEGER */
  627. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] ALPHAR */
  631. /* > \verbatim */
  632. /* > ALPHAR is DOUBLE PRECISION array, dimension (N) */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] ALPHAI */
  636. /* > \verbatim */
  637. /* > ALPHAI is DOUBLE PRECISION array, dimension (N) */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] BETA */
  641. /* > \verbatim */
  642. /* > BETA is DOUBLE PRECISION array, dimension (N) */
  643. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  644. /* > be the generalized eigenvalues. If ALPHAI(j) is zero, then */
  645. /* > the j-th eigenvalue is real; if positive, then the j-th and */
  646. /* > (j+1)-st eigenvalues are a complex conjugate pair, with */
  647. /* > ALPHAI(j+1) negative. */
  648. /* > */
  649. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  650. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  651. /* > Thus, the user should avoid naively computing the ratio */
  652. /* > ALPHA/BETA. However, ALPHAR and ALPHAI will be always less */
  653. /* > than and usually comparable with norm(A) in magnitude, and */
  654. /* > BETA always less than and usually comparable with norm(B). */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[out] VL */
  658. /* > \verbatim */
  659. /* > VL is DOUBLE PRECISION array, dimension (LDVL,N) */
  660. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  661. /* > after another in the columns of VL, in the same order as */
  662. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  663. /* > u(j) = VL(:,j), the j-th column of VL. If the j-th and */
  664. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  665. /* > u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
  666. /* > Each eigenvector will be scaled so the largest component have */
  667. /* > abs(real part) + abs(imag. part) = 1. */
  668. /* > Not referenced if JOBVL = 'N'. */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[in] LDVL */
  672. /* > \verbatim */
  673. /* > LDVL is INTEGER */
  674. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  675. /* > if JOBVL = 'V', LDVL >= N. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] VR */
  679. /* > \verbatim */
  680. /* > VR is DOUBLE PRECISION array, dimension (LDVR,N) */
  681. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  682. /* > after another in the columns of VR, in the same order as */
  683. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  684. /* > v(j) = VR(:,j), the j-th column of VR. If the j-th and */
  685. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  686. /* > v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
  687. /* > Each eigenvector will be scaled so the largest component have */
  688. /* > abs(real part) + abs(imag. part) = 1. */
  689. /* > Not referenced if JOBVR = 'N'. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in] LDVR */
  693. /* > \verbatim */
  694. /* > LDVR is INTEGER */
  695. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  696. /* > if JOBVR = 'V', LDVR >= N. */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[out] ILO */
  700. /* > \verbatim */
  701. /* > ILO is INTEGER */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] IHI */
  705. /* > \verbatim */
  706. /* > IHI is INTEGER */
  707. /* > ILO and IHI are integer values such that on exit */
  708. /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
  709. /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
  710. /* > If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[out] LSCALE */
  714. /* > \verbatim */
