You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clags2.c 31 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief \b CLAGS2 */
  484. /* =========== DOCUMENTATION =========== */
  485. /* Online html documentation available at */
  486. /* http://www.netlib.org/lapack/explore-html/ */
  487. /* > \htmlonly */
  488. /* > Download CLAGS2 + dependencies */
  489. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clags2.
  490. f"> */
  491. /* > [TGZ]</a> */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clags2.
  493. f"> */
  494. /* > [ZIP]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clags2.
  496. f"> */
  497. /* > [TXT]</a> */
  498. /* > \endhtmlonly */
  499. /* Definition: */
  500. /* =========== */
  501. /* SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, */
  502. /* SNV, CSQ, SNQ ) */
  503. /* LOGICAL UPPER */
  504. /* REAL A1, A3, B1, B3, CSQ, CSU, CSV */
  505. /* COMPLEX A2, B2, SNQ, SNU, SNV */
  506. /* > \par Purpose: */
  507. /* ============= */
  508. /* > */
  509. /* > \verbatim */
  510. /* > */
  511. /* > CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such */
  512. /* > that if ( UPPER ) then */
  513. /* > */
  514. /* > U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 ) */
  515. /* > ( 0 A3 ) ( x x ) */
  516. /* > and */
  517. /* > V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 ) */
  518. /* > ( 0 B3 ) ( x x ) */
  519. /* > */
  520. /* > or if ( .NOT.UPPER ) then */
  521. /* > */
  522. /* > U**H *A*Q = U**H *( A1 0 )*Q = ( x x ) */
  523. /* > ( A2 A3 ) ( 0 x ) */
  524. /* > and */
  525. /* > V**H *B*Q = V**H *( B1 0 )*Q = ( x x ) */
  526. /* > ( B2 B3 ) ( 0 x ) */
  527. /* > where */
  528. /* > */
  529. /* > U = ( CSU SNU ), V = ( CSV SNV ), */
  530. /* > ( -SNU**H CSU ) ( -SNV**H CSV ) */
  531. /* > */
  532. /* > Q = ( CSQ SNQ ) */
  533. /* > ( -SNQ**H CSQ ) */
  534. /* > */
  535. /* > The rows of the transformed A and B are parallel. Moreover, if the */
  536. /* > input 2-by-2 matrix A is not zero, then the transformed (1,1) entry */
  537. /* > of A is not zero. If the input matrices A and B are both not zero, */
  538. /* > then the transformed (2,2) element of B is not zero, except when the */
  539. /* > first rows of input A and B are parallel and the second rows are */
  540. /* > zero. */
  541. /* > \endverbatim */
  542. /* Arguments: */
  543. /* ========== */
  544. /* > \param[in] UPPER */
  545. /* > \verbatim */
  546. /* > UPPER is LOGICAL */
  547. /* > = .TRUE.: the input matrices A and B are upper triangular. */
  548. /* > = .FALSE.: the input matrices A and B are lower triangular. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] A1 */
  552. /* > \verbatim */
  553. /* > A1 is REAL */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] A2 */
  557. /* > \verbatim */
  558. /* > A2 is COMPLEX */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] A3 */
  562. /* > \verbatim */
  563. /* > A3 is REAL */
  564. /* > On entry, A1, A2 and A3 are elements of the input 2-by-2 */
