You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgesvx.c 38 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief <b> CGESVX computes the solution to system of linear equations A * X = B for GE matrices</b> */
  484. /* =========== DOCUMENTATION =========== */
  485. /* Online html documentation available at */
  486. /* http://www.netlib.org/lapack/explore-html/ */
  487. /* > \htmlonly */
  488. /* > Download CGESVX + dependencies */
  489. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvx.
  490. f"> */
  491. /* > [TGZ]</a> */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvx.
  493. f"> */
  494. /* > [ZIP]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvx.
  496. f"> */
  497. /* > [TXT]</a> */
  498. /* > \endhtmlonly */
  499. /* Definition: */
  500. /* =========== */
  501. /* SUBROUTINE CGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, */
  502. /* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, */
  503. /* WORK, RWORK, INFO ) */
  504. /* CHARACTER EQUED, FACT, TRANS */
  505. /* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS */
  506. /* REAL RCOND */
  507. /* INTEGER IPIV( * ) */
  508. /* REAL BERR( * ), C( * ), FERR( * ), R( * ), */
  509. /* $ RWORK( * ) */
  510. /* COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
  511. /* $ WORK( * ), X( LDX, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CGESVX uses the LU factorization to compute the solution to a complex */
  518. /* > system of linear equations */
  519. /* > A * X = B, */
  520. /* > where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */
  521. /* > */
  522. /* > Error bounds on the solution and a condition estimate are also */
  523. /* > provided. */
  524. /* > \endverbatim */
  525. /* > \par Description: */
  526. /* ================= */
  527. /* > */
  528. /* > \verbatim */
  529. /* > */
  530. /* > The following steps are performed: */
  531. /* > */
  532. /* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
  533. /* > the system: */
  534. /* > TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */
  535. /* > TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
  536. /* > TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
  537. /* > Whether or not the system will be equilibrated depends on the */
  538. /* > scaling of the matrix A, but if equilibration is used, A is */
  539. /* > overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
  540. /* > or diag(C)*B (if TRANS = 'T' or 'C'). */
  541. /* > */
  542. /* > 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the */
  543. /* > matrix A (after equilibration if FACT = 'E') as */
  544. /* > A = P * L * U, */
  545. /* > where P is a permutation matrix, L is a unit lower triangular */
  546. /* > matrix, and U is upper triangular. */
  547. /* > */
  548. /* > 3. If some U(i,i)=0, so that U is exactly singular, then the routine */
  549. /* > returns with INFO = i. Otherwise, the factored form of A is used */
  550. /* > to estimate the condition number of the matrix A. If the */
  551. /* > reciprocal of the condition number is less than machine precision, */
  552. /* > INFO = N+1 is returned as a warning, but the routine still goes on */
  553. /* > to solve for X and compute error bounds as described below. */
  554. /* > */
  555. /* > 4. The system of equations is solved for X using the factored form */
  556. /* > of A. */
  557. /* > */
  558. /* > 5. Iterative refinement is applied to improve the computed solution */
  559. /* > matrix and calculate error bounds and backward error estimates */
  560. /* > for it. */
  561. /* > */
  562. /* > 6. If equilibration was used, the matrix X is premultiplied by */
  563. /* > diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
  564. /* > that it solves the original system before equilibration. */
  565. /* > \endverbatim */
  566. /* Arguments: */
  567. /* ========== */
  568. /* > \param[in] FACT */
  569. /* > \verbatim */
  570. /* > FACT is CHARACTER*1 */
  571. /* > Specifies whether or not the factored form of the matrix A is */
  572. /* > supplied on entry, and if not, whether the matrix A should be */
  573. /* > equilibrated before it is factored. */
  574. /* > = 'F': On entry, AF and IPIV contain the factored form of A. */
  575. /* > If EQUED is not 'N', the matrix A has been */
  576. /* > equilibrated with scaling factors given by R and C. */
  577. /* > A, AF, and IPIV are not modified. */
  578. /* > = 'N': The matrix A will be copied to AF and factored. */
  579. /* > = 'E': The matrix A will be equilibrated if necessary, then */