  715. /* > LSCALE is DOUBLE PRECISION array, dimension (N) */
  716. /* > Details of the permutations and scaling factors applied */
  717. /* > to the left side of A and B. If PL(j) is the index of the */
  718. /* > row interchanged with row j, and DL(j) is the scaling */
  719. /* > factor applied to row j, then */
  720. /* > LSCALE(j) = PL(j) for j = 1,...,ILO-1 */
  721. /* > = DL(j) for j = ILO,...,IHI */
  722. /* > = PL(j) for j = IHI+1,...,N. */
  723. /* > The order in which the interchanges are made is N to IHI+1, */
  724. /* > then 1 to ILO-1. */
  725. /* > \endverbatim */
  726. /* > */
  727. /* > \param[out] RSCALE */
  728. /* > \verbatim */
  729. /* > RSCALE is DOUBLE PRECISION array, dimension (N) */
  730. /* > Details of the permutations and scaling factors applied */
  731. /* > to the right side of A and B. If PR(j) is the index of the */
  732. /* > column interchanged with column j, and DR(j) is the scaling */
  733. /* > factor applied to column j, then */
  734. /* > RSCALE(j) = PR(j) for j = 1,...,ILO-1 */
  735. /* > = DR(j) for j = ILO,...,IHI */
  736. /* > = PR(j) for j = IHI+1,...,N */
  737. /* > The order in which the interchanges are made is N to IHI+1, */
  738. /* > then 1 to ILO-1. */
  739. /* > \endverbatim */
  740. /* > */
  741. /* > \param[out] ABNRM */
  742. /* > \verbatim */
  743. /* > ABNRM is DOUBLE PRECISION */
  744. /* > The one-norm of the balanced matrix A. */
  745. /* > \endverbatim */
  746. /* > */
  747. /* > \param[out] BBNRM */
  748. /* > \verbatim */
  749. /* > BBNRM is DOUBLE PRECISION */
  750. /* > The one-norm of the balanced matrix B. */
  751. /* > \endverbatim */
  752. /* > */
  753. /* > \param[out] RCONDE */
  754. /* > \verbatim */
  755. /* > RCONDE is DOUBLE PRECISION array, dimension (N) */
  756. /* > If SENSE = 'E' or 'B', the reciprocal condition numbers of */
  757. /* > the eigenvalues, stored in consecutive elements of the array. */
  758. /* > For a complex conjugate pair of eigenvalues two consecutive */
  759. /* > elements of RCONDE are set to the same value. Thus RCONDE(j), */
  760. /* > RCONDV(j), and the j-th columns of VL and VR all correspond */
  761. /* > to the j-th eigenpair. */
  762. /* > If SENSE = 'N or 'V', RCONDE is not referenced. */
  763. /* > \endverbatim */
  764. /* > */
  765. /* > \param[out] RCONDV */
  766. /* > \verbatim */
  767. /* > RCONDV is DOUBLE PRECISION array, dimension (N) */
  768. /* > If SENSE = 'V' or 'B', the estimated reciprocal condition */
  769. /* > numbers of the eigenvectors, stored in consecutive elements */
  770. /* > of the array. For a complex eigenvector two consecutive */
  771. /* > elements of RCONDV are set to the same value. If the */
  772. /* > eigenvalues cannot be reordered to compute RCONDV(j), */
  773. /* > RCONDV(j) is set to 0; this can only occur when the true */
  774. /* > value would be very small anyway. */
  775. /* > If SENSE = 'N' or 'E', RCONDV is not referenced. */
  776. /* > \endverbatim */
  777. /* > */
  778. /* > \param[out] WORK */
  779. /* > \verbatim */
  780. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  781. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  782. /* > \endverbatim */
  783. /* > */
  784. /* > \param[in] LWORK */
  785. /* > \verbatim */
  786. /* > LWORK is INTEGER */
  787. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  788. /* > If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', */
  789. /* > LWORK >= f2cmax(1,6*N). */
  790. /* > If SENSE = 'E' or 'B', LWORK >= f2cmax(1,10*N). */
  791. /* > If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. */