  565. /* > upper (lower) triangular matrix A. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] B1 */
  569. /* > \verbatim */
  570. /* > B1 is REAL */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] B2 */
  574. /* > \verbatim */
  575. /* > B2 is COMPLEX */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] B3 */
  579. /* > \verbatim */
  580. /* > B3 is REAL */
  581. /* > On entry, B1, B2 and B3 are elements of the input 2-by-2 */
  582. /* > upper (lower) triangular matrix B. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[out] CSU */
  586. /* > \verbatim */
  587. /* > CSU is REAL */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] SNU */
  591. /* > \verbatim */
  592. /* > SNU is COMPLEX */
  593. /* > The desired unitary matrix U. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] CSV */
  597. /* > \verbatim */
  598. /* > CSV is REAL */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] SNV */
  602. /* > \verbatim */
  603. /* > SNV is COMPLEX */
  604. /* > The desired unitary matrix V. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] CSQ */
  608. /* > \verbatim */
  609. /* > CSQ is REAL */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] SNQ */
  613. /* > \verbatim */
  614. /* > SNQ is COMPLEX */
  615. /* > The desired unitary matrix Q. */
  616. /* > \endverbatim */
  617. /* Authors: */
  618. /* ======== */
  619. /* > \author Univ. of Tennessee */
  620. /* > \author Univ. of California Berkeley */
  621. /* > \author Univ. of Colorado Denver */
  622. /* > \author NAG Ltd. */
  623. /* > \date December 2016 */
  624. /* > \ingroup complexOTHERauxiliary */
  625. /* ===================================================================== */
  626. /* Subroutine */ void clags2_(logical *upper, real *a1, complex *a2, real *a3,
  627. real *b1, complex *b2, real *b3, real *csu, complex *snu, real *csv,
  628. complex *snv, real *csq, complex *snq)
  629. {
  630. /* System generated locals */
  631. real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8;
  632. complex q__1, q__2, q__3, q__4, q__5;
  633. /* Local variables */
  634. real aua11, aua12, aua21, aua22, avb11, avb12, avb21, avb22, ua11r, ua22r,
  635. vb11r, vb22r, a;
  636. complex b, c__;
  637. real d__;
  638. complex r__, d1;
  639. real s1, s2, fb, fc;
  640. extern /* Subroutine */ void slasv2_(real *, real *, real *, real *, real *
  641. , real *, real *, real *, real *), clartg_(complex *, complex *,
  642. real *, complex *, complex *);
  643. complex ua11, ua12, ua21, ua22, vb11, vb12, vb21, vb22;
  644. real csl, csr, snl, snr;
  645. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  646. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  647. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  648. /* December 2016 */
  649. /* ===================================================================== */
  650. if (*upper) {
  651. /* Input matrices A and B are upper triangular matrices */
  652. /* Form matrix C = A*adj(B) = ( a b ) */
