You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgesvdx.c 45 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__6 = 6;
  485. static integer c__0 = 0;
  486. static integer c__2 = 2;
  487. static integer c__1 = 1;
  488. static integer c_n1 = -1;
  489. static doublereal c_b109 = 0.;
  490. /* > \brief <b> DGESVDX computes the singular value decomposition (SVD) for GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DGESVDX + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvdx
  497. .f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvdx
  500. .f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvdx
  503. .f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, */
  509. /* $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK, */
  510. /* $ LWORK, IWORK, INFO ) */
  511. /* CHARACTER JOBU, JOBVT, RANGE */
  512. /* INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS */
  513. /* DOUBLE PRECISION VL, VU */
  514. /* INTEGER IWORK( * ) */
  515. /* DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), */
  516. /* $ VT( LDVT, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > DGESVDX computes the singular value decomposition (SVD) of a real */
  523. /* > M-by-N matrix A, optionally computing the left and/or right singular */
  524. /* > vectors. The SVD is written */
  525. /* > */
  526. /* > A = U * SIGMA * transpose(V) */
  527. /* > */
  528. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  529. /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
  530. /* > V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */
  531. /* > are the singular values of A; they are real and non-negative, and */
  532. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  533. /* > U and V are the left and right singular vectors of A. */
  534. /* > */
  535. /* > DGESVDX uses an eigenvalue problem for obtaining the SVD, which */
  536. /* > allows for the computation of a subset of singular values and */
  537. /* > vectors. See DBDSVDX for details. */
  538. /* > */
  539. /* > Note that the routine returns V**T, not V. */
  540. /* > \endverbatim */
  541. /* Arguments: */
  542. /* ========== */
  543. /* > \param[in] JOBU */
  544. /* > \verbatim */
  545. /* > JOBU is CHARACTER*1 */
  546. /* > Specifies options for computing all or part of the matrix U: */
  547. /* > = 'V': the first f2cmin(m,n) columns of U (the left singular */
  548. /* > vectors) or as specified by RANGE are returned in */
  549. /* > the array U; */
  550. /* > = 'N': no columns of U (no left singular vectors) are */
  551. /* > computed. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] JOBVT */
  555. /* > \verbatim */
  556. /* > JOBVT is CHARACTER*1 */
  557. /* > Specifies options for computing all or part of the matrix */
  558. /* > V**T: */
  559. /* > = 'V': the first f2cmin(m,n) rows of V**T (the right singular */
  560. /* > vectors) or as specified by RANGE are returned in */
  561. /* > the array VT; */
  562. /* > = 'N': no rows of V**T (no right singular vectors) are */
  563. /* > computed. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] RANGE */
  567. /* > \verbatim */
  568. /* > RANGE is CHARACTER*1 */
  569. /* > = 'A': all singular values will be found. */
  570. /* > = 'V': all singular values in the half-open interval (VL,VU] */
  571. /* > will be found. */
  572. /* > = 'I': the IL-th through IU-th singular values will be found. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] M */
  576. /* > \verbatim */
  577. /* > M is INTEGER */
  578. /* > The number of rows of the input matrix A. M >= 0. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] N */
  582. /* > \verbatim */
  583. /* > N is INTEGER */
  584. /* > The number of columns of the input matrix A. N >= 0. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in,out] A */
  588. /* > \verbatim */
  589. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  590. /* > On entry, the M-by-N matrix A. */