  792. /* > */
  793. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  794. /* > only calculates the optimal size of the WORK array, returns */
  795. /* > this value as the first entry of the WORK array, and no error */
  796. /* > message related to LWORK is issued by XERBLA. */
  797. /* > \endverbatim */
  798. /* > */
  799. /* > \param[out] IWORK */
  800. /* > \verbatim */
  801. /* > IWORK is INTEGER array, dimension (N+6) */
  802. /* > If SENSE = 'E', IWORK is not referenced. */
  803. /* > \endverbatim */
  804. /* > */
  805. /* > \param[out] BWORK */
  806. /* > \verbatim */
  807. /* > BWORK is LOGICAL array, dimension (N) */
  808. /* > If SENSE = 'N', BWORK is not referenced. */
  809. /* > \endverbatim */
  810. /* > */
  811. /* > \param[out] INFO */
  812. /* > \verbatim */
  813. /* > INFO is INTEGER */
  814. /* > = 0: successful exit */
  815. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  816. /* > = 1,...,N: */
  817. /* > The QZ iteration failed. No eigenvectors have been */
  818. /* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
  819. /* > should be correct for j=INFO+1,...,N. */
  820. /* > > N: =N+1: other than QZ iteration failed in DHGEQZ. */
  821. /* > =N+2: error return from DTGEVC. */
  822. /* > \endverbatim */
  823. /* Authors: */
  824. /* ======== */
  825. /* > \author Univ. of Tennessee */
  826. /* > \author Univ. of California Berkeley */
  827. /* > \author Univ. of Colorado Denver */
  828. /* > \author NAG Ltd. */
  829. /* > \date April 2012 */
  830. /* > \ingroup doubleGEeigen */
  831. /* > \par Further Details: */
  832. /* ===================== */
  833. /* > */
  834. /* > \verbatim */
  835. /* > */
  836. /* > Balancing a matrix pair (A,B) includes, first, permuting rows and */
  837. /* > columns to isolate eigenvalues, second, applying diagonal similarity */
  838. /* > transformation to the rows and columns to make the rows and columns */
  839. /* > as close in norm as possible. The computed reciprocal condition */
  840. /* > numbers correspond to the balanced matrix. Permuting rows and columns */
  841. /* > will not change the condition numbers (in exact arithmetic) but */
  842. /* > diagonal scaling will. For further explanation of balancing, see */
  843. /* > section 4.11.1.2 of LAPACK Users' Guide. */
  844. /* > */
  845. /* > An approximate error bound on the chordal distance between the i-th */
  846. /* > computed generalized eigenvalue w and the corresponding exact */
  847. /* > eigenvalue lambda is */
  848. /* > */
  849. /* > chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */
  850. /* > */
  851. /* > An approximate error bound for the angle between the i-th computed */
  852. /* > eigenvector VL(i) or VR(i) is given by */
  853. /* > */
  854. /* > EPS * norm(ABNRM, BBNRM) / DIF(i). */
  855. /* > */
  856. /* > For further explanation of the reciprocal condition numbers RCONDE */
  857. /* > and RCONDV, see section 4.11 of LAPACK User's Guide. */
  858. /* > \endverbatim */
  859. /* > */
  860. /* ===================================================================== */
  861. /* Subroutine */ void dggevx_(char *balanc, char *jobvl, char *jobvr, char *
  862. sense, integer *n, doublereal *a, integer *lda, doublereal *b,
  863. integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *
  864. beta, doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr,
  865. integer *ilo, integer *ihi, doublereal *lscale, doublereal *rscale,
  866. doublereal *abnrm, doublereal *bbnrm, doublereal *rconde, doublereal *