  653. /* ( 0 d ) */
  654. a = *a1 * *b3;
  655. d__ = *a3 * *b1;
  656. q__2.r = *b1 * a2->r, q__2.i = *b1 * a2->i;
  657. q__3.r = *a1 * b2->r, q__3.i = *a1 * b2->i;
  658. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  659. b.r = q__1.r, b.i = q__1.i;
  660. fb = c_abs(&b);
  661. /* Transform complex 2-by-2 matrix C to real matrix by unitary */
  662. /* diagonal matrix diag(1,D1). */
  663. d1.r = 1.f, d1.i = 0.f;
  664. if (fb != 0.f) {
  665. q__1.r = b.r / fb, q__1.i = b.i / fb;
  666. d1.r = q__1.r, d1.i = q__1.i;
  667. }
  668. /* The SVD of real 2 by 2 triangular C */
  669. /* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) */
  670. /* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) */
  671. slasv2_(&a, &fb, &d__, &s1, &s2, &snr, &csr, &snl, &csl);
  672. if (abs(csl) >= abs(snl) || abs(csr) >= abs(snr)) {
  673. /* Compute the (1,1) and (1,2) elements of U**H *A and V**H *B, */
  674. /* and (1,2) element of |U|**H *|A| and |V|**H *|B|. */
  675. ua11r = csl * *a1;
  676. q__2.r = csl * a2->r, q__2.i = csl * a2->i;
  677. q__4.r = snl * d1.r, q__4.i = snl * d1.i;
  678. q__3.r = *a3 * q__4.r, q__3.i = *a3 * q__4.i;
  679. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  680. ua12.r = q__1.r, ua12.i = q__1.i;
  681. vb11r = csr * *b1;
  682. q__2.r = csr * b2->r, q__2.i = csr * b2->i;
  683. q__4.r = snr * d1.r, q__4.i = snr * d1.i;
  684. q__3.r = *b3 * q__4.r, q__3.i = *b3 * q__4.i;
  685. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  686. vb12.r = q__1.r, vb12.i = q__1.i;
  687. aua12 = abs(csl) * ((r__1 = a2->r, abs(r__1)) + (r__2 = r_imag(a2)
  688. , abs(r__2))) + abs(snl) * abs(*a3);
  689. avb12 = abs(csr) * ((r__1 = b2->r, abs(r__1)) + (r__2 = r_imag(b2)
  690. , abs(r__2))) + abs(snr) * abs(*b3);
  691. /* zero (1,2) elements of U**H *A and V**H *B */
  692. if (abs(ua11r) + ((r__1 = ua12.r, abs(r__1)) + (r__2 = r_imag(&
  693. ua12), abs(r__2))) == 0.f) {
  694. q__2.r = vb11r, q__2.i = 0.f;
  695. q__1.r = -q__2.r, q__1.i = -q__2.i;
  696. r_cnjg(&q__3, &vb12);
  697. clartg_(&q__1, &q__3, csq, snq, &r__);
  698. } else if (abs(vb11r) + ((r__1 = vb12.r, abs(r__1)) + (r__2 =
  699. r_imag(&vb12), abs(r__2))) == 0.f) {
  700. q__2.r = ua11r, q__2.i = 0.f;
  701. q__1.r = -q__2.r, q__1.i = -q__2.i;
  702. r_cnjg(&q__3, &ua12);
  703. clartg_(&q__1, &q__3, csq, snq, &r__);
  704. } else if (aua12 / (abs(ua11r) + ((r__1 = ua12.r, abs(r__1)) + (
  705. r__2 = r_imag(&ua12), abs(r__2)))) <= avb12 / (abs(vb11r)
  706. + ((r__3 = vb12.r, abs(r__3)) + (r__4 = r_imag(&vb12),
  707. abs(r__4))))) {
  708. q__2.r = ua11r, q__2.i = 0.f;
  709. q__1.r = -q__2.r, q__1.i = -q__2.i;
  710. r_cnjg(&q__3, &ua12);
  711. clartg_(&q__1, &q__3, csq, snq, &r__);
  712. } else {
  713. q__2.r = vb11r, q__2.i = 0.f;
  714. q__1.r = -q__2.r, q__1.i = -q__2.i;
  715. r_cnjg(&q__3, &vb12);
  716. clartg_(&q__1, &q__3, csq, snq, &r__);
  717. }
  718. *csu = csl;
  719. q__2.r = -d1.r, q__2.i = -d1.i;
  720. q__1.r = snl * q__2.r, q__1.i = snl * q__2.i;
