You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cggevx.c 44 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static complex c_b2 = {1.f,0.f};
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. /* > \brief <b> CGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  489. rices</b> */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CGGEVX + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggevx.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggevx.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggevx.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB, */
  508. /* ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI, */
  509. /* LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, */
  510. /* WORK, LWORK, RWORK, IWORK, BWORK, INFO ) */
  511. /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
  512. /* INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  513. /* REAL ABNRM, BBNRM */
  514. /* LOGICAL BWORK( * ) */
  515. /* INTEGER IWORK( * ) */
  516. /* REAL LSCALE( * ), RCONDE( * ), RCONDV( * ), */
  517. /* $ RSCALE( * ), RWORK( * ) */
  518. /* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), */
  519. /* $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ), */
  520. /* $ WORK( * ) */
  521. /* > \par Purpose: */
  522. /* ============= */
  523. /* > */
  524. /* > \verbatim */
  525. /* > */
  526. /* > CGGEVX computes for a pair of N-by-N complex nonsymmetric matrices */
  527. /* > (A,B) the generalized eigenvalues, and optionally, the left and/or */
  528. /* > right generalized eigenvectors. */
  529. /* > */
  530. /* > Optionally, it also computes a balancing transformation to improve */
  531. /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
  532. /* > LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
  533. /* > the eigenvalues (RCONDE), and reciprocal condition numbers for the */
  534. /* > right eigenvectors (RCONDV). */
  535. /* > */
  536. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  537. /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  538. /* > singular. It is usually represented as the pair (alpha,beta), as */
  539. /* > there is a reasonable interpretation for beta=0, and even for both */
  540. /* > being zero. */
  541. /* > */
  542. /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
  543. /* > of (A,B) satisfies */
  544. /* > A * v(j) = lambda(j) * B * v(j) . */
  545. /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
  546. /* > of (A,B) satisfies */
  547. /* > u(j)**H * A = lambda(j) * u(j)**H * B. */
  548. /* > where u(j)**H is the conjugate-transpose of u(j). */
  549. /* > */
  550. /* > \endverbatim */
  551. /* Arguments: */
  552. /* ========== */
  553. /* > \param[in] BALANC */
  554. /* > \verbatim */
  555. /* > BALANC is CHARACTER*1 */
  556. /* > Specifies the balance option to be performed: */
  557. /* > = 'N': do not diagonally scale or permute; */
  558. /* > = 'P': permute only; */
  559. /* > = 'S': scale only; */
  560. /* > = 'B': both permute and scale. */
  561. /* > Computed reciprocal condition numbers will be for the */
  562. /* > matrices after permuting and/or balancing. Permuting does */
  563. /* > not change condition numbers (in exact arithmetic), but */
  564. /* > balancing does. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] JOBVL */
  568. /* > \verbatim */
  569. /* > JOBVL is CHARACTER*1 */
  570. /* > = 'N': do not compute the left generalized eigenvectors; */
  571. /* > = 'V': compute the left generalized eigenvectors. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] JOBVR */
  575. /* > \verbatim */
  576. /* > JOBVR is CHARACTER*1 */
  577. /* > = 'N': do not compute the right generalized eigenvectors; */
  578. /* > = 'V': compute the right generalized eigenvectors. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] SENSE */
  582. /* > \verbatim */
  583. /* > SENSE is CHARACTER*1 */
