You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhbtrd.c 37 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {0.,0.};
  485. static doublecomplex c_b2 = {1.,0.};
  486. static integer c__1 = 1;
  487. /* > \brief \b ZHBTRD */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZHBTRD + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbtrd.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbtrd.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbtrd.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZHBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, */
  506. /* WORK, INFO ) */
  507. /* CHARACTER UPLO, VECT */
  508. /* INTEGER INFO, KD, LDAB, LDQ, N */
  509. /* DOUBLE PRECISION D( * ), E( * ) */
  510. /* COMPLEX*16 AB( LDAB, * ), Q( LDQ, * ), WORK( * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > ZHBTRD reduces a complex Hermitian band matrix A to real symmetric */
  517. /* > tridiagonal form T by a unitary similarity transformation: */
  518. /* > Q**H * A * Q = T. */
  519. /* > \endverbatim */
  520. /* Arguments: */
  521. /* ========== */
  522. /* > \param[in] VECT */
  523. /* > \verbatim */
  524. /* > VECT is CHARACTER*1 */
  525. /* > = 'N': do not form Q; */
  526. /* > = 'V': form Q; */
  527. /* > = 'U': update a matrix X, by forming X*Q. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] UPLO */
  531. /* > \verbatim */
  532. /* > UPLO is CHARACTER*1 */
  533. /* > = 'U': Upper triangle of A is stored; */
  534. /* > = 'L': Lower triangle of A is stored. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] N */
  538. /* > \verbatim */
  539. /* > N is INTEGER */
  540. /* > The order of the matrix A. N >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] KD */
  544. /* > \verbatim */
  545. /* > KD is INTEGER */
  546. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  547. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in,out] AB */
  551. /* > \verbatim */
  552. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  553. /* > On entry, the upper or lower triangle of the Hermitian band */
  554. /* > matrix A, stored in the first KD+1 rows of the array. The */
  555. /* > j-th column of A is stored in the j-th column of the array AB */
  556. /* > as follows: */
  557. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  558. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  559. /* > On exit, the diagonal elements of AB are overwritten by the */
  560. /* > diagonal elements of the tridiagonal matrix T; if KD > 0, the */
  561. /* > elements on the first superdiagonal (if UPLO = 'U') or the */
  562. /* > first subdiagonal (if UPLO = 'L') are overwritten by the */
  563. /* > off-diagonal elements of T; the rest of AB is overwritten by */
  564. /* > values generated during the reduction. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] LDAB */
  568. /* > \verbatim */
  569. /* > LDAB is INTEGER */
  570. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[out] D */
  574. /* > \verbatim */
  575. /* > D is DOUBLE PRECISION array, dimension (N) */
  576. /* > The diagonal elements of the tridiagonal matrix T. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[out] E */
  580. /* > \verbatim */
  581. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  582. /* > The off-diagonal elements of the tridiagonal matrix T: */
  583. /* > E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] Q */
  587. /* > \verbatim */
  588. /* > Q is COMPLEX*16 array, dimension (LDQ,N) */
  589. /* > On entry, if VECT = 'U', then Q must contain an N-by-N */
  590. /* > matrix X; if VECT = 'N' or 'V', then Q need not be set. */
  591. /* > */
  592. /* > On exit: */
  593. /* > if VECT = 'V', Q contains the N-by-N unitary matrix Q; */
  594. /* > if VECT = 'U', Q contains the product X*Q; */
  595. /* > if VECT = 'N', the array Q is not referenced. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] LDQ */
  599. /* > \verbatim */
  600. /* > LDQ is INTEGER */