  867. rcondv, doublereal *work, integer *lwork, integer *iwork, logical *
  868. bwork, integer *info)
  869. {
  870. /* System generated locals */
  871. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  872. vr_offset, i__1, i__2;
  873. doublereal d__1, d__2, d__3, d__4;
  874. /* Local variables */
  875. logical pair;
  876. doublereal anrm, bnrm;
  877. integer ierr, itau;
  878. doublereal temp;
  879. logical ilvl, ilvr;
  880. integer iwrk, iwrk1, i__, j, m;
  881. extern logical lsame_(char *, char *);
  882. integer icols;
  883. logical noscl;
  884. integer irows;
  885. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  886. integer jc;
  887. extern /* Subroutine */ void dggbak_(char *, char *, integer *, integer *,
  888. integer *, doublereal *, doublereal *, integer *, doublereal *,
  889. integer *, integer *), dggbal_(char *, integer *,
  890. doublereal *, integer *, doublereal *, integer *, integer *,
  891. integer *, doublereal *, doublereal *, doublereal *, integer *);
  892. integer in;
  893. extern doublereal dlamch_(char *);
  894. integer mm;
  895. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  896. integer *, doublereal *);
  897. integer jr;
  898. extern /* Subroutine */ void dgghrd_(char *, char *, integer *, integer *,
  899. integer *, doublereal *, integer *, doublereal *, integer *,
  900. doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal
  901. *, doublereal *, integer *, integer *, doublereal *, integer *,
  902. integer *);
  903. logical ilascl, ilbscl;
  904. extern /* Subroutine */ void dgeqrf_(integer *, integer *, doublereal *,
  905. integer *, doublereal *, doublereal *, integer *, integer *),
  906. dlacpy_(char *, integer *, integer *, doublereal *, integer *,
  907. doublereal *, integer *);
  908. logical ldumma[1];
  909. char chtemp[1];
  910. doublereal bignum;
  911. extern /* Subroutine */ void dhgeqz_(char *, char *, char *, integer *,
  912. integer *, integer *, doublereal *, integer *, doublereal *,
  913. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  914. integer *, doublereal *, integer *, doublereal *, integer *,
  915. integer *), dlaset_(char *, integer *,
  916. integer *, doublereal *, doublereal *, doublereal *, integer *);
  917. integer ijobvl;
  918. extern /* Subroutine */ void dtgevc_(char *, char *, logical *, integer *,
  919. doublereal *, integer *, doublereal *, integer *, doublereal *,
  920. integer *, doublereal *, integer *, integer *, integer *,
  921. doublereal *, integer *), dtgsna_(char *, char *,
  922. logical *, integer *, doublereal *, integer *, doublereal *,
  923. integer *, doublereal *, integer *, doublereal *, integer *,
  924. doublereal *, doublereal *, integer *, integer *, doublereal *,
  925. integer *, integer *, integer *);
  926. extern int xerbla_(char *, integer *, ftnlen);
  927. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  928. integer *, integer *, ftnlen, ftnlen);
  929. integer ijobvr;
  930. logical wantsb;
  931. extern /* Subroutine */ void dorgqr_(integer *, integer *, integer *,
  932. doublereal *, integer *, doublereal *, doublereal *, integer *,
  933. integer *);
  934. doublereal anrmto;
  935. logical wantse;
  936. doublereal bnrmto;
  937. extern /* Subroutine */ void dormqr_(char *, char *, integer *, integer *,
  938. integer *, doublereal *, integer *, doublereal *, doublereal *,
  939. integer *, doublereal *, integer *, integer *);
  940. integer minwrk, maxwrk;
  941. logical wantsn;
  942. doublereal smlnum;
  943. logical lquery, wantsv;
  944. doublereal eps;
  945. logical ilv;