  584. /* > Determines which reciprocal condition numbers are computed. */
  585. /* > = 'N': none are computed; */
  586. /* > = 'E': computed for eigenvalues only; */
  587. /* > = 'V': computed for eigenvectors only; */
  588. /* > = 'B': computed for eigenvalues and eigenvectors. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] N */
  592. /* > \verbatim */
  593. /* > N is INTEGER */
  594. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in,out] A */
  598. /* > \verbatim */
  599. /* > A is COMPLEX array, dimension (LDA, N) */
  600. /* > On entry, the matrix A in the pair (A,B). */
  601. /* > On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
  602. /* > or both, then A contains the first part of the complex Schur */
  603. /* > form of the "balanced" versions of the input A and B. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] LDA */
  607. /* > \verbatim */
  608. /* > LDA is INTEGER */
  609. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in,out] B */
  613. /* > \verbatim */
  614. /* > B is COMPLEX array, dimension (LDB, N) */
  615. /* > On entry, the matrix B in the pair (A,B). */
  616. /* > On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
  617. /* > or both, then B contains the second part of the complex */
  618. /* > Schur form of the "balanced" versions of the input A and B. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] LDB */
  622. /* > \verbatim */
  623. /* > LDB is INTEGER */
  624. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] ALPHA */
  628. /* > \verbatim */
  629. /* > ALPHA is COMPLEX array, dimension (N) */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] BETA */
  633. /* > \verbatim */
  634. /* > BETA is COMPLEX array, dimension (N) */
  635. /* > On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized */
  636. /* > eigenvalues. */
  637. /* > */
  638. /* > Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or */
  639. /* > underflow, and BETA(j) may even be zero. Thus, the user */
  640. /* > should avoid naively computing the ratio ALPHA/BETA. */
  641. /* > However, ALPHA will be always less than and usually */
  642. /* > comparable with norm(A) in magnitude, and BETA always less */
  643. /* > than and usually comparable with norm(B). */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] VL */
  647. /* > \verbatim */
  648. /* > VL is COMPLEX array, dimension (LDVL,N) */
  649. /* > If JOBVL = 'V', the left generalized eigenvectors u(j) are */
  650. /* > stored one after another in the columns of VL, in the same */
  651. /* > order as their eigenvalues. */
  652. /* > Each eigenvector will be scaled so the largest component */
  653. /* > will have abs(real part) + abs(imag. part) = 1. */
  654. /* > Not referenced if JOBVL = 'N'. */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[in] LDVL */
  658. /* > \verbatim */
  659. /* > LDVL is INTEGER */
  660. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  661. /* > if JOBVL = 'V', LDVL >= N. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[out] VR */
  665. /* > \verbatim */
  666. /* > VR is COMPLEX array, dimension (LDVR,N) */
  667. /* > If JOBVR = 'V', the right generalized eigenvectors v(j) are */
  668. /* > stored one after another in the columns of VR, in the same */
  669. /* > order as their eigenvalues. */
  670. /* > Each eigenvector will be scaled so the largest component */
  671. /* > will have abs(real part) + abs(imag. part) = 1. */
  672. /* > Not referenced if JOBVR = 'N'. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[in] LDVR */
  676. /* > \verbatim */
  677. /* > LDVR is INTEGER */
  678. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  679. /* > if JOBVR = 'V', LDVR >= N. */
  680. /* > \endverbatim */
  681. /* > */
  682. /* > \param[out] ILO */
  683. /* > \verbatim */
  684. /* > ILO is INTEGER */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] IHI */
  688. /* > \verbatim */
  689. /* > IHI is INTEGER */