  580. /* > copied to AF and factored. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] TRANS */
  584. /* > \verbatim */
  585. /* > TRANS is CHARACTER*1 */
  586. /* > Specifies the form of the system of equations: */
  587. /* > = 'N': A * X = B (No transpose) */
  588. /* > = 'T': A**T * X = B (Transpose) */
  589. /* > = 'C': A**H * X = B (Conjugate transpose) */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] N */
  593. /* > \verbatim */
  594. /* > N is INTEGER */
  595. /* > The number of linear equations, i.e., the order of the */
  596. /* > matrix A. N >= 0. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] NRHS */
  600. /* > \verbatim */
  601. /* > NRHS is INTEGER */
  602. /* > The number of right hand sides, i.e., the number of columns */
  603. /* > of the matrices B and X. NRHS >= 0. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in,out] A */
  607. /* > \verbatim */
  608. /* > A is COMPLEX array, dimension (LDA,N) */
  609. /* > On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is */
  610. /* > not 'N', then A must have been equilibrated by the scaling */
  611. /* > factors in R and/or C. A is not modified if FACT = 'F' or */
  612. /* > 'N', or if FACT = 'E' and EQUED = 'N' on exit. */
  613. /* > */
  614. /* > On exit, if EQUED .ne. 'N', A is scaled as follows: */
  615. /* > EQUED = 'R': A := diag(R) * A */
  616. /* > EQUED = 'C': A := A * diag(C) */
  617. /* > EQUED = 'B': A := diag(R) * A * diag(C). */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] LDA */
  621. /* > \verbatim */
  622. /* > LDA is INTEGER */
  623. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in,out] AF */
  627. /* > \verbatim */
  628. /* > AF is COMPLEX array, dimension (LDAF,N) */
  629. /* > If FACT = 'F', then AF is an input argument and on entry */
  630. /* > contains the factors L and U from the factorization */
  631. /* > A = P*L*U as computed by CGETRF. If EQUED .ne. 'N', then */
  632. /* > AF is the factored form of the equilibrated matrix A. */
  633. /* > */
  634. /* > If FACT = 'N', then AF is an output argument and on exit */
  635. /* > returns the factors L and U from the factorization A = P*L*U */
  636. /* > of the original matrix A. */
  637. /* > */
  638. /* > If FACT = 'E', then AF is an output argument and on exit */
  639. /* > returns the factors L and U from the factorization A = P*L*U */
  640. /* > of the equilibrated matrix A (see the description of A for */
  641. /* > the form of the equilibrated matrix). */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[in] LDAF */
  645. /* > \verbatim */
  646. /* > LDAF is INTEGER */
  647. /* > The leading dimension of the array AF. LDAF >= f2cmax(1,N). */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[in,out] IPIV */
  651. /* > \verbatim */
  652. /* > IPIV is INTEGER array, dimension (N) */
  653. /* > If FACT = 'F', then IPIV is an input argument and on entry */
  654. /* > contains the pivot indices from the factorization A = P*L*U */
  655. /* > as computed by CGETRF; row i of the matrix was interchanged */
  656. /* > with row IPIV(i). */
  657. /* > */
  658. /* > If FACT = 'N', then IPIV is an output argument and on exit */
  659. /* > contains the pivot indices from the factorization A = P*L*U */
  660. /* > of the original matrix A. */
  661. /* > */
  662. /* > If FACT = 'E', then IPIV is an output argument and on exit */
  663. /* > contains the pivot indices from the factorization A = P*L*U */
  664. /* > of the equilibrated matrix A. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[in,out] EQUED */
  668. /* > \verbatim */
  669. /* > EQUED is CHARACTER*1 */
  670. /* > Specifies the form of equilibration that was done. */
  671. /* > = 'N': No equilibration (always true if FACT = 'N'). */
  672. /* > = 'R': Row equilibration, i.e., A has been premultiplied by */
  673. /* > diag(R). */
  674. /* > = 'C': Column equilibration, i.e., A has been postmultiplied */
  675. /* > by diag(C). */
  676. /* > = 'B': Both row and column equilibration, i.e., A has been */
  677. /* > replaced by diag(R) * A * diag(C). */
  678. /* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
  679. /* > output argument. */
  680. /* > \endverbatim */
  681. /* > */
  682. /* > \param[in,out] R */
  683. /* > \verbatim */
  684. /* > R is REAL array, dimension (N) */
  685. /* > The row scale factors for A. If EQUED = 'R' or 'B', A is */
  686. /* > multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
  687. /* > is not accessed. R is an input argument if FACT = 'F'; */
  688. /* > otherwise, R is an output argument. If FACT = 'F' and */