  591. /* > On exit, the contents of A are destroyed. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDA */
  595. /* > \verbatim */
  596. /* > LDA is INTEGER */
  597. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] VL */
  601. /* > \verbatim */
  602. /* > VL is DOUBLE PRECISION */
  603. /* > If RANGE='V', the lower bound of the interval to */
  604. /* > be searched for singular values. VU > VL. */
  605. /* > Not referenced if RANGE = 'A' or 'I'. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] VU */
  609. /* > \verbatim */
  610. /* > VU is DOUBLE PRECISION */
  611. /* > If RANGE='V', the upper bound of the interval to */
  612. /* > be searched for singular values. VU > VL. */
  613. /* > Not referenced if RANGE = 'A' or 'I'. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] IL */
  617. /* > \verbatim */
  618. /* > IL is INTEGER */
  619. /* > If RANGE='I', the index of the */
  620. /* > smallest singular value to be returned. */
  621. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  622. /* > Not referenced if RANGE = 'A' or 'V'. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] IU */
  626. /* > \verbatim */
  627. /* > IU is INTEGER */
  628. /* > If RANGE='I', the index of the */
  629. /* > largest singular value to be returned. */
  630. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  631. /* > Not referenced if RANGE = 'A' or 'V'. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] NS */
  635. /* > \verbatim */
  636. /* > NS is INTEGER */
  637. /* > The total number of singular values found, */
  638. /* > 0 <= NS <= f2cmin(M,N). */
  639. /* > If RANGE = 'A', NS = f2cmin(M,N); if RANGE = 'I', NS = IU-IL+1. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] S */
  643. /* > \verbatim */
  644. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  645. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] U */
  649. /* > \verbatim */
  650. /* > U is DOUBLE PRECISION array, dimension (LDU,UCOL) */
  651. /* > If JOBU = 'V', U contains columns of U (the left singular */
  652. /* > vectors, stored columnwise) as specified by RANGE; if */
  653. /* > JOBU = 'N', U is not referenced. */
  654. /* > Note: The user must ensure that UCOL >= NS; if RANGE = 'V', */
  655. /* > the exact value of NS is not known in advance and an upper */
  656. /* > bound must be used. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[in] LDU */
  660. /* > \verbatim */
  661. /* > LDU is INTEGER */
  662. /* > The leading dimension of the array U. LDU >= 1; if */
  663. /* > JOBU = 'V', LDU >= M. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[out] VT */
  667. /* > \verbatim */
  668. /* > VT is DOUBLE PRECISION array, dimension (LDVT,N) */
  669. /* > If JOBVT = 'V', VT contains the rows of V**T (the right singular */
  670. /* > vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N', */
  671. /* > VT is not referenced. */
  672. /* > Note: The user must ensure that LDVT >= NS; if RANGE = 'V', */
  673. /* > the exact value of NS is not known in advance and an upper */
  674. /* > bound must be used. */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[in] LDVT */
  678. /* > \verbatim */
  679. /* > LDVT is INTEGER */
  680. /* > The leading dimension of the array VT. LDVT >= 1; if */
  681. /* > JOBVT = 'V', LDVT >= NS (see above). */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[out] WORK */
  685. /* > \verbatim */
  686. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  687. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  688. /* > \endverbatim */
  689. /* > */
  690. /* > \param[in] LWORK */
  691. /* > \verbatim */
  692. /* > LWORK is INTEGER */
  693. /* > The dimension of the array WORK. */
  694. /* > LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see */
  695. /* > comments inside the code): */
  696. /* > - PATH 1 (M much larger than N) */
  697. /* > - PATH 1t (N much larger than M) */