  690. /* > ILO and IHI are integer values such that on exit */
  691. /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
  692. /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
  693. /* > If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */
  694. /* > \endverbatim */
  695. /* > */
  696. /* > \param[out] LSCALE */
  697. /* > \verbatim */
  698. /* > LSCALE is REAL array, dimension (N) */
  699. /* > Details of the permutations and scaling factors applied */
  700. /* > to the left side of A and B. If PL(j) is the index of the */
  701. /* > row interchanged with row j, and DL(j) is the scaling */
  702. /* > factor applied to row j, then */
  703. /* > LSCALE(j) = PL(j) for j = 1,...,ILO-1 */
  704. /* > = DL(j) for j = ILO,...,IHI */
  705. /* > = PL(j) for j = IHI+1,...,N. */
  706. /* > The order in which the interchanges are made is N to IHI+1, */
  707. /* > then 1 to ILO-1. */
  708. /* > \endverbatim */
  709. /* > */
  710. /* > \param[out] RSCALE */
  711. /* > \verbatim */
  712. /* > RSCALE is REAL array, dimension (N) */
  713. /* > Details of the permutations and scaling factors applied */
  714. /* > to the right side of A and B. If PR(j) is the index of the */
  715. /* > column interchanged with column j, and DR(j) is the scaling */
  716. /* > factor applied to column j, then */
  717. /* > RSCALE(j) = PR(j) for j = 1,...,ILO-1 */
  718. /* > = DR(j) for j = ILO,...,IHI */
  719. /* > = PR(j) for j = IHI+1,...,N */
  720. /* > The order in which the interchanges are made is N to IHI+1, */
  721. /* > then 1 to ILO-1. */
  722. /* > \endverbatim */
  723. /* > */
  724. /* > \param[out] ABNRM */
  725. /* > \verbatim */
  726. /* > ABNRM is REAL */
  727. /* > The one-norm of the balanced matrix A. */
  728. /* > \endverbatim */
  729. /* > */
  730. /* > \param[out] BBNRM */
  731. /* > \verbatim */
  732. /* > BBNRM is REAL */
  733. /* > The one-norm of the balanced matrix B. */
  734. /* > \endverbatim */
  735. /* > */
  736. /* > \param[out] RCONDE */
  737. /* > \verbatim */
  738. /* > RCONDE is REAL array, dimension (N) */
  739. /* > If SENSE = 'E' or 'B', the reciprocal condition numbers of */
  740. /* > the eigenvalues, stored in consecutive elements of the array. */
  741. /* > If SENSE = 'N' or 'V', RCONDE is not referenced. */
  742. /* > \endverbatim */
  743. /* > */
  744. /* > \param[out] RCONDV */
  745. /* > \verbatim */
  746. /* > RCONDV is REAL array, dimension (N) */
  747. /* > If SENSE = 'V' or 'B', the estimated reciprocal condition */
  748. /* > numbers of the eigenvectors, stored in consecutive elements */
  749. /* > of the array. If the eigenvalues cannot be reordered to */
  750. /* > compute RCONDV(j), RCONDV(j) is set to 0; this can only occur */
  751. /* > when the true value would be very small anyway. */
  752. /* > If SENSE = 'N' or 'E', RCONDV is not referenced. */
  753. /* > \endverbatim */
  754. /* > */
  755. /* > \param[out] WORK */
  756. /* > \verbatim */
  757. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  758. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  759. /* > \endverbatim */
  760. /* > */
  761. /* > \param[in] LWORK */
  762. /* > \verbatim */
  763. /* > LWORK is INTEGER */
  764. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  765. /* > If SENSE = 'E', LWORK >= f2cmax(1,4*N). */
  766. /* > If SENSE = 'V' or 'B', LWORK >= f2cmax(1,2*N*N+2*N). */
  767. /* > */
  768. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  769. /* > only calculates the optimal size of the WORK array, returns */
  770. /* > this value as the first entry of the WORK array, and no error */
  771. /* > message related to LWORK is issued by XERBLA. */
  772. /* > \endverbatim */
  773. /* > */
  774. /* > \param[out] RWORK */
  775. /* > \verbatim */
  776. /* > RWORK is REAL array, dimension (lrwork) */
  777. /* > lrwork must be at least f2cmax(1,6*N) if BALANC = 'S' or 'B', */
  778. /* > and at least f2cmax(1,2*N) otherwise. */