  946. /* -- LAPACK driver routine (version 3.7.0) -- */
  947. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  948. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  949. /* April 2012 */
  950. /* ===================================================================== */
  951. /* Decode the input arguments */
  952. /* Parameter adjustments */
  953. a_dim1 = *lda;
  954. a_offset = 1 + a_dim1 * 1;
  955. a -= a_offset;
  956. b_dim1 = *ldb;
  957. b_offset = 1 + b_dim1 * 1;
  958. b -= b_offset;
  959. --alphar;
  960. --alphai;
  961. --beta;
  962. vl_dim1 = *ldvl;
  963. vl_offset = 1 + vl_dim1 * 1;
  964. vl -= vl_offset;
  965. vr_dim1 = *ldvr;
  966. vr_offset = 1 + vr_dim1 * 1;
  967. vr -= vr_offset;
  968. --lscale;
  969. --rscale;
  970. --rconde;
  971. --rcondv;
  972. --work;
  973. --iwork;
  974. --bwork;
  975. /* Function Body */
  976. if (lsame_(jobvl, "N")) {
  977. ijobvl = 1;
  978. ilvl = FALSE_;
  979. } else if (lsame_(jobvl, "V")) {
  980. ijobvl = 2;
  981. ilvl = TRUE_;
  982. } else {
  983. ijobvl = -1;
  984. ilvl = FALSE_;
  985. }
  986. if (lsame_(jobvr, "N")) {
  987. ijobvr = 1;
  988. ilvr = FALSE_;
  989. } else if (lsame_(jobvr, "V")) {
  990. ijobvr = 2;
  991. ilvr = TRUE_;
  992. } else {
  993. ijobvr = -1;
  994. ilvr = FALSE_;
  995. }
  996. ilv = ilvl || ilvr;
  997. noscl = lsame_(balanc, "N") || lsame_(balanc, "P");
  998. wantsn = lsame_(sense, "N");
  999. wantse = lsame_(sense, "E");
  1000. wantsv = lsame_(sense, "V");
  1001. wantsb = lsame_(sense, "B");
  1002. /* Test the input arguments */
  1003. *info = 0;
  1004. lquery = *lwork == -1;
  1005. if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
  1006. || lsame_(balanc, "B"))) {
  1007. *info = -1;
  1008. } else if (ijobvl <= 0) {
  1009. *info = -2;
  1010. } else if (ijobvr <= 0) {
  1011. *info = -3;
  1012. } else if (! (wantsn || wantse || wantsb || wantsv)) {
  1013. *info = -4;
  1014. } else if (*n < 0) {
  1015. *info = -5;
  1016. } else if (*lda < f2cmax(1,*n)) {
  1017. *info = -7;
  1018. } else if (*ldb < f2cmax(1,*n)) {
  1019. *info = -9;
  1020. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  1021. *info = -14;
  1022. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  1023. *info = -16;
  1024. }
  1025. /* Compute workspace */
  1026. /* (Note: Comments in the code beginning "Workspace:" describe the */
  1027. /* minimal amount of workspace needed at that point in the code, */
  1028. /* as well as the preferred amount for good performance. */
  1029. /* NB refers to the optimal block size for the immediately */
  1030. /* following subroutine, as returned by ILAENV. The workspace is */
  1031. /* computed assuming ILO = 1 and IHI = N, the worst case.) */
  1032. if (*info == 0) {
  1033. if (*n == 0) {
  1034. minwrk = 1;
  1035. maxwrk = 1;
  1036. } else {
  1037. if (noscl && ! ilv) {
  1038. minwrk = *n << 1;
  1039. } else {
  1040. minwrk = *n * 6;
  1041. }
  1042. if (wantse || wantsb) {
  1043. minwrk = *n * 10;
  1044. }
  1045. if (wantsv || wantsb) {
  1046. /* Computing MAX */
  1047. i__1 = minwrk, i__2 = (*n << 1) * (*n + 4) + 16;
  1048. minwrk = f2cmax(i__1,i__2);
  1049. }
  1050. maxwrk = minwrk;
  1051. /* Computing MAX */
  1052. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", n, &
  1053. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1054. maxwrk = f2cmax(i__1,i__2);
  1055. /* Computing MAX */
  1056. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DORMQR", " ", n, &
  1057. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1058. maxwrk = f2cmax(i__1,i__2);