  698. /* > LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths. */
  699. /* > For good performance, LWORK should generally be larger. */
  700. /* > */
  701. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  702. /* > only calculates the optimal size of the WORK array, returns */
  703. /* > this value as the first entry of the WORK array, and no error */
  704. /* > message related to LWORK is issued by XERBLA. */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[out] IWORK */
  708. /* > \verbatim */
  709. /* > IWORK is INTEGER array, dimension (12*MIN(M,N)) */
  710. /* > If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0, */
  711. /* > then IWORK contains the indices of the eigenvectors that failed */
  712. /* > to converge in DBDSVDX/DSTEVX. */
  713. /* > \endverbatim */
  714. /* > */
  715. /* > \param[out] INFO */
  716. /* > \verbatim */
  717. /* > INFO is INTEGER */
  718. /* > = 0: successful exit */
  719. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  720. /* > > 0: if INFO = i, then i eigenvectors failed to converge */
  721. /* > in DBDSVDX/DSTEVX. */
  722. /* > if INFO = N*2 + 1, an internal error occurred in */
  723. /* > DBDSVDX */
  724. /* > \endverbatim */
  725. /* Authors: */
  726. /* ======== */
  727. /* > \author Univ. of Tennessee */
  728. /* > \author Univ. of California Berkeley */
  729. /* > \author Univ. of Colorado Denver */
  730. /* > \author NAG Ltd. */
  731. /* > \date June 2016 */
  732. /* > \ingroup doubleGEsing */
  733. /* ===================================================================== */
  734. /* Subroutine */ void dgesvdx_(char *jobu, char *jobvt, char *range, integer *
  735. m, integer *n, doublereal *a, integer *lda, doublereal *vl,
  736. doublereal *vu, integer *il, integer *iu, integer *ns, doublereal *s,
  737. doublereal *u, integer *ldu, doublereal *vt, integer *ldvt,
  738. doublereal *work, integer *lwork, integer *iwork, integer *info)
  739. {
  740. /* System generated locals */
  741. address a__1[2];
  742. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2],
  743. i__2, i__3;
  744. char ch__1[2];
  745. /* Local variables */
  746. integer iscl;
  747. logical alls, inds;
  748. integer ilqf;
  749. doublereal anrm;
  750. integer ierr, iqrf, itau;
  751. char jobz[1];
  752. logical vals;
  753. integer i__, j;
  754. extern logical lsame_(char *, char *);
  755. integer iltgk, itemp, minmn;
  756. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  757. doublereal *, integer *);
  758. integer itaup, itauq, iutgk, itgkz, mnthr;
  759. logical wantu;
  760. integer id, ie;
  761. extern /* Subroutine */ void dgebrd_(integer *, integer *, doublereal *,
  762. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  763. doublereal *, integer *, integer *);
  764. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  765. integer *, doublereal *, integer *, doublereal *);
  766. extern /* Subroutine */ void dgelqf_(integer *, integer *, doublereal *,
  767. integer *, doublereal *, doublereal *, integer *, integer *),
  768. dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
  769. integer *, integer *, doublereal *, integer *, integer *),
  770. dgeqrf_(integer *, integer *, doublereal *, integer *,
  771. doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
  772. integer *, integer *, doublereal *, integer *, doublereal *,
  773. integer *), dlaset_(char *, integer *, integer *,
  774. doublereal *, doublereal *, doublereal *, integer *);
  775. extern int xerbla_(char *, integer *, ftnlen);
  776. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  777. integer *, integer *, ftnlen, ftnlen);
  778. doublereal bignum, abstol;
  779. extern /* Subroutine */ void dormbr_(char *, char *, char *, integer *,
  780. integer *, integer *, doublereal *, integer *, doublereal *,
  781. doublereal *, integer *, doublereal *, integer *, integer *);