  779. /* > Real workspace. */
  780. /* > \endverbatim */
  781. /* > */
  782. /* > \param[out] IWORK */
  783. /* > \verbatim */
  784. /* > IWORK is INTEGER array, dimension (N+2) */
  785. /* > If SENSE = 'E', IWORK is not referenced. */
  786. /* > \endverbatim */
  787. /* > */
  788. /* > \param[out] BWORK */
  789. /* > \verbatim */
  790. /* > BWORK is LOGICAL array, dimension (N) */
  791. /* > If SENSE = 'N', BWORK is not referenced. */
  792. /* > \endverbatim */
  793. /* > */
  794. /* > \param[out] INFO */
  795. /* > \verbatim */
  796. /* > INFO is INTEGER */
  797. /* > = 0: successful exit */
  798. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  799. /* > = 1,...,N: */
  800. /* > The QZ iteration failed. No eigenvectors have been */
  801. /* > calculated, but ALPHA(j) and BETA(j) should be correct */
  802. /* > for j=INFO+1,...,N. */
  803. /* > > N: =N+1: other than QZ iteration failed in CHGEQZ. */
  804. /* > =N+2: error return from CTGEVC. */
  805. /* > \endverbatim */
  806. /* Authors: */
  807. /* ======== */
  808. /* > \author Univ. of Tennessee */
  809. /* > \author Univ. of California Berkeley */
  810. /* > \author Univ. of Colorado Denver */
  811. /* > \author NAG Ltd. */
  812. /* > \date April 2012 */
  813. /* > \ingroup complexGEeigen */
  814. /* > \par Further Details: */
  815. /* ===================== */
  816. /* > */
  817. /* > \verbatim */
  818. /* > */
  819. /* > Balancing a matrix pair (A,B) includes, first, permuting rows and */
  820. /* > columns to isolate eigenvalues, second, applying diagonal similarity */
  821. /* > transformation to the rows and columns to make the rows and columns */
  822. /* > as close in norm as possible. The computed reciprocal condition */
  823. /* > numbers correspond to the balanced matrix. Permuting rows and columns */
  824. /* > will not change the condition numbers (in exact arithmetic) but */
  825. /* > diagonal scaling will. For further explanation of balancing, see */
  826. /* > section 4.11.1.2 of LAPACK Users' Guide. */
  827. /* > */
  828. /* > An approximate error bound on the chordal distance between the i-th */
  829. /* > computed generalized eigenvalue w and the corresponding exact */
  830. /* > eigenvalue lambda is */
  831. /* > */
  832. /* > chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */
  833. /* > */
  834. /* > An approximate error bound for the angle between the i-th computed */
  835. /* > eigenvector VL(i) or VR(i) is given by */
  836. /* > */
  837. /* > EPS * norm(ABNRM, BBNRM) / DIF(i). */
  838. /* > */
  839. /* > For further explanation of the reciprocal condition numbers RCONDE */
  840. /* > and RCONDV, see section 4.11 of LAPACK User's Guide. */
  841. /* > \endverbatim */
  842. /* > */
  843. /* ===================================================================== */
  844. /* Subroutine */ void cggevx_(char *balanc, char *jobvl, char *jobvr, char *
  845. sense, integer *n, complex *a, integer *lda, complex *b, integer *ldb,
  846. complex *alpha, complex *beta, complex *vl, integer *ldvl, complex *
  847. vr, integer *ldvr, integer *ilo, integer *ihi, real *lscale, real *
  848. rscale, real *abnrm, real *bbnrm, real *rconde, real *rcondv, complex
  849. *work, integer *lwork, real *rwork, integer *iwork, logical *bwork,
  850. integer *info)
  851. {
  852. /* System generated locals */
  853. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  854. vr_offset, i__1, i__2, i__3, i__4;
  855. real r__1, r__2, r__3, r__4;
  856. complex q__1;
  857. /* Local variables */
  858. real anrm, bnrm;
  859. integer ierr, itau;
  860. real temp;
  861. logical ilvl, ilvr;
  862. integer iwrk, iwrk1, i__, j, m;
  863. extern logical lsame_(char *, char *);
  864. integer icols;
  865. logical noscl;
  866. integer irows, jc;
  867. extern /* Subroutine */ void cggbak_(char *, char *, integer *, integer *,
  868. integer *, real *, real *, integer *, complex *, integer *,