  1059. if (ilvl) {
  1060. /* Computing MAX */
  1061. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR",
  1062. " ", n, &c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1063. maxwrk = f2cmax(i__1,i__2);
  1064. }
  1065. }
  1066. work[1] = (doublereal) maxwrk;
  1067. if (*lwork < minwrk && ! lquery) {
  1068. *info = -26;
  1069. }
  1070. }
  1071. if (*info != 0) {
  1072. i__1 = -(*info);
  1073. xerbla_("DGGEVX", &i__1, (ftnlen)6);
  1074. return;
  1075. } else if (lquery) {
  1076. return;
  1077. }
  1078. /* Quick return if possible */
  1079. if (*n == 0) {
  1080. return;
  1081. }
  1082. /* Get machine constants */
  1083. eps = dlamch_("P");
  1084. smlnum = dlamch_("S");
  1085. bignum = 1. / smlnum;
  1086. dlabad_(&smlnum, &bignum);
  1087. smlnum = sqrt(smlnum) / eps;
  1088. bignum = 1. / smlnum;
  1089. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1090. anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
  1091. ilascl = FALSE_;
  1092. if (anrm > 0. && anrm < smlnum) {
  1093. anrmto = smlnum;
  1094. ilascl = TRUE_;
  1095. } else if (anrm > bignum) {
  1096. anrmto = bignum;
  1097. ilascl = TRUE_;
  1098. }
  1099. if (ilascl) {
  1100. dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  1101. ierr);
  1102. }
  1103. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  1104. bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
  1105. ilbscl = FALSE_;
  1106. if (bnrm > 0. && bnrm < smlnum) {
  1107. bnrmto = smlnum;
  1108. ilbscl = TRUE_;
  1109. } else if (bnrm > bignum) {
  1110. bnrmto = bignum;
  1111. ilbscl = TRUE_;
  1112. }
  1113. if (ilbscl) {
  1114. dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  1115. ierr);
  1116. }
  1117. /* Permute and/or balance the matrix pair (A,B) */
  1118. /* (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */
  1119. dggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
  1120. lscale[1], &rscale[1], &work[1], &ierr);
  1121. /* Compute ABNRM and BBNRM */
  1122. *abnrm = dlange_("1", n, n, &a[a_offset], lda, &work[1]);
  1123. if (ilascl) {
  1124. work[1] = *abnrm;
  1125. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], &
  1126. c__1, &ierr);
  1127. *abnrm = work[1];
  1128. }
  1129. *bbnrm = dlange_("1", n, n, &b[b_offset], ldb, &work[1]);
  1130. if (ilbscl) {
  1131. work[1] = *bbnrm;
  1132. dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], &
  1133. c__1, &ierr);
  1134. *bbnrm = work[1];
  1135. }
  1136. /* Reduce B to triangular form (QR decomposition of B) */
  1137. /* (Workspace: need N, prefer N*NB ) */
  1138. irows = *ihi + 1 - *ilo;
  1139. if (ilv || ! wantsn) {
  1140. icols = *n + 1 - *ilo;
  1141. } else {
  1142. icols = irows;
  1143. }
  1144. itau = 1;
  1145. iwrk = itau + irows;
  1146. i__1 = *lwork + 1 - iwrk;
  1147. dgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
  1148. iwrk], &i__1, &ierr);
  1149. /* Apply the orthogonal transformation to A */
  1150. /* (Workspace: need N, prefer N*NB) */
  1151. i__1 = *lwork + 1 - iwrk;
  1152. dormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
  1153. work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
  1154. ierr);
  1155. /* Initialize VL and/or VR */
  1156. /* (Workspace: need N, prefer N*NB) */
  1157. if (ilvl) {
  1158. dlaset_("Full", n, n, &c_b59, &c_b60, &vl[vl_offset], ldvl)
  1159. ;
  1160. if (irows > 1) {
  1161. i__1 = irows - 1;
  1162. i__2 = irows - 1;
  1163. dlacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
  1164. *ilo + 1 + *ilo * vl_dim1], ldvl);
  1165. }
  1166. i__1 = *lwork + 1 - iwrk;