  689. /* > EQUED = 'R' or 'B', each element of R must be positive. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in,out] C */
  693. /* > \verbatim */
  694. /* > C is REAL array, dimension (N) */
  695. /* > The column scale factors for A. If EQUED = 'C' or 'B', A is */
  696. /* > multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
  697. /* > is not accessed. C is an input argument if FACT = 'F'; */
  698. /* > otherwise, C is an output argument. If FACT = 'F' and */
  699. /* > EQUED = 'C' or 'B', each element of C must be positive. */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[in,out] B */
  703. /* > \verbatim */
  704. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  705. /* > On entry, the N-by-NRHS right hand side matrix B. */
  706. /* > On exit, */
  707. /* > if EQUED = 'N', B is not modified; */
  708. /* > if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
  709. /* > diag(R)*B; */
  710. /* > if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
  711. /* > overwritten by diag(C)*B. */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[in] LDB */
  715. /* > \verbatim */
  716. /* > LDB is INTEGER */
  717. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  718. /* > \endverbatim */
  719. /* > */
  720. /* > \param[out] X */
  721. /* > \verbatim */
  722. /* > X is COMPLEX array, dimension (LDX,NRHS) */
  723. /* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X */
  724. /* > to the original system of equations. Note that A and B are */
  725. /* > modified on exit if EQUED .ne. 'N', and the solution to the */
  726. /* > equilibrated system is inv(diag(C))*X if TRANS = 'N' and */
  727. /* > EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' */
  728. /* > and EQUED = 'R' or 'B'. */
  729. /* > \endverbatim */
  730. /* > */
  731. /* > \param[in] LDX */
  732. /* > \verbatim */
  733. /* > LDX is INTEGER */
  734. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  735. /* > \endverbatim */
  736. /* > */
  737. /* > \param[out] RCOND */
  738. /* > \verbatim */
  739. /* > RCOND is REAL */
  740. /* > The estimate of the reciprocal condition number of the matrix */
  741. /* > A after equilibration (if done). If RCOND is less than the */
  742. /* > machine precision (in particular, if RCOND = 0), the matrix */
  743. /* > is singular to working precision. This condition is */
  744. /* > indicated by a return code of INFO > 0. */
  745. /* > \endverbatim */
  746. /* > */
  747. /* > \param[out] FERR */
  748. /* > \verbatim */
  749. /* > FERR is REAL array, dimension (NRHS) */
  750. /* > The estimated forward error bound for each solution vector */
  751. /* > X(j) (the j-th column of the solution matrix X). */
  752. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  753. /* > is an estimated upper bound for the magnitude of the largest */
  754. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  755. /* > largest element in X(j). The estimate is as reliable as */
  756. /* > the estimate for RCOND, and is almost always a slight */
  757. /* > overestimate of the true error. */
  758. /* > \endverbatim */
  759. /* > */
  760. /* > \param[out] BERR */
  761. /* > \verbatim */
  762. /* > BERR is REAL array, dimension (NRHS) */
  763. /* > The componentwise relative backward error of each solution */
  764. /* > vector X(j) (i.e., the smallest relative change in */
  765. /* > any element of A or B that makes X(j) an exact solution). */
  766. /* > \endverbatim */
  767. /* > */
  768. /* > \param[out] WORK */
  769. /* > \verbatim */
  770. /* > WORK is COMPLEX array, dimension (2*N) */
  771. /* > \endverbatim */
  772. /* > */
  773. /* > \param[out] RWORK */
  774. /* > \verbatim */
  775. /* > RWORK is REAL array, dimension (2*N) */
  776. /* > On exit, RWORK(1) contains the reciprocal pivot growth */
  777. /* > factor norm(A)/norm(U). The "f2cmax absolute element" norm is */
  778. /* > used. If RWORK(1) is much less than 1, then the stability */
  779. /* > of the LU factorization of the (equilibrated) matrix A */
  780. /* > could be poor. This also means that the solution X, condition */
  781. /* > estimator RCOND, and forward error bound FERR could be */
  782. /* > unreliable. If factorization fails with 0<INFO<=N, then */
  783. /* > RWORK(1) contains the reciprocal pivot growth factor for the */
  784. /* > leading INFO columns of A. */
  785. /* > \endverbatim */
  786. /* > */
  787. /* > \param[out] INFO */
  788. /* > \verbatim */
  789. /* > INFO is INTEGER */
  790. /* > = 0: successful exit */
  791. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  792. /* > > 0: if INFO = i, and i is */
  793. /* > <= N: U(i,i) is exactly zero. The factorization has */