  721. snu->r = q__1.r, snu->i = q__1.i;
  722. *csv = csr;
  723. q__2.r = -d1.r, q__2.i = -d1.i;
  724. q__1.r = snr * q__2.r, q__1.i = snr * q__2.i;
  725. snv->r = q__1.r, snv->i = q__1.i;
  726. } else {
  727. /* Compute the (2,1) and (2,2) elements of U**H *A and V**H *B, */
  728. /* and (2,2) element of |U|**H *|A| and |V|**H *|B|. */
  729. r_cnjg(&q__4, &d1);
  730. q__3.r = -q__4.r, q__3.i = -q__4.i;
  731. q__2.r = snl * q__3.r, q__2.i = snl * q__3.i;
  732. q__1.r = *a1 * q__2.r, q__1.i = *a1 * q__2.i;
  733. ua21.r = q__1.r, ua21.i = q__1.i;
  734. r_cnjg(&q__5, &d1);
  735. q__4.r = -q__5.r, q__4.i = -q__5.i;
  736. q__3.r = snl * q__4.r, q__3.i = snl * q__4.i;
  737. q__2.r = q__3.r * a2->r - q__3.i * a2->i, q__2.i = q__3.r * a2->i
  738. + q__3.i * a2->r;
  739. r__1 = csl * *a3;
  740. q__1.r = q__2.r + r__1, q__1.i = q__2.i;
  741. ua22.r = q__1.r, ua22.i = q__1.i;
  742. r_cnjg(&q__4, &d1);
  743. q__3.r = -q__4.r, q__3.i = -q__4.i;
  744. q__2.r = snr * q__3.r, q__2.i = snr * q__3.i;
  745. q__1.r = *b1 * q__2.r, q__1.i = *b1 * q__2.i;
  746. vb21.r = q__1.r, vb21.i = q__1.i;
  747. r_cnjg(&q__5, &d1);
  748. q__4.r = -q__5.r, q__4.i = -q__5.i;
  749. q__3.r = snr * q__4.r, q__3.i = snr * q__4.i;
  750. q__2.r = q__3.r * b2->r - q__3.i * b2->i, q__2.i = q__3.r * b2->i
  751. + q__3.i * b2->r;
  752. r__1 = csr * *b3;
  753. q__1.r = q__2.r + r__1, q__1.i = q__2.i;
  754. vb22.r = q__1.r, vb22.i = q__1.i;
  755. aua22 = abs(snl) * ((r__1 = a2->r, abs(r__1)) + (r__2 = r_imag(a2)
  756. , abs(r__2))) + abs(csl) * abs(*a3);
  757. avb22 = abs(snr) * ((r__1 = b2->r, abs(r__1)) + (r__2 = r_imag(b2)
  758. , abs(r__2))) + abs(csr) * abs(*b3);
  759. /* zero (2,2) elements of U**H *A and V**H *B, and then swap. */
  760. if ((r__1 = ua21.r, abs(r__1)) + (r__2 = r_imag(&ua21), abs(r__2))
  761. + ((r__3 = ua22.r, abs(r__3)) + (r__4 = r_imag(&ua22),
  762. abs(r__4))) == 0.f) {
  763. r_cnjg(&q__2, &vb21);
  764. q__1.r = -q__2.r, q__1.i = -q__2.i;
  765. r_cnjg(&q__3, &vb22);
  766. clartg_(&q__1, &q__3, csq, snq, &r__);
  767. } else if ((r__1 = vb21.r, abs(r__1)) + (r__2 = r_imag(&vb21),
  768. abs(r__2)) + c_abs(&vb22) == 0.f) {
  769. r_cnjg(&q__2, &ua21);
  770. q__1.r = -q__2.r, q__1.i = -q__2.i;
  771. r_cnjg(&q__3, &ua22);
  772. clartg_(&q__1, &q__3, csq, snq, &r__);
  773. } else if (aua22 / ((r__1 = ua21.r, abs(r__1)) + (r__2 = r_imag(&
  774. ua21), abs(r__2)) + ((r__3 = ua22.r, abs(r__3)) + (r__4 =
  775. r_imag(&ua22), abs(r__4)))) <= avb22 / ((r__5 = vb21.r,
  776. abs(r__5)) + (r__6 = r_imag(&vb21), abs(r__6)) + ((r__7 =
  777. vb22.r, abs(r__7)) + (r__8 = r_imag(&vb22), abs(r__8)))))
  778. {
  779. r_cnjg(&q__2, &ua21);
  780. q__1.r = -q__2.r, q__1.i = -q__2.i;
  781. r_cnjg(&q__3, &ua22);
  782. clartg_(&q__1, &q__3, csq, snq, &r__);
  783. } else {
  784. r_cnjg(&q__2, &vb21);
  785. q__1.r = -q__2.r, q__1.i = -q__2.i;
  786. r_cnjg(&q__3, &vb22);
  787. clartg_(&q__1, &q__3, csq, snq, &r__);
  788. }
  789. *csu = snl;