  869. integer *), cggbal_(char *, integer *, complex *,
  870. integer *, complex *, integer *, integer *, integer *, real *,
  871. real *, real *, integer *), slabad_(real *, real *);
  872. integer in;
  873. extern real clange_(char *, integer *, integer *, complex *, integer *,
  874. real *);
  875. integer jr;
  876. extern /* Subroutine */ void cgghrd_(char *, char *, integer *, integer *,
  877. integer *, complex *, integer *, complex *, integer *, complex *,
  878. integer *, complex *, integer *, integer *),
  879. clascl_(char *, integer *, integer *, real *, real *, integer *,
  880. integer *, complex *, integer *, integer *);
  881. logical ilascl, ilbscl;
  882. extern /* Subroutine */ void cgeqrf_(integer *, integer *, complex *,
  883. integer *, complex *, complex *, integer *, integer *), clacpy_(
  884. char *, integer *, integer *, complex *, integer *, complex *,
  885. integer *), claset_(char *, integer *, integer *, complex
  886. *, complex *, complex *, integer *);
  887. logical ldumma[1];
  888. char chtemp[1];
  889. real bignum;
  890. extern /* Subroutine */ void chgeqz_(char *, char *, char *, integer *,
  891. integer *, integer *, complex *, integer *, complex *, integer *,
  892. complex *, complex *, complex *, integer *, complex *, integer *,
  893. complex *, integer *, real *, integer *),
  894. ctgevc_(char *, char *, logical *, integer *, complex *, integer *
  895. , complex *, integer *, complex *, integer *, complex *, integer *
  896. , integer *, integer *, complex *, real *, integer *);
  897. integer ijobvl;
  898. extern /* Subroutine */ void ctgsna_(char *, char *, logical *, integer *,
  899. complex *, integer *, complex *, integer *, complex *, integer *,
  900. complex *, integer *, real *, real *, integer *, integer *,
  901. complex *, integer *, integer *, integer *),
  902. slascl_(char *, integer *, integer *, real *, real *, integer *,
  903. integer *, real *, integer *, integer *);
  904. extern int xerbla_(char *, integer *, ftnlen);
  905. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  906. integer *, integer *, ftnlen, ftnlen);
  907. extern real slamch_(char *);
  908. integer ijobvr;
  909. logical wantsb;
  910. extern /* Subroutine */ void cungqr_(integer *, integer *, integer *,
  911. complex *, integer *, complex *, complex *, integer *, integer *);
  912. real anrmto;
  913. logical wantse;
  914. real bnrmto;
  915. extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *,
  916. integer *, complex *, integer *, complex *, complex *, integer *,
  917. complex *, integer *, integer *);
  918. integer minwrk, maxwrk;
  919. logical wantsn;
  920. real smlnum;
  921. logical lquery, wantsv;
  922. real eps;
  923. logical ilv;
  924. /* -- LAPACK driver routine (version 3.7.0) -- */
  925. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  926. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  927. /* April 2012 */
  928. /* ===================================================================== */
  929. /* Decode the input arguments */
  930. /* Parameter adjustments */
  931. a_dim1 = *lda;
  932. a_offset = 1 + a_dim1 * 1;
  933. a -= a_offset;
  934. b_dim1 = *ldb;
  935. b_offset = 1 + b_dim1 * 1;
  936. b -= b_offset;
  937. --alpha;
  938. --beta;
  939. vl_dim1 = *ldvl;
  940. vl_offset = 1 + vl_dim1 * 1;
  941. vl -= vl_offset;
  942. vr_dim1 = *ldvr;
  943. vr_offset = 1 + vr_dim1 * 1;
  944. vr -= vr_offset;
  945. --lscale;
  946. --rscale;
  947. --rconde;
  948. --rcondv;
  949. --work;
  950. --rwork;
  951. --iwork;
  952. --bwork;
  953. /* Function Body */
  954. if (lsame_(jobvl, "N")) {
  955. ijobvl = 1;
  956. ilvl = FALSE_;
  957. } else if (lsame_(jobvl, "V")) {
  958. ijobvl = 2;
  959. ilvl = TRUE_;
  960. } else {
  961. ijobvl = -1;
  962. ilvl = FALSE_;
  963. }
  964. if (lsame_(jobvr, "N")) {
  965. ijobvr = 1;
  966. ilvr = FALSE_;
  967. } else if (lsame_(jobvr, "V")) {