  794. /* > been completed, but the factor U is exactly */
  795. /* > singular, so the solution and error bounds */
  796. /* > could not be computed. RCOND = 0 is returned. */
  797. /* > = N+1: U is nonsingular, but RCOND is less than machine */
  798. /* > precision, meaning that the matrix is singular */
  799. /* > to working precision. Nevertheless, the */
  800. /* > solution and error bounds are computed because */
  801. /* > there are a number of situations where the */
  802. /* > computed solution can be more accurate than the */
  803. /* > value of RCOND would suggest. */
  804. /* > \endverbatim */
  805. /* Authors: */
  806. /* ======== */
  807. /* > \author Univ. of Tennessee */
  808. /* > \author Univ. of California Berkeley */
  809. /* > \author Univ. of Colorado Denver */
  810. /* > \author NAG Ltd. */
  811. /* > \date April 2012 */
  812. /* > \ingroup complexGEsolve */
  813. /* ===================================================================== */
  814. /* Subroutine */ void cgesvx_(char *fact, char *trans, integer *n, integer *
  815. nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer *
  816. ipiv, char *equed, real *r__, real *c__, complex *b, integer *ldb,
  817. complex *x, integer *ldx, real *rcond, real *ferr, real *berr,
  818. complex *work, real *rwork, integer *info)
  819. {
  820. /* System generated locals */
  821. integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
  822. x_offset, i__1, i__2, i__3, i__4, i__5;
  823. real r__1, r__2;
  824. complex q__1;
  825. /* Local variables */
  826. real amax;
  827. char norm[1];
  828. integer i__, j;
  829. extern logical lsame_(char *, char *);
  830. real rcmin, rcmax, anorm;
  831. logical equil;
  832. extern real clange_(char *, integer *, integer *, complex *, integer *,
  833. real *);
  834. extern /* Subroutine */ void claqge_(integer *, integer *, complex *,
  835. integer *, real *, real *, real *, real *, real *, char *)
  836. , cgecon_(char *, integer *, complex *, integer *, real *, real *,
  837. complex *, real *, integer *);
  838. real colcnd;
  839. extern real slamch_(char *);
  840. extern /* Subroutine */ void cgeequ_(integer *, integer *, complex *,
  841. integer *, real *, real *, real *, real *, real *, integer *);
  842. logical nofact;
  843. extern /* Subroutine */ void cgerfs_(char *, integer *, integer *, complex
  844. *, integer *, complex *, integer *, integer *, complex *, integer
  845. *, complex *, integer *, real *, real *, complex *, real *,
  846. integer *);
  847. extern int cgetrf_(integer *, integer *, complex *,
  848. integer *, integer *, integer *);
  849. extern void clacpy_(char *, integer *,
  850. integer *, complex *, integer *, complex *, integer *);
  851. extern int xerbla_(char *, integer *, ftnlen);
  852. real bignum;
  853. extern real clantr_(char *, char *, char *, integer *, integer *, complex
  854. *, integer *, real *);
  855. integer infequ;
  856. logical colequ;
  857. extern /* Subroutine */ int cgetrs_(char *, integer *, integer *, complex
  858. *, integer *, integer *, complex *, integer *, integer *);
  859. real rowcnd;
  860. logical notran;
  861. real smlnum;
  862. logical rowequ;
  863. real rpvgrw;
  864. /* -- LAPACK driver routine (version 3.7.0) -- */
  865. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  866. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  867. /* April 2012 */
  868. /* ===================================================================== */
  869. /* Parameter adjustments */
  870. a_dim1 = *lda;
  871. a_offset = 1 + a_dim1 * 1;
  872. a -= a_offset;
  873. af_dim1 = *ldaf;
  874. af_offset = 1 + af_dim1 * 1;
  875. af -= af_offset;
  876. --ipiv;
  877. --r__;
  878. --c__;
  879. b_dim1 = *ldb;
  880. b_offset = 1 + b_dim1 * 1;
  881. b -= b_offset;
  882. x_dim1 = *ldx;
  883. x_offset = 1 + x_dim1 * 1;
  884. x -= x_offset;
  885. --ferr;
  886. --berr;
  887. --work;
  888. --rwork;
  889. /* Function Body */
  890. *info = 0;
  891. nofact = lsame_(fact, "N");
  892. equil = lsame_(fact, "E");
  893. notran = lsame_(trans, "N");
  894. if (nofact || equil) {
  895. *(unsigned char *)equed = 'N';
  896. rowequ = FALSE_;
  897. colequ = FALSE_;
  898. } else {
  899. rowequ = lsame_(equed, "R") || lsame_(equed,
  900. "B");
  901. colequ = lsame_(equed, "C") || lsame_(equed,
  902. "B");
  903. smlnum = slamch_("Safe minimum");
  904. bignum = 1.f / smlnum;
  905. }
  906. /* Test the input parameters. */
  907. if (! nofact && ! equil && ! lsame_(fact, "F")) {
  908. *info = -1;
  909. } else if (! notran && ! lsame_(trans, "T") && !