  790. q__1.r = csl * d1.r, q__1.i = csl * d1.i;
  791. snu->r = q__1.r, snu->i = q__1.i;
  792. *csv = snr;
  793. q__1.r = csr * d1.r, q__1.i = csr * d1.i;
  794. snv->r = q__1.r, snv->i = q__1.i;
  795. }
  796. } else {
  797. /* Input matrices A and B are lower triangular matrices */
  798. /* Form matrix C = A*adj(B) = ( a 0 ) */
  799. /* ( c d ) */
  800. a = *a1 * *b3;
  801. d__ = *a3 * *b1;
  802. q__2.r = *b3 * a2->r, q__2.i = *b3 * a2->i;
  803. q__3.r = *a3 * b2->r, q__3.i = *a3 * b2->i;
  804. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  805. c__.r = q__1.r, c__.i = q__1.i;
  806. fc = c_abs(&c__);
  807. /* Transform complex 2-by-2 matrix C to real matrix by unitary */
  808. /* diagonal matrix diag(d1,1). */
  809. d1.r = 1.f, d1.i = 0.f;
  810. if (fc != 0.f) {
  811. q__1.r = c__.r / fc, q__1.i = c__.i / fc;
  812. d1.r = q__1.r, d1.i = q__1.i;
  813. }
  814. /* The SVD of real 2 by 2 triangular C */
  815. /* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) */
  816. /* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) */
  817. slasv2_(&a, &fc, &d__, &s1, &s2, &snr, &csr, &snl, &csl);
  818. if (abs(csr) >= abs(snr) || abs(csl) >= abs(snl)) {
  819. /* Compute the (2,1) and (2,2) elements of U**H *A and V**H *B, */
  820. /* and (2,1) element of |U|**H *|A| and |V|**H *|B|. */
  821. q__4.r = -d1.r, q__4.i = -d1.i;
  822. q__3.r = snr * q__4.r, q__3.i = snr * q__4.i;
  823. q__2.r = *a1 * q__3.r, q__2.i = *a1 * q__3.i;
  824. q__5.r = csr * a2->r, q__5.i = csr * a2->i;
  825. q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
  826. ua21.r = q__1.r, ua21.i = q__1.i;
  827. ua22r = csr * *a3;
  828. q__4.r = -d1.r, q__4.i = -d1.i;
  829. q__3.r = snl * q__4.r, q__3.i = snl * q__4.i;
  830. q__2.r = *b1 * q__3.r, q__2.i = *b1 * q__3.i;
  831. q__5.r = csl * b2->r, q__5.i = csl * b2->i;
  832. q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
  833. vb21.r = q__1.r, vb21.i = q__1.i;
  834. vb22r = csl * *b3;
  835. aua21 = abs(snr) * abs(*a1) + abs(csr) * ((r__1 = a2->r, abs(r__1)
  836. ) + (r__2 = r_imag(a2), abs(r__2)));
  837. avb21 = abs(snl) * abs(*b1) + abs(csl) * ((r__1 = b2->r, abs(r__1)
  838. ) + (r__2 = r_imag(b2), abs(r__2)));
  839. /* zero (2,1) elements of U**H *A and V**H *B. */
  840. if ((r__1 = ua21.r, abs(r__1)) + (r__2 = r_imag(&ua21), abs(r__2))
  841. + abs(ua22r) == 0.f) {
  842. q__1.r = vb22r, q__1.i = 0.f;
  843. clartg_(&q__1, &vb21, csq, snq, &r__);
  844. } else if ((r__1 = vb21.r, abs(r__1)) + (r__2 = r_imag(&vb21),
  845. abs(r__2)) + abs(vb22r) == 0.f) {
  846. q__1.r = ua22r, q__1.i = 0.f;
  847. clartg_(&q__1, &ua21, csq, snq, &r__);
  848. } else if (aua21 / ((r__1 = ua21.r, abs(r__1)) + (r__2 = r_imag(&
  849. ua21), abs(r__2)) + abs(ua22r)) <= avb21 / ((r__3 =
  850. vb21.r, abs(r__3)) + (r__4 = r_imag(&vb21), abs(r__4)) +
  851. abs(vb22r))) {
  852. q__1.r = ua22r, q__1.i = 0.f;
  853. clartg_(&q__1, &ua21, csq, snq, &r__);
  854. } else {
  855. q__1.r = vb22r, q__1.i = 0.f;
  856. clartg_(&q__1, &vb21, csq, snq, &r__);