  601. /* > The leading dimension of the array Q. */
  602. /* > LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[out] WORK */
  606. /* > \verbatim */
  607. /* > WORK is COMPLEX*16 array, dimension (N) */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] INFO */
  611. /* > \verbatim */
  612. /* > INFO is INTEGER */
  613. /* > = 0: successful exit */
  614. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  615. /* > \endverbatim */
  616. /* Authors: */
  617. /* ======== */
  618. /* > \author Univ. of Tennessee */
  619. /* > \author Univ. of California Berkeley */
  620. /* > \author Univ. of Colorado Denver */
  621. /* > \author NAG Ltd. */
  622. /* > \date December 2016 */
  623. /* > \ingroup complex16OTHERcomputational */
  624. /* > \par Further Details: */
  625. /* ===================== */
  626. /* > */
  627. /* > \verbatim */
  628. /* > */
  629. /* > Modified by Linda Kaufman, Bell Labs. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* ===================================================================== */
  633. /* Subroutine */ void zhbtrd_(char *vect, char *uplo, integer *n, integer *kd,
  634. doublecomplex *ab, integer *ldab, doublereal *d__, doublereal *e,
  635. doublecomplex *q, integer *ldq, doublecomplex *work, integer *info)
  636. {
  637. /* System generated locals */
  638. integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4,
  639. i__5, i__6;
  640. doublereal d__1;
  641. doublecomplex z__1;
  642. /* Local variables */
  643. integer inca, jend, lend, jinc;
  644. doublereal abst;
  645. integer incx, last;
  646. doublecomplex temp;
  647. extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *,
  648. doublecomplex *, integer *, doublereal *, doublecomplex *);
  649. integer j1end, j1inc, i__, j, k, l;
  650. doublecomplex t;
  651. integer iqend;
  652. extern logical lsame_(char *, char *);
  653. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  654. doublecomplex *, integer *);
  655. logical initq, wantq, upper;
  656. integer i2, j1, j2;
  657. extern /* Subroutine */ void zlar2v_(integer *, doublecomplex *,
  658. doublecomplex *, doublecomplex *, integer *, doublereal *,
  659. doublecomplex *, integer *);
  660. integer nq, nr, iqaend;
  661. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  662. extern void zlacgv_(
  663. integer *, doublecomplex *, integer *);
  664. integer kd1;
  665. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  666. doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
  667. doublecomplex *, doublecomplex *), zlargv_(integer *,
  668. doublecomplex *, integer *, doublecomplex *, integer *,
  669. doublereal *, integer *), zlartv_(integer *, doublecomplex *,
  670. integer *, doublecomplex *, integer *, doublereal *,
  671. doublecomplex *, integer *);
  672. integer ibl, iqb, kdn, jin, nrt, kdm1;
  673. /* -- LAPACK computational routine (version 3.7.0) -- */
  674. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  675. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  676. /* December 2016 */
  677. /* ===================================================================== */
  678. /* Test the input parameters */
  679. /* Parameter adjustments */
  680. ab_dim1 = *ldab;
  681. ab_offset = 1 + ab_dim1 * 1;
  682. ab -= ab_offset;
  683. --d__;
  684. --e;
  685. q_dim1 = *ldq;
  686. q_offset = 1 + q_dim1 * 1;
  687. q -= q_offset;
  688. --work;
  689. /* Function Body */
  690. initq = lsame_(vect, "V");
  691. wantq = initq || lsame_(vect, "U");
  692. upper = lsame_(uplo, "U");
  693. kd1 = *kd + 1;
  694. kdm1 = *kd - 1;
  695. incx = *ldab - 1;
  696. iqend = 1;
  697. *info = 0;
  698. if (! wantq && ! lsame_(vect, "N")) {
  699. *info = -1;
  700. } else if (! upper && ! lsame_(uplo, "L")) {
  701. *info = -2;
  702. } else if (*n < 0) {
  703. *info = -3;
  704. } else if (*kd < 0) {
  705. *info = -4;
  706. } else if (*ldab < kd1) {
  707. *info = -6;