  782. char rngtgk[1];
  783. extern /* Subroutine */ void dormlq_(char *, char *, integer *, integer *,
  784. integer *, doublereal *, integer *, doublereal *, doublereal *,
  785. integer *, doublereal *, integer *, integer *),
  786. dormqr_(char *, char *, integer *, integer *, integer *,
  787. doublereal *, integer *, doublereal *, doublereal *, integer *,
  788. doublereal *, integer *, integer *);
  789. integer minwrk, maxwrk;
  790. doublereal smlnum;
  791. logical lquery, wantvt;
  792. doublereal dum[1], eps;
  793. extern /* Subroutine */ void dbdsvdx_(char *, char *, char *, integer *,
  794. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  795. integer *, integer *, doublereal *, doublereal *, integer *,
  796. doublereal *, integer *, integer *);
  797. /* -- LAPACK driver routine (version 3.8.0) -- */
  798. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  799. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  800. /* June 2016 */
  801. /* ===================================================================== */
  802. /* Test the input arguments. */
  803. /* Parameter adjustments */
  804. a_dim1 = *lda;
  805. a_offset = 1 + a_dim1 * 1;
  806. a -= a_offset;
  807. --s;
  808. u_dim1 = *ldu;
  809. u_offset = 1 + u_dim1 * 1;
  810. u -= u_offset;
  811. vt_dim1 = *ldvt;
  812. vt_offset = 1 + vt_dim1 * 1;
  813. vt -= vt_offset;
  814. --work;
  815. --iwork;
  816. /* Function Body */
  817. *ns = 0;
  818. *info = 0;
  819. abstol = dlamch_("S") * 2;
  820. lquery = *lwork == -1;
  821. minmn = f2cmin(*m,*n);
  822. wantu = lsame_(jobu, "V");
  823. wantvt = lsame_(jobvt, "V");
  824. if (wantu || wantvt) {
  825. *(unsigned char *)jobz = 'V';
  826. } else {
  827. *(unsigned char *)jobz = 'N';
  828. }
  829. alls = lsame_(range, "A");
  830. vals = lsame_(range, "V");
  831. inds = lsame_(range, "I");
  832. *info = 0;
  833. if (! lsame_(jobu, "V") && ! lsame_(jobu, "N")) {
  834. *info = -1;
  835. } else if (! lsame_(jobvt, "V") && ! lsame_(jobvt,
  836. "N")) {
  837. *info = -2;
  838. } else if (! (alls || vals || inds)) {
  839. *info = -3;
  840. } else if (*m < 0) {
  841. *info = -4;
  842. } else if (*n < 0) {
  843. *info = -5;
  844. } else if (*m > *lda) {
  845. *info = -7;
  846. } else if (minmn > 0) {
  847. if (vals) {
  848. if (*vl < 0.) {
  849. *info = -8;
  850. } else if (*vu <= *vl) {
  851. *info = -9;
  852. }
  853. } else if (inds) {
  854. if (*il < 1 || *il > f2cmax(1,minmn)) {
  855. *info = -10;
  856. } else if (*iu < f2cmin(minmn,*il) || *iu > minmn) {
  857. *info = -11;
  858. }
  859. }
  860. if (*info == 0) {
  861. if (wantu && *ldu < *m) {
  862. *info = -15;
  863. } else if (wantvt) {
  864. if (inds) {
  865. if (*ldvt < *iu - *il + 1) {
  866. *info = -17;
  867. }
  868. } else if (*ldvt < minmn) {
  869. *info = -17;
  870. }
  871. }
  872. }
  873. }
  874. /* Compute workspace */
  875. /* (Note: Comments in the code beginning "Workspace:" describe the */
  876. /* minimal amount of workspace needed at that point in the code, */
  877. /* as well as the preferred amount for good performance. */
  878. /* NB refers to the optimal block size for the immediately */
  879. /* following subroutine, as returned by ILAENV.) */
  880. if (*info == 0) {
  881. minwrk = 1;
  882. maxwrk = 1;
  883. if (minmn > 0) {
  884. if (*m >= *n) {
  885. /* Writing concatenation */
  886. i__1[0] = 1, a__1[0] = jobu;
  887. i__1[1] = 1, a__1[1] = jobvt;
  888. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  889. mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
  890. ftnlen)6, (ftnlen)2);
  891. if (*m >= mnthr) {
  892. /* Path 1 (M much larger than N) */
  893. maxwrk = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
  894. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  895. /* Computing MAX */
  896. i__2 = maxwrk, i__3 = *n * (*n + 5) + (*n << 1) * ilaenv_(
  897. &c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