  1167. dorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
  1168. work[itau], &work[iwrk], &i__1, &ierr);
  1169. }
  1170. if (ilvr) {
  1171. dlaset_("Full", n, n, &c_b59, &c_b60, &vr[vr_offset], ldvr)
  1172. ;
  1173. }
  1174. /* Reduce to generalized Hessenberg form */
  1175. /* (Workspace: none needed) */
  1176. if (ilv || ! wantsn) {
  1177. /* Eigenvectors requested -- work on whole matrix. */
  1178. dgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset],
  1179. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
  1180. } else {
  1181. dgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1],
  1182. lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  1183. vr_offset], ldvr, &ierr);
  1184. }
  1185. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  1186. /* Schur forms and Schur vectors) */
  1187. /* (Workspace: need N) */
  1188. if (ilv || ! wantsn) {
  1189. *(unsigned char *)chtemp = 'S';
  1190. } else {
  1191. *(unsigned char *)chtemp = 'E';
  1192. }
  1193. dhgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
  1194. , ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &
  1195. vr[vr_offset], ldvr, &work[1], lwork, &ierr);
  1196. if (ierr != 0) {
  1197. if (ierr > 0 && ierr <= *n) {
  1198. *info = ierr;
  1199. } else if (ierr > *n && ierr <= *n << 1) {
  1200. *info = ierr - *n;
  1201. } else {
  1202. *info = *n + 1;
  1203. }
  1204. goto L130;
  1205. }
  1206. /* Compute Eigenvectors and estimate condition numbers if desired */
  1207. /* (Workspace: DTGEVC: need 6*N */
  1208. /* DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', */
  1209. /* need N otherwise ) */
  1210. if (ilv || ! wantsn) {
  1211. if (ilv) {
  1212. if (ilvl) {
  1213. if (ilvr) {
  1214. *(unsigned char *)chtemp = 'B';
  1215. } else {
  1216. *(unsigned char *)chtemp = 'L';
  1217. }
  1218. } else {
  1219. *(unsigned char *)chtemp = 'R';
  1220. }
  1221. dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset],
  1222. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
  1223. work[1], &ierr);
  1224. if (ierr != 0) {
  1225. *info = *n + 2;
  1226. goto L130;
  1227. }
  1228. }
  1229. if (! wantsn) {
  1230. /* compute eigenvectors (DTGEVC) and estimate condition */
  1231. /* numbers (DTGSNA). Note that the definition of the condition */
  1232. /* number is not invariant under transformation (u,v) to */
  1233. /* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
  1234. /* Schur form (S,T), Q and Z are orthogonal matrices. In order */
  1235. /* to avoid using extra 2*N*N workspace, we have to recalculate */
  1236. /* eigenvectors and estimate one condition numbers at a time. */
  1237. pair = FALSE_;
  1238. i__1 = *n;
  1239. for (i__ = 1; i__ <= i__1; ++i__) {
  1240. if (pair) {
  1241. pair = FALSE_;
  1242. goto L20;
  1243. }
  1244. mm = 1;
  1245. if (i__ < *n) {
  1246. if (a[i__ + 1 + i__ * a_dim1] != 0.) {
  1247. pair = TRUE_;
  1248. mm = 2;
  1249. }
  1250. }
  1251. i__2 = *n;
  1252. for (j = 1; j <= i__2; ++j) {
  1253. bwork[j] = FALSE_;
  1254. /* L10: */
  1255. }
  1256. if (mm == 1) {
  1257. bwork[i__] = TRUE_;
  1258. } else if (mm == 2) {
  1259. bwork[i__] = TRUE_;
  1260. bwork[i__ + 1] = TRUE_;
  1261. }
  1262. iwrk = mm * *n + 1;
  1263. iwrk1 = iwrk + mm * *n;
  1264. /* Compute a pair of left and right eigenvectors. */
  1265. /* (compute workspace: need up to 4*N + 6*N) */
  1266. if (wantse || wantsb) {
  1267. dtgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
  1268. b_offset], ldb, &work[1], n, &work[iwrk], n, &mm,
  1269. &m, &work[iwrk1], &ierr);