  968. ijobvr = 2;
  969. ilvr = TRUE_;
  970. } else {
  971. ijobvr = -1;
  972. ilvr = FALSE_;
  973. }
  974. ilv = ilvl || ilvr;
  975. noscl = lsame_(balanc, "N") || lsame_(balanc, "P");
  976. wantsn = lsame_(sense, "N");
  977. wantse = lsame_(sense, "E");
  978. wantsv = lsame_(sense, "V");
  979. wantsb = lsame_(sense, "B");
  980. /* Test the input arguments */
  981. *info = 0;
  982. lquery = *lwork == -1;
  983. if (! (noscl || lsame_(balanc, "S") || lsame_(
  984. balanc, "B"))) {
  985. *info = -1;
  986. } else if (ijobvl <= 0) {
  987. *info = -2;
  988. } else if (ijobvr <= 0) {
  989. *info = -3;
  990. } else if (! (wantsn || wantse || wantsb || wantsv)) {
  991. *info = -4;
  992. } else if (*n < 0) {
  993. *info = -5;
  994. } else if (*lda < f2cmax(1,*n)) {
  995. *info = -7;
  996. } else if (*ldb < f2cmax(1,*n)) {
  997. *info = -9;
  998. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  999. *info = -13;
  1000. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  1001. *info = -15;
  1002. }
  1003. /* Compute workspace */
  1004. /* (Note: Comments in the code beginning "Workspace:" describe the */
  1005. /* minimal amount of workspace needed at that point in the code, */
  1006. /* as well as the preferred amount for good performance. */
  1007. /* NB refers to the optimal block size for the immediately */
  1008. /* following subroutine, as returned by ILAENV. The workspace is */
  1009. /* computed assuming ILO = 1 and IHI = N, the worst case.) */
  1010. if (*info == 0) {
  1011. if (*n == 0) {
  1012. minwrk = 1;
  1013. maxwrk = 1;
  1014. } else {
  1015. minwrk = *n << 1;
  1016. if (wantse) {
  1017. minwrk = *n << 2;
  1018. } else if (wantsv || wantsb) {
  1019. minwrk = (*n << 1) * (*n + 1);
  1020. }
  1021. maxwrk = minwrk;
  1022. /* Computing MAX */
  1023. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", n, &
  1024. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1025. maxwrk = f2cmax(i__1,i__2);
  1026. /* Computing MAX */
  1027. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CUNMQR", " ", n, &
  1028. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1029. maxwrk = f2cmax(i__1,i__2);
  1030. if (ilvl) {
  1031. /* Computing MAX */
  1032. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CUNGQR",
  1033. " ", n, &c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1034. maxwrk = f2cmax(i__1,i__2);
  1035. }
  1036. }
  1037. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1038. if (*lwork < minwrk && ! lquery) {
  1039. *info = -25;
  1040. }
  1041. }
  1042. if (*info != 0) {
  1043. i__1 = -(*info);
  1044. xerbla_("CGGEVX", &i__1, (ftnlen)6);
  1045. return;
  1046. } else if (lquery) {
  1047. return;
  1048. }
  1049. /* Quick return if possible */
  1050. if (*n == 0) {
  1051. return;
  1052. }
  1053. /* Get machine constants */
  1054. eps = slamch_("P");
  1055. smlnum = slamch_("S");
  1056. bignum = 1.f / smlnum;
  1057. slabad_(&smlnum, &bignum);
  1058. smlnum = sqrt(smlnum) / eps;
  1059. bignum = 1.f / smlnum;
  1060. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1061. anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
  1062. ilascl = FALSE_;
  1063. if (anrm > 0.f && anrm < smlnum) {
  1064. anrmto = smlnum;
  1065. ilascl = TRUE_;
  1066. } else if (anrm > bignum) {
  1067. anrmto = bignum;
  1068. ilascl = TRUE_;
  1069. }
  1070. if (ilascl) {
  1071. clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  1072. ierr);
  1073. }
  1074. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  1075. bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
  1076. ilbscl = FALSE_;
  1077. if (bnrm > 0.f && bnrm < smlnum) {
  1078. bnrmto = smlnum;
  1079. ilbscl = TRUE_;
  1080. } else if (bnrm > bignum) {
  1081. bnrmto = bignum;
  1082. ilbscl = TRUE_;
  1083. }
  1084. if (ilbscl) {
  1085. clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  1086. ierr);
  1087. }