  898. 6, (ftnlen)1);
  899. maxwrk = f2cmax(i__2,i__3);
  900. if (wantu) {
  901. /* Computing MAX */
  902. i__2 = maxwrk, i__3 = *n * (*n * 3 + 6) + *n *
  903. ilaenv_(&c__1, "DORMQR", " ", n, n, &c_n1, &
  904. c_n1, (ftnlen)6, (ftnlen)1);
  905. maxwrk = f2cmax(i__2,i__3);
  906. }
  907. if (wantvt) {
  908. /* Computing MAX */
  909. i__2 = maxwrk, i__3 = *n * (*n * 3 + 6) + *n *
  910. ilaenv_(&c__1, "DORMLQ", " ", n, n, &c_n1, &
  911. c_n1, (ftnlen)6, (ftnlen)1);
  912. maxwrk = f2cmax(i__2,i__3);
  913. }
  914. minwrk = *n * (*n * 3 + 20);
  915. } else {
  916. /* Path 2 (M at least N, but not much larger) */
  917. maxwrk = (*n << 2) + (*m + *n) * ilaenv_(&c__1, "DGEBRD",
  918. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  919. if (wantu) {
  920. /* Computing MAX */
  921. i__2 = maxwrk, i__3 = *n * ((*n << 1) + 5) + *n *
  922. ilaenv_(&c__1, "DORMQR", " ", n, n, &c_n1, &
  923. c_n1, (ftnlen)6, (ftnlen)1);
  924. maxwrk = f2cmax(i__2,i__3);
  925. }
  926. if (wantvt) {
  927. /* Computing MAX */
  928. i__2 = maxwrk, i__3 = *n * ((*n << 1) + 5) + *n *
  929. ilaenv_(&c__1, "DORMLQ", " ", n, n, &c_n1, &
  930. c_n1, (ftnlen)6, (ftnlen)1);
  931. maxwrk = f2cmax(i__2,i__3);
  932. }
  933. /* Computing MAX */
  934. i__2 = *n * ((*n << 1) + 19), i__3 = (*n << 2) + *m;
  935. minwrk = f2cmax(i__2,i__3);
  936. }
  937. } else {
  938. /* Writing concatenation */
  939. i__1[0] = 1, a__1[0] = jobu;
  940. i__1[1] = 1, a__1[1] = jobvt;
  941. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  942. mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
  943. ftnlen)6, (ftnlen)2);
  944. if (*n >= mnthr) {
  945. /* Path 1t (N much larger than M) */
  946. maxwrk = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
  947. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  948. /* Computing MAX */
  949. i__2 = maxwrk, i__3 = *m * (*m + 5) + (*m << 1) * ilaenv_(
  950. &c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
  951. 6, (ftnlen)1);
  952. maxwrk = f2cmax(i__2,i__3);
  953. if (wantu) {
  954. /* Computing MAX */
  955. i__2 = maxwrk, i__3 = *m * (*m * 3 + 6) + *m *
  956. ilaenv_(&c__1, "DORMQR", " ", m, m, &c_n1, &
  957. c_n1, (ftnlen)6, (ftnlen)1);
  958. maxwrk = f2cmax(i__2,i__3);
  959. }
  960. if (wantvt) {
  961. /* Computing MAX */
  962. i__2 = maxwrk, i__3 = *m * (*m * 3 + 6) + *m *
  963. ilaenv_(&c__1, "DORMLQ", " ", m, m, &c_n1, &
  964. c_n1, (ftnlen)6, (ftnlen)1);
  965. maxwrk = f2cmax(i__2,i__3);
  966. }
  967. minwrk = *m * (*m * 3 + 20);
  968. } else {
  969. /* Path 2t (N at least M, but not much larger) */
  970. maxwrk = (*m << 2) + (*m + *n) * ilaenv_(&c__1, "DGEBRD",
  971. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  972. if (wantu) {
  973. /* Computing MAX */
  974. i__2 = maxwrk, i__3 = *m * ((*m << 1) + 5) + *m *
  975. ilaenv_(&c__1, "DORMQR", " ", m, m, &c_n1, &
  976. c_n1, (ftnlen)6, (ftnlen)1);
  977. maxwrk = f2cmax(i__2,i__3);
  978. }
  979. if (wantvt) {
  980. /* Computing MAX */
  981. i__2 = maxwrk, i__3 = *m * ((*m << 1) + 5) + *m *
  982. ilaenv_(&c__1, "DORMLQ", " ", m, m, &c_n1, &
  983. c_n1, (ftnlen)6, (ftnlen)1);
  984. maxwrk = f2cmax(i__2,i__3);
  985. }
  986. /* Computing MAX */
  987. i__2 = *m * ((*m << 1) + 19), i__3 = (*m << 2) + *n;
  988. minwrk = f2cmax(i__2,i__3);
  989. }
  990. }
  991. }
  992. maxwrk = f2cmax(maxwrk,minwrk);
  993. work[1] = (doublereal) maxwrk;
  994. if (*lwork < minwrk && ! lquery) {
  995. *info = -19;
  996. }
  997. }
  998. if (*info != 0) {
  999. i__2 = -(*info);
  1000. xerbla_("DGESVDX", &i__2, (ftnlen)7);
  1001. return;
  1002. } else if (lquery) {
  1003. return;
  1004. }
  1005. /* Quick return if possible */
  1006. if (*m == 0 || *n == 0) {
  1007. return;
  1008. }
  1009. /* Set singular values indices accord to RANGE. */
  1010. if (alls) {
  1011. *(unsigned char *)rngtgk = 'I';
  1012. iltgk = 1;