  857. }
  858. *csu = csr;
  859. r_cnjg(&q__3, &d1);
  860. q__2.r = -q__3.r, q__2.i = -q__3.i;
  861. q__1.r = snr * q__2.r, q__1.i = snr * q__2.i;
  862. snu->r = q__1.r, snu->i = q__1.i;
  863. *csv = csl;
  864. r_cnjg(&q__3, &d1);
  865. q__2.r = -q__3.r, q__2.i = -q__3.i;
  866. q__1.r = snl * q__2.r, q__1.i = snl * q__2.i;
  867. snv->r = q__1.r, snv->i = q__1.i;
  868. } else {
  869. /* Compute the (1,1) and (1,2) elements of U**H *A and V**H *B, */
  870. /* and (1,1) element of |U|**H *|A| and |V|**H *|B|. */
  871. r__1 = csr * *a1;
  872. r_cnjg(&q__4, &d1);
  873. q__3.r = snr * q__4.r, q__3.i = snr * q__4.i;
  874. q__2.r = q__3.r * a2->r - q__3.i * a2->i, q__2.i = q__3.r * a2->i
  875. + q__3.i * a2->r;
  876. q__1.r = r__1 + q__2.r, q__1.i = q__2.i;
  877. ua11.r = q__1.r, ua11.i = q__1.i;
  878. r_cnjg(&q__3, &d1);
  879. q__2.r = snr * q__3.r, q__2.i = snr * q__3.i;
  880. q__1.r = *a3 * q__2.r, q__1.i = *a3 * q__2.i;
  881. ua12.r = q__1.r, ua12.i = q__1.i;
  882. r__1 = csl * *b1;
  883. r_cnjg(&q__4, &d1);
  884. q__3.r = snl * q__4.r, q__3.i = snl * q__4.i;
  885. q__2.r = q__3.r * b2->r - q__3.i * b2->i, q__2.i = q__3.r * b2->i
  886. + q__3.i * b2->r;
  887. q__1.r = r__1 + q__2.r, q__1.i = q__2.i;
  888. vb11.r = q__1.r, vb11.i = q__1.i;
  889. r_cnjg(&q__3, &d1);
  890. q__2.r = snl * q__3.r, q__2.i = snl * q__3.i;
  891. q__1.r = *b3 * q__2.r, q__1.i = *b3 * q__2.i;
  892. vb12.r = q__1.r, vb12.i = q__1.i;
  893. aua11 = abs(csr) * abs(*a1) + abs(snr) * ((r__1 = a2->r, abs(r__1)
  894. ) + (r__2 = r_imag(a2), abs(r__2)));
  895. avb11 = abs(csl) * abs(*b1) + abs(snl) * ((r__1 = b2->r, abs(r__1)
  896. ) + (r__2 = r_imag(b2), abs(r__2)));
  897. /* zero (1,1) elements of U**H *A and V**H *B, and then swap. */
  898. if ((r__1 = ua11.r, abs(r__1)) + (r__2 = r_imag(&ua11), abs(r__2))
  899. + ((r__3 = ua12.r, abs(r__3)) + (r__4 = r_imag(&ua12),
  900. abs(r__4))) == 0.f) {
  901. clartg_(&vb12, &vb11, csq, snq, &r__);
  902. } else if ((r__1 = vb11.r, abs(r__1)) + (r__2 = r_imag(&vb11),
  903. abs(r__2)) + ((r__3 = vb12.r, abs(r__3)) + (r__4 = r_imag(
  904. &vb12), abs(r__4))) == 0.f) {
  905. clartg_(&ua12, &ua11, csq, snq, &r__);
  906. } else if (aua11 / ((r__1 = ua11.r, abs(r__1)) + (r__2 = r_imag(&
  907. ua11), abs(r__2)) + ((r__3 = ua12.r, abs(r__3)) + (r__4 =
  908. r_imag(&ua12), abs(r__4)))) <= avb11 / ((r__5 = vb11.r,
  909. abs(r__5)) + (r__6 = r_imag(&vb11), abs(r__6)) + ((r__7 =
  910. vb12.r, abs(r__7)) + (r__8 = r_imag(&vb12), abs(r__8)))))
  911. {
  912. clartg_(&ua12, &ua11, csq, snq, &r__);
  913. } else {
  914. clartg_(&vb12, &vb11, csq, snq, &r__);
  915. }
  916. *csu = snr;
  917. r_cnjg(&q__2, &d1);
  918. q__1.r = csr * q__2.r, q__1.i = csr * q__2.i;
  919. snu->r = q__1.r, snu->i = q__1.i;
  920. *csv = snl;
  921. r_cnjg(&q__2, &d1);
  922. q__1.r = csl * q__2.r, q__1.i = csl * q__2.i;
  923. snv->r = q__1.r, snv->i = q__1.i;
  924. }
  925. }
  926. return;
  927. /* End of CLAGS2 */
  928. } /* clags2_ */