  1088. /* Permute and/or balance the matrix pair (A,B) */
  1089. /* (Real Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */
  1090. cggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
  1091. lscale[1], &rscale[1], &rwork[1], &ierr);
  1092. /* Compute ABNRM and BBNRM */
  1093. *abnrm = clange_("1", n, n, &a[a_offset], lda, &rwork[1]);
  1094. if (ilascl) {
  1095. rwork[1] = *abnrm;
  1096. slascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &rwork[1], &
  1097. c__1, &ierr);
  1098. *abnrm = rwork[1];
  1099. }
  1100. *bbnrm = clange_("1", n, n, &b[b_offset], ldb, &rwork[1]);
  1101. if (ilbscl) {
  1102. rwork[1] = *bbnrm;
  1103. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &rwork[1], &
  1104. c__1, &ierr);
  1105. *bbnrm = rwork[1];
  1106. }
  1107. /* Reduce B to triangular form (QR decomposition of B) */
  1108. /* (Complex Workspace: need N, prefer N*NB ) */
  1109. irows = *ihi + 1 - *ilo;
  1110. if (ilv || ! wantsn) {
  1111. icols = *n + 1 - *ilo;
  1112. } else {
  1113. icols = irows;
  1114. }
  1115. itau = 1;
  1116. iwrk = itau + irows;
  1117. i__1 = *lwork + 1 - iwrk;
  1118. cgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
  1119. iwrk], &i__1, &ierr);
  1120. /* Apply the unitary transformation to A */
  1121. /* (Complex Workspace: need N, prefer N*NB) */
  1122. i__1 = *lwork + 1 - iwrk;
  1123. cunmqr_("L", "C", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
  1124. work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
  1125. ierr);
  1126. /* Initialize VL and/or VR */
  1127. /* (Workspace: need N, prefer N*NB) */
  1128. if (ilvl) {
  1129. claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl);
  1130. if (irows > 1) {
  1131. i__1 = irows - 1;
  1132. i__2 = irows - 1;
  1133. clacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
  1134. *ilo + 1 + *ilo * vl_dim1], ldvl);
  1135. }
  1136. i__1 = *lwork + 1 - iwrk;
  1137. cungqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
  1138. work[itau], &work[iwrk], &i__1, &ierr);
  1139. }
  1140. if (ilvr) {
  1141. claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr);
  1142. }
  1143. /* Reduce to generalized Hessenberg form */
  1144. /* (Workspace: none needed) */
  1145. if (ilv || ! wantsn) {
  1146. /* Eigenvectors requested -- work on whole matrix. */
  1147. cgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset],
  1148. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
  1149. } else {
  1150. cgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1],
  1151. lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  1152. vr_offset], ldvr, &ierr);
  1153. }
  1154. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  1155. /* Schur forms and Schur vectors) */
  1156. /* (Complex Workspace: need N) */
  1157. /* (Real Workspace: need N) */
  1158. iwrk = itau;
  1159. if (ilv || ! wantsn) {
  1160. *(unsigned char *)chtemp = 'S';
  1161. } else {
  1162. *(unsigned char *)chtemp = 'E';
  1163. }
  1164. i__1 = *lwork + 1 - iwrk;
  1165. chgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
  1166. , ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[vr_offset],
  1167. ldvr, &work[iwrk], &i__1, &rwork[1], &ierr);
  1168. if (ierr != 0) {
  1169. if (ierr > 0 && ierr <= *n) {
  1170. *info = ierr;
  1171. } else if (ierr > *n && ierr <= *n << 1) {
  1172. *info = ierr - *n;
  1173. } else {
  1174. *info = *n + 1;
  1175. }
  1176. goto L90;
  1177. }
  1178. /* Compute Eigenvectors and estimate condition numbers if desired */
  1179. /* CTGEVC: (Complex Workspace: need 2*N ) */
  1180. /* (Real Workspace: need 2*N ) */
  1181. /* CTGSNA: (Complex Workspace: need 2*N*N if SENSE='V' or 'B') */
  1182. /* (Integer Workspace: need N+2 ) */
  1183. if (ilv || ! wantsn) {
  1184. if (ilv) {
  1185. if (ilvl) {
  1186. if (ilvr) {
  1187. *(unsigned char *)chtemp = 'B';
  1188. } else {
  1189. *(unsigned char *)chtemp = 'L';
  1190. }
  1191. } else {