  1013. iutgk = f2cmin(*m,*n);
  1014. } else if (inds) {
  1015. *(unsigned char *)rngtgk = 'I';
  1016. iltgk = *il;
  1017. iutgk = *iu;
  1018. } else {
  1019. *(unsigned char *)rngtgk = 'V';
  1020. iltgk = 0;
  1021. iutgk = 0;
  1022. }
  1023. /* Get machine constants */
  1024. eps = dlamch_("P");
  1025. smlnum = sqrt(dlamch_("S")) / eps;
  1026. bignum = 1. / smlnum;
  1027. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1028. anrm = dlange_("M", m, n, &a[a_offset], lda, dum);
  1029. iscl = 0;
  1030. if (anrm > 0. && anrm < smlnum) {
  1031. iscl = 1;
  1032. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  1033. info);
  1034. } else if (anrm > bignum) {
  1035. iscl = 1;
  1036. dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  1037. info);
  1038. }
  1039. if (*m >= *n) {
  1040. /* A has at least as many rows as columns. If A has sufficiently */
  1041. /* more rows than columns, first reduce A using the QR */
  1042. /* decomposition. */
  1043. if (*m >= mnthr) {
  1044. /* Path 1 (M much larger than N): */
  1045. /* A = Q * R = Q * ( QB * B * PB**T ) */
  1046. /* = Q * ( QB * ( UB * S * VB**T ) * PB**T ) */
  1047. /* U = Q * QB * UB; V**T = VB**T * PB**T */
  1048. /* Compute A=Q*R */
  1049. /* (Workspace: need 2*N, prefer N+N*NB) */
  1050. itau = 1;
  1051. itemp = itau + *n;
  1052. i__2 = *lwork - itemp + 1;
  1053. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1054. info);
  1055. /* Copy R into WORK and bidiagonalize it: */
  1056. /* (Workspace: need N*N+5*N, prefer N*N+4*N+2*N*NB) */
  1057. iqrf = itemp;
  1058. id = iqrf + *n * *n;
  1059. ie = id + *n;
  1060. itauq = ie + *n;
  1061. itaup = itauq + *n;
  1062. itemp = itaup + *n;
  1063. dlacpy_("U", n, n, &a[a_offset], lda, &work[iqrf], n);
  1064. i__2 = *n - 1;
  1065. i__3 = *n - 1;
  1066. dlaset_("L", &i__2, &i__3, &c_b109, &c_b109, &work[iqrf + 1], n);
  1067. i__2 = *lwork - itemp + 1;
  1068. dgebrd_(n, n, &work[iqrf], n, &work[id], &work[ie], &work[itauq],
  1069. &work[itaup], &work[itemp], &i__2, info);
  1070. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1071. /* (Workspace: need 14*N + 2*N*(N+1)) */
  1072. itgkz = itemp;
  1073. itemp = itgkz + *n * ((*n << 1) + 1);
  1074. i__2 = *n << 1;
  1075. dbdsvdx_("U", jobz, rngtgk, n, &work[id], &work[ie], vl, vu, &
  1076. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1077. itemp], &iwork[1], info);
  1078. /* If needed, compute left singular vectors. */
  1079. if (wantu) {
  1080. j = itgkz;
  1081. i__2 = *ns;
  1082. for (i__ = 1; i__ <= i__2; ++i__) {
  1083. dcopy_(n, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1084. j += *n << 1;
  1085. }
  1086. i__2 = *m - *n;
  1087. dlaset_("A", &i__2, ns, &c_b109, &c_b109, &u[*n + 1 + u_dim1],
  1088. ldu);
  1089. /* Call DORMBR to compute QB*UB. */
  1090. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1091. i__2 = *lwork - itemp + 1;
  1092. dormbr_("Q", "L", "N", n, ns, n, &work[iqrf], n, &work[itauq],
  1093. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1094. /* Call DORMQR to compute Q*(QB*UB). */
  1095. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1096. i__2 = *lwork - itemp + 1;
  1097. dormqr_("L", "N", m, ns, n, &a[a_offset], lda, &work[itau], &
  1098. u[u_offset], ldu, &work[itemp], &i__2, info);
  1099. }
  1100. /* If needed, compute right singular vectors. */
  1101. if (wantvt) {
  1102. j = itgkz + *n;
  1103. i__2 = *ns;
  1104. for (i__ = 1; i__ <= i__2; ++i__) {
  1105. dcopy_(n, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1106. j += *n << 1;
  1107. }
  1108. /* Call DORMBR to compute VB**T * PB**T */
  1109. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1110. i__2 = *lwork - itemp + 1;
  1111. dormbr_("P", "R", "T", ns, n, n, &work[iqrf], n, &work[itaup],
  1112. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1113. }
  1114. } else {
  1115. /* Path 2 (M at least N, but not much larger) */