  910. lsame_(trans, "C")) {
  911. *info = -2;
  912. } else if (*n < 0) {
  913. *info = -3;
  914. } else if (*nrhs < 0) {
  915. *info = -4;
  916. } else if (*lda < f2cmax(1,*n)) {
  917. *info = -6;
  918. } else if (*ldaf < f2cmax(1,*n)) {
  919. *info = -8;
  920. } else if (lsame_(fact, "F") && ! (rowequ || colequ
  921. || lsame_(equed, "N"))) {
  922. *info = -10;
  923. } else {
  924. if (rowequ) {
  925. rcmin = bignum;
  926. rcmax = 0.f;
  927. i__1 = *n;
  928. for (j = 1; j <= i__1; ++j) {
  929. /* Computing MIN */
  930. r__1 = rcmin, r__2 = r__[j];
  931. rcmin = f2cmin(r__1,r__2);
  932. /* Computing MAX */
  933. r__1 = rcmax, r__2 = r__[j];
  934. rcmax = f2cmax(r__1,r__2);
  935. /* L10: */
  936. }
  937. if (rcmin <= 0.f) {
  938. *info = -11;
  939. } else if (*n > 0) {
  940. rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  941. } else {
  942. rowcnd = 1.f;
  943. }
  944. }
  945. if (colequ && *info == 0) {
  946. rcmin = bignum;
  947. rcmax = 0.f;
  948. i__1 = *n;
  949. for (j = 1; j <= i__1; ++j) {
  950. /* Computing MIN */
  951. r__1 = rcmin, r__2 = c__[j];
  952. rcmin = f2cmin(r__1,r__2);
  953. /* Computing MAX */
  954. r__1 = rcmax, r__2 = c__[j];
  955. rcmax = f2cmax(r__1,r__2);
  956. /* L20: */
  957. }
  958. if (rcmin <= 0.f) {
  959. *info = -12;
  960. } else if (*n > 0) {
  961. colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  962. } else {
  963. colcnd = 1.f;
  964. }
  965. }
  966. if (*info == 0) {
  967. if (*ldb < f2cmax(1,*n)) {
  968. *info = -14;
  969. } else if (*ldx < f2cmax(1,*n)) {
  970. *info = -16;
  971. }
  972. }
  973. }
  974. if (*info != 0) {
  975. i__1 = -(*info);
  976. xerbla_("CGESVX", &i__1, (ftnlen)6);
  977. return;
  978. }
  979. if (equil) {
  980. /* Compute row and column scalings to equilibrate the matrix A. */
  981. cgeequ_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &colcnd, &
  982. amax, &infequ);
  983. if (infequ == 0) {
  984. /* Equilibrate the matrix. */
  985. claqge_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &
  986. colcnd, &amax, equed);
  987. rowequ = lsame_(equed, "R") || lsame_(equed,
  988. "B");
  989. colequ = lsame_(equed, "C") || lsame_(equed,
  990. "B");
  991. }
  992. }
  993. /* Scale the right hand side. */
  994. if (notran) {
  995. if (rowequ) {
  996. i__1 = *nrhs;
  997. for (j = 1; j <= i__1; ++j) {
  998. i__2 = *n;
  999. for (i__ = 1; i__ <= i__2; ++i__) {
  1000. i__3 = i__ + j * b_dim1;
  1001. i__4 = i__;
  1002. i__5 = i__ + j * b_dim1;
  1003. q__1.r = r__[i__4] * b[i__5].r, q__1.i = r__[i__4] * b[
  1004. i__5].i;
  1005. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1006. /* L30: */
  1007. }
  1008. /* L40: */
  1009. }
  1010. }
  1011. } else if (colequ) {
  1012. i__1 = *nrhs;
  1013. for (j = 1; j <= i__1; ++j) {
  1014. i__2 = *n;
  1015. for (i__ = 1; i__ <= i__2; ++i__) {
  1016. i__3 = i__ + j * b_dim1;
  1017. i__4 = i__;
  1018. i__5 = i__ + j * b_dim1;
  1019. q__1.r = c__[i__4] * b[i__5].r, q__1.i = c__[i__4] * b[i__5]
  1020. .i;
  1021. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1022. /* L50: */
  1023. }
  1024. /* L60: */
  1025. }
  1026. }
  1027. if (nofact || equil) {
  1028. /* Compute the LU factorization of A. */
  1029. clacpy_("Full", n, n, &a[a_offset], lda, &af[af_offset], ldaf);