  1192. *(unsigned char *)chtemp = 'R';
  1193. }
  1194. ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset],
  1195. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
  1196. work[iwrk], &rwork[1], &ierr);
  1197. if (ierr != 0) {
  1198. *info = *n + 2;
  1199. goto L90;
  1200. }
  1201. }
  1202. if (! wantsn) {
  1203. /* compute eigenvectors (STGEVC) and estimate condition */
  1204. /* numbers (STGSNA). Note that the definition of the condition */
  1205. /* number is not invariant under transformation (u,v) to */
  1206. /* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
  1207. /* Schur form (S,T), Q and Z are orthogonal matrices. In order */
  1208. /* to avoid using extra 2*N*N workspace, we have to */
  1209. /* re-calculate eigenvectors and estimate the condition numbers */
  1210. /* one at a time. */
  1211. i__1 = *n;
  1212. for (i__ = 1; i__ <= i__1; ++i__) {
  1213. i__2 = *n;
  1214. for (j = 1; j <= i__2; ++j) {
  1215. bwork[j] = FALSE_;
  1216. /* L10: */
  1217. }
  1218. bwork[i__] = TRUE_;
  1219. iwrk = *n + 1;
  1220. iwrk1 = iwrk + *n;
  1221. if (wantse || wantsb) {
  1222. ctgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
  1223. b_offset], ldb, &work[1], n, &work[iwrk], n, &
  1224. c__1, &m, &work[iwrk1], &rwork[1], &ierr);
  1225. if (ierr != 0) {
  1226. *info = *n + 2;
  1227. goto L90;
  1228. }
  1229. }
  1230. i__2 = *lwork - iwrk1 + 1;
  1231. ctgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
  1232. b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
  1233. i__], &rcondv[i__], &c__1, &m, &work[iwrk1], &i__2, &
  1234. iwork[1], &ierr);
  1235. /* L20: */
  1236. }
  1237. }
  1238. }
  1239. /* Undo balancing on VL and VR and normalization */
  1240. /* (Workspace: none needed) */
  1241. if (ilvl) {
  1242. cggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
  1243. vl_offset], ldvl, &ierr);
  1244. i__1 = *n;
  1245. for (jc = 1; jc <= i__1; ++jc) {
  1246. temp = 0.f;
  1247. i__2 = *n;
  1248. for (jr = 1; jr <= i__2; ++jr) {
  1249. /* Computing MAX */
  1250. i__3 = jr + jc * vl_dim1;
  1251. r__3 = temp, r__4 = (r__1 = vl[i__3].r, abs(r__1)) + (r__2 =
  1252. r_imag(&vl[jr + jc * vl_dim1]), abs(r__2));
  1253. temp = f2cmax(r__3,r__4);
  1254. /* L30: */
  1255. }
  1256. if (temp < smlnum) {
  1257. goto L50;
  1258. }
  1259. temp = 1.f / temp;
  1260. i__2 = *n;
  1261. for (jr = 1; jr <= i__2; ++jr) {
  1262. i__3 = jr + jc * vl_dim1;
  1263. i__4 = jr + jc * vl_dim1;
  1264. q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i;
  1265. vl[i__3].r = q__1.r, vl[i__3].i = q__1.i;
  1266. /* L40: */
  1267. }
  1268. L50:
  1269. ;
  1270. }
  1271. }
  1272. if (ilvr) {
  1273. cggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
  1274. vr_offset], ldvr, &ierr);
  1275. i__1 = *n;
  1276. for (jc = 1; jc <= i__1; ++jc) {
  1277. temp = 0.f;
  1278. i__2 = *n;
  1279. for (jr = 1; jr <= i__2; ++jr) {
  1280. /* Computing MAX */
  1281. i__3 = jr + jc * vr_dim1;
  1282. r__3 = temp, r__4 = (r__1 = vr[i__3].r, abs(r__1)) + (r__2 =
  1283. r_imag(&vr[jr + jc * vr_dim1]), abs(r__2));
  1284. temp = f2cmax(r__3,r__4);
  1285. /* L60: */
  1286. }
  1287. if (temp < smlnum) {
  1288. goto L80;
  1289. }
  1290. temp = 1.f / temp;
  1291. i__2 = *n;
  1292. for (jr = 1; jr <= i__2; ++jr) {
  1293. i__3 = jr + jc * vr_dim1;
  1294. i__4 = jr + jc * vr_dim1;
  1295. q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i;
  1296. vr[i__3].r = q__1.r, vr[i__3].i = q__1.i;
  1297. /* L70: */
  1298. }
  1299. L80:
  1300. ;
  1301. }
  1302. }
  1303. /* Undo scaling if necessary */
  1304. L90:
  1305. if (ilascl) {
  1306. clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
  1307. ierr);
  1308. }
  1309. if (ilbscl) {
  1310. clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1311. ierr);
  1312. }
  1313. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1314. return;
  1315. /* End of CGGEVX */
  1316. } /* cggevx_ */