  1116. /* Reduce A to bidiagonal form without QR decomposition */
  1117. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1118. /* U = QB * UB; V**T = VB**T * PB**T */
  1119. /* Bidiagonalize A */
  1120. /* (Workspace: need 4*N+M, prefer 4*N+(M+N)*NB) */
  1121. id = 1;
  1122. ie = id + *n;
  1123. itauq = ie + *n;
  1124. itaup = itauq + *n;
  1125. itemp = itaup + *n;
  1126. i__2 = *lwork - itemp + 1;
  1127. dgebrd_(m, n, &a[a_offset], lda, &work[id], &work[ie], &work[
  1128. itauq], &work[itaup], &work[itemp], &i__2, info);
  1129. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1130. /* (Workspace: need 14*N + 2*N*(N+1)) */
  1131. itgkz = itemp;
  1132. itemp = itgkz + *n * ((*n << 1) + 1);
  1133. i__2 = *n << 1;
  1134. dbdsvdx_("U", jobz, rngtgk, n, &work[id], &work[ie], vl, vu, &
  1135. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1136. itemp], &iwork[1], info);
  1137. /* If needed, compute left singular vectors. */
  1138. if (wantu) {
  1139. j = itgkz;
  1140. i__2 = *ns;
  1141. for (i__ = 1; i__ <= i__2; ++i__) {
  1142. dcopy_(n, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1143. j += *n << 1;
  1144. }
  1145. i__2 = *m - *n;
  1146. dlaset_("A", &i__2, ns, &c_b109, &c_b109, &u[*n + 1 + u_dim1],
  1147. ldu);
  1148. /* Call DORMBR to compute QB*UB. */
  1149. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1150. i__2 = *lwork - itemp + 1;
  1151. dormbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1152. itauq], &u[u_offset], ldu, &work[itemp], &i__2, &ierr);
  1153. }
  1154. /* If needed, compute right singular vectors. */
  1155. if (wantvt) {
  1156. j = itgkz + *n;
  1157. i__2 = *ns;
  1158. for (i__ = 1; i__ <= i__2; ++i__) {
  1159. dcopy_(n, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1160. j += *n << 1;
  1161. }
  1162. /* Call DORMBR to compute VB**T * PB**T */
  1163. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1164. i__2 = *lwork - itemp + 1;
  1165. dormbr_("P", "R", "T", ns, n, n, &a[a_offset], lda, &work[
  1166. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2, &
  1167. ierr);
  1168. }
  1169. }
  1170. } else {
  1171. /* A has more columns than rows. If A has sufficiently more */
  1172. /* columns than rows, first reduce A using the LQ decomposition. */
  1173. if (*n >= mnthr) {
  1174. /* Path 1t (N much larger than M): */
  1175. /* A = L * Q = ( QB * B * PB**T ) * Q */
  1176. /* = ( QB * ( UB * S * VB**T ) * PB**T ) * Q */
  1177. /* U = QB * UB ; V**T = VB**T * PB**T * Q */
  1178. /* Compute A=L*Q */
  1179. /* (Workspace: need 2*M, prefer M+M*NB) */
  1180. itau = 1;
  1181. itemp = itau + *m;
  1182. i__2 = *lwork - itemp + 1;
  1183. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1184. info);
  1185. /* Copy L into WORK and bidiagonalize it: */
  1186. /* (Workspace in WORK( ITEMP ): need M*M+5*N, prefer M*M+4*M+2*M*NB) */
  1187. ilqf = itemp;
  1188. id = ilqf + *m * *m;
  1189. ie = id + *m;
  1190. itauq = ie + *m;
  1191. itaup = itauq + *m;
  1192. itemp = itaup + *m;
  1193. dlacpy_("L", m, m, &a[a_offset], lda, &work[ilqf], m);
  1194. i__2 = *m - 1;
  1195. i__3 = *m - 1;
  1196. dlaset_("U", &i__2, &i__3, &c_b109, &c_b109, &work[ilqf + *m], m);
  1197. i__2 = *lwork - itemp + 1;
  1198. dgebrd_(m, m, &work[ilqf], m, &work[id], &work[ie], &work[itauq],
  1199. &work[itaup], &work[itemp], &i__2, info);
  1200. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1201. /* (Workspace: need 2*M*M+14*M) */
  1202. itgkz = itemp;
  1203. itemp = itgkz + *m * ((*m << 1) + 1);
  1204. i__2 = *m << 1;
  1205. dbdsvdx_("U", jobz, rngtgk, m, &work[id], &work[ie], vl, vu, &
  1206. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1207. itemp], &iwork[1], info);
  1208. /* If needed, compute left singular vectors. */
  1209. if (wantu) {
  1210. j = itgkz;
  1211. i__2 = *ns;
  1212. for (i__ = 1; i__ <= i__2; ++i__) {
  1213. dcopy_(m, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1214. j += *m << 1;