  1270. if (ierr != 0) {
  1271. *info = *n + 2;
  1272. goto L130;
  1273. }
  1274. }
  1275. i__2 = *lwork - iwrk1 + 1;
  1276. dtgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
  1277. b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
  1278. i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, &
  1279. iwork[1], &ierr);
  1280. L20:
  1281. ;
  1282. }
  1283. }
  1284. }
  1285. /* Undo balancing on VL and VR and normalization */
  1286. /* (Workspace: none needed) */
  1287. if (ilvl) {
  1288. dggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
  1289. vl_offset], ldvl, &ierr);
  1290. i__1 = *n;
  1291. for (jc = 1; jc <= i__1; ++jc) {
  1292. if (alphai[jc] < 0.) {
  1293. goto L70;
  1294. }
  1295. temp = 0.;
  1296. if (alphai[jc] == 0.) {
  1297. i__2 = *n;
  1298. for (jr = 1; jr <= i__2; ++jr) {
  1299. /* Computing MAX */
  1300. d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], abs(
  1301. d__1));
  1302. temp = f2cmax(d__2,d__3);
  1303. /* L30: */
  1304. }
  1305. } else {
  1306. i__2 = *n;
  1307. for (jr = 1; jr <= i__2; ++jr) {
  1308. /* Computing MAX */
  1309. d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], abs(
  1310. d__1)) + (d__2 = vl[jr + (jc + 1) * vl_dim1], abs(
  1311. d__2));
  1312. temp = f2cmax(d__3,d__4);
  1313. /* L40: */
  1314. }
  1315. }
  1316. if (temp < smlnum) {
  1317. goto L70;
  1318. }
  1319. temp = 1. / temp;
  1320. if (alphai[jc] == 0.) {
  1321. i__2 = *n;
  1322. for (jr = 1; jr <= i__2; ++jr) {
  1323. vl[jr + jc * vl_dim1] *= temp;
  1324. /* L50: */
  1325. }
  1326. } else {
  1327. i__2 = *n;
  1328. for (jr = 1; jr <= i__2; ++jr) {
  1329. vl[jr + jc * vl_dim1] *= temp;
  1330. vl[jr + (jc + 1) * vl_dim1] *= temp;
  1331. /* L60: */
  1332. }
  1333. }
  1334. L70:
  1335. ;
  1336. }
  1337. }
  1338. if (ilvr) {
  1339. dggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
  1340. vr_offset], ldvr, &ierr);
  1341. i__1 = *n;
  1342. for (jc = 1; jc <= i__1; ++jc) {
  1343. if (alphai[jc] < 0.) {
  1344. goto L120;
  1345. }
  1346. temp = 0.;
  1347. if (alphai[jc] == 0.) {
  1348. i__2 = *n;
  1349. for (jr = 1; jr <= i__2; ++jr) {
  1350. /* Computing MAX */
  1351. d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], abs(
  1352. d__1));
  1353. temp = f2cmax(d__2,d__3);
  1354. /* L80: */
  1355. }
  1356. } else {
  1357. i__2 = *n;
  1358. for (jr = 1; jr <= i__2; ++jr) {
  1359. /* Computing MAX */
  1360. d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], abs(
  1361. d__1)) + (d__2 = vr[jr + (jc + 1) * vr_dim1], abs(
  1362. d__2));
  1363. temp = f2cmax(d__3,d__4);
  1364. /* L90: */
  1365. }
  1366. }
  1367. if (temp < smlnum) {
  1368. goto L120;
  1369. }
  1370. temp = 1. / temp;
  1371. if (alphai[jc] == 0.) {
  1372. i__2 = *n;
  1373. for (jr = 1; jr <= i__2; ++jr) {
  1374. vr[jr + jc * vr_dim1] *= temp;
  1375. /* L100: */
  1376. }
  1377. } else {
  1378. i__2 = *n;
  1379. for (jr = 1; jr <= i__2; ++jr) {
  1380. vr[jr + jc * vr_dim1] *= temp;
  1381. vr[jr + (jc + 1) * vr_dim1] *= temp;
  1382. /* L110: */
  1383. }
  1384. }
  1385. L120:
  1386. ;
  1387. }
  1388. }
  1389. /* Undo scaling if necessary */
  1390. L130:
  1391. if (ilascl) {
  1392. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1393. ierr);
  1394. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1395. ierr);
  1396. }
  1397. if (ilbscl) {
  1398. dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1399. ierr);
  1400. }
  1401. work[1] = (doublereal) maxwrk;
  1402. return;
  1403. /* End of DGGEVX */
  1404. } /* dggevx_ */