  1030. cgetrf_(n, n, &af[af_offset], ldaf, &ipiv[1], info);
  1031. /* Return if INFO is non-zero. */
  1032. if (*info > 0) {
  1033. /* Compute the reciprocal pivot growth factor of the */
  1034. /* leading rank-deficient INFO columns of A. */
  1035. rpvgrw = clantr_("M", "U", "N", info, info, &af[af_offset], ldaf,
  1036. &rwork[1]);
  1037. if (rpvgrw == 0.f) {
  1038. rpvgrw = 1.f;
  1039. } else {
  1040. rpvgrw = clange_("M", n, info, &a[a_offset], lda, &rwork[1]) / rpvgrw;
  1041. }
  1042. rwork[1] = rpvgrw;
  1043. *rcond = 0.f;
  1044. return;
  1045. }
  1046. }
  1047. /* Compute the norm of the matrix A and the */
  1048. /* reciprocal pivot growth factor RPVGRW. */
  1049. if (notran) {
  1050. *(unsigned char *)norm = '1';
  1051. } else {
  1052. *(unsigned char *)norm = 'I';
  1053. }
  1054. anorm = clange_(norm, n, n, &a[a_offset], lda, &rwork[1]);
  1055. rpvgrw = clantr_("M", "U", "N", n, n, &af[af_offset], ldaf, &rwork[1]);
  1056. if (rpvgrw == 0.f) {
  1057. rpvgrw = 1.f;
  1058. } else {
  1059. rpvgrw = clange_("M", n, n, &a[a_offset], lda, &rwork[1]) /
  1060. rpvgrw;
  1061. }
  1062. /* Compute the reciprocal of the condition number of A. */
  1063. cgecon_(norm, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &rwork[1],
  1064. info);
  1065. /* Compute the solution matrix X. */
  1066. clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  1067. cgetrs_(trans, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx,
  1068. info);
  1069. /* Use iterative refinement to improve the computed solution and */
  1070. /* compute error bounds and backward error estimates for it. */
  1071. cgerfs_(trans, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1],
  1072. &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[
  1073. 1], &rwork[1], info);
  1074. /* Transform the solution matrix X to a solution of the original */
  1075. /* system. */
  1076. if (notran) {
  1077. if (colequ) {
  1078. i__1 = *nrhs;
  1079. for (j = 1; j <= i__1; ++j) {
  1080. i__2 = *n;
  1081. for (i__ = 1; i__ <= i__2; ++i__) {
  1082. i__3 = i__ + j * x_dim1;
  1083. i__4 = i__;
  1084. i__5 = i__ + j * x_dim1;
  1085. q__1.r = c__[i__4] * x[i__5].r, q__1.i = c__[i__4] * x[
  1086. i__5].i;
  1087. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1088. /* L70: */
  1089. }
  1090. /* L80: */
  1091. }
  1092. i__1 = *nrhs;
  1093. for (j = 1; j <= i__1; ++j) {
  1094. ferr[j] /= colcnd;
  1095. /* L90: */
  1096. }
  1097. }
  1098. } else if (rowequ) {
  1099. i__1 = *nrhs;
  1100. for (j = 1; j <= i__1; ++j) {
  1101. i__2 = *n;
  1102. for (i__ = 1; i__ <= i__2; ++i__) {
  1103. i__3 = i__ + j * x_dim1;
  1104. i__4 = i__;
  1105. i__5 = i__ + j * x_dim1;
  1106. q__1.r = r__[i__4] * x[i__5].r, q__1.i = r__[i__4] * x[i__5]
  1107. .i;
  1108. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1109. /* L100: */
  1110. }
  1111. /* L110: */
  1112. }
  1113. i__1 = *nrhs;
  1114. for (j = 1; j <= i__1; ++j) {
  1115. ferr[j] /= rowcnd;
  1116. /* L120: */
  1117. }
  1118. }
  1119. /* Set INFO = N+1 if the matrix is singular to working precision. */
  1120. if (*rcond < slamch_("Epsilon")) {
  1121. *info = *n + 1;
  1122. }
  1123. rwork[1] = rpvgrw;
  1124. return;
  1125. /* End of CGESVX */
  1126. } /* cgesvx_ */