  1215. }
  1216. /* Call DORMBR to compute QB*UB. */
  1217. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1218. i__2 = *lwork - itemp + 1;
  1219. dormbr_("Q", "L", "N", m, ns, m, &work[ilqf], m, &work[itauq],
  1220. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1221. }
  1222. /* If needed, compute right singular vectors. */
  1223. if (wantvt) {
  1224. j = itgkz + *m;
  1225. i__2 = *ns;
  1226. for (i__ = 1; i__ <= i__2; ++i__) {
  1227. dcopy_(m, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1228. j += *m << 1;
  1229. }
  1230. i__2 = *n - *m;
  1231. dlaset_("A", ns, &i__2, &c_b109, &c_b109, &vt[(*m + 1) *
  1232. vt_dim1 + 1], ldvt);
  1233. /* Call DORMBR to compute (VB**T)*(PB**T) */
  1234. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1235. i__2 = *lwork - itemp + 1;
  1236. dormbr_("P", "R", "T", ns, m, m, &work[ilqf], m, &work[itaup],
  1237. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1238. /* Call DORMLQ to compute ((VB**T)*(PB**T))*Q. */
  1239. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1240. i__2 = *lwork - itemp + 1;
  1241. dormlq_("R", "N", ns, n, m, &a[a_offset], lda, &work[itau], &
  1242. vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1243. }
  1244. } else {
  1245. /* Path 2t (N greater than M, but not much larger) */
  1246. /* Reduce to bidiagonal form without LQ decomposition */
  1247. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1248. /* U = QB * UB; V**T = VB**T * PB**T */
  1249. /* Bidiagonalize A */
  1250. /* (Workspace: need 4*M+N, prefer 4*M+(M+N)*NB) */
  1251. id = 1;
  1252. ie = id + *m;
  1253. itauq = ie + *m;
  1254. itaup = itauq + *m;
  1255. itemp = itaup + *m;
  1256. i__2 = *lwork - itemp + 1;
  1257. dgebrd_(m, n, &a[a_offset], lda, &work[id], &work[ie], &work[
  1258. itauq], &work[itaup], &work[itemp], &i__2, info);
  1259. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1260. /* (Workspace: need 2*M*M+14*M) */
  1261. itgkz = itemp;
  1262. itemp = itgkz + *m * ((*m << 1) + 1);
  1263. i__2 = *m << 1;
  1264. dbdsvdx_("L", jobz, rngtgk, m, &work[id], &work[ie], vl, vu, &
  1265. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1266. itemp], &iwork[1], info);
  1267. /* If needed, compute left singular vectors. */
  1268. if (wantu) {
  1269. j = itgkz;
  1270. i__2 = *ns;
  1271. for (i__ = 1; i__ <= i__2; ++i__) {
  1272. dcopy_(m, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1273. j += *m << 1;
  1274. }
  1275. /* Call DORMBR to compute QB*UB. */
  1276. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1277. i__2 = *lwork - itemp + 1;
  1278. dormbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1279. itauq], &u[u_offset], ldu, &work[itemp], &i__2, info);
  1280. }
  1281. /* If needed, compute right singular vectors. */
  1282. if (wantvt) {
  1283. j = itgkz + *m;
  1284. i__2 = *ns;
  1285. for (i__ = 1; i__ <= i__2; ++i__) {
  1286. dcopy_(m, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1287. j += *m << 1;
  1288. }
  1289. i__2 = *n - *m;
  1290. dlaset_("A", ns, &i__2, &c_b109, &c_b109, &vt[(*m + 1) *
  1291. vt_dim1 + 1], ldvt);
  1292. /* Call DORMBR to compute VB**T * PB**T */
  1293. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1294. i__2 = *lwork - itemp + 1;
  1295. dormbr_("P", "R", "T", ns, n, m, &a[a_offset], lda, &work[
  1296. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2,
  1297. info);
  1298. }
  1299. }
  1300. }
  1301. /* Undo scaling if necessary */
  1302. if (iscl == 1) {
  1303. if (anrm > bignum) {
  1304. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1305. minmn, info);
  1306. }
  1307. if (anrm < smlnum) {
  1308. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1309. minmn, info);
  1310. }
  1311. }
  1312. /* Return optimal workspace in WORK(1) */
  1313. work[1] = (doublereal) maxwrk;
  1314. return;
  1315. /* End of DGESVDX */
  1316. } /* dgesvdx_ */