  708. } else if (*ldq < f2cmax(1,*n) && wantq) {
  709. *info = -10;
  710. }
  711. if (*info != 0) {
  712. i__1 = -(*info);
  713. xerbla_("ZHBTRD", &i__1, (ftnlen)6);
  714. return;
  715. }
  716. /* Quick return if possible */
  717. if (*n == 0) {
  718. return;
  719. }
  720. /* Initialize Q to the unit matrix, if needed */
  721. if (initq) {
  722. zlaset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq);
  723. }
  724. /* Wherever possible, plane rotations are generated and applied in */
  725. /* vector operations of length NR over the index set J1:J2:KD1. */
  726. /* The real cosines and complex sines of the plane rotations are */
  727. /* stored in the arrays D and WORK. */
  728. inca = kd1 * *ldab;
  729. /* Computing MIN */
  730. i__1 = *n - 1;
  731. kdn = f2cmin(i__1,*kd);
  732. if (upper) {
  733. if (*kd > 1) {
  734. /* Reduce to complex Hermitian tridiagonal form, working with */
  735. /* the upper triangle */
  736. nr = 0;
  737. j1 = kdn + 2;
  738. j2 = 1;
  739. i__1 = kd1 + ab_dim1;
  740. i__2 = kd1 + ab_dim1;
  741. d__1 = ab[i__2].r;
  742. ab[i__1].r = d__1, ab[i__1].i = 0.;
  743. i__1 = *n - 2;
  744. for (i__ = 1; i__ <= i__1; ++i__) {
  745. /* Reduce i-th row of matrix to tridiagonal form */
  746. for (k = kdn + 1; k >= 2; --k) {
  747. j1 += kdn;
  748. j2 += kdn;
  749. if (nr > 0) {
  750. /* generate plane rotations to annihilate nonzero */
  751. /* elements which have been created outside the band */
  752. zlargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &
  753. work[j1], &kd1, &d__[j1], &kd1);
  754. /* apply rotations from the right */
  755. /* Dependent on the the number of diagonals either */
  756. /* ZLARTV or ZROT is used */
  757. if (nr >= (*kd << 1) - 1) {
  758. i__2 = *kd - 1;
  759. for (l = 1; l <= i__2; ++l) {
  760. zlartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1],
  761. &inca, &ab[l + j1 * ab_dim1], &inca, &
  762. d__[j1], &work[j1], &kd1);
  763. /* L10: */
  764. }
  765. } else {
  766. jend = j1 + (nr - 1) * kd1;
  767. i__2 = jend;
  768. i__3 = kd1;
  769. for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <=
  770. i__2; jinc += i__3) {
  771. zrot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &
  772. c__1, &ab[jinc * ab_dim1 + 1], &c__1,
  773. &d__[jinc], &work[jinc]);
  774. /* L20: */
  775. }
  776. }
  777. }
  778. if (k > 2) {
  779. if (k <= *n - i__ + 1) {
  780. /* generate plane rotation to annihilate a(i,i+k-1) */
  781. /* within the band */
  782. zlartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1]
  783. , &ab[*kd - k + 2 + (i__ + k - 1) *
  784. ab_dim1], &d__[i__ + k - 1], &work[i__ +
  785. k - 1], &temp);
  786. i__3 = *kd - k + 3 + (i__ + k - 2) * ab_dim1;
  787. ab[i__3].r = temp.r, ab[i__3].i = temp.i;
  788. /* apply rotation from the right */
  789. i__3 = k - 3;
  790. zrot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) *
  791. ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ +
  792. k - 1) * ab_dim1], &c__1, &d__[i__ + k -
  793. 1], &work[i__ + k - 1]);
  794. }
  795. ++nr;
  796. j1 = j1 - kdn - 1;
  797. }
  798. /* apply plane rotations from both sides to diagonal */
  799. /* blocks */
  800. if (nr > 0) {
  801. zlar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 +
  802. j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca,
  803. &d__[j1], &work[j1], &kd1);
  804. }
  805. /* apply plane rotations from the left */
  806. if (nr > 0) {
  807. zlacgv_(&nr, &work[j1], &kd1);
  808. if ((*kd << 1) - 1 < nr) {
  809. /* Dependent on the the number of diagonals either */
  810. /* ZLARTV or ZROT is used */
  811. i__3 = *kd - 1;
  812. for (l = 1; l <= i__3; ++l) {
  813. if (j2 + l > *n) {
  814. nrt = nr - 1;
  815. } else {
  816. nrt = nr;
  817. }
  818. if (nrt > 0) {
  819. zlartv_(&nrt, &ab[*kd - l + (j1 + l) *
  820. ab_dim1], &inca, &ab[*kd - l + 1
  821. + (j1 + l) * ab_dim1], &inca, &
  822. d__[j1], &work[j1], &kd1);
  823. }
  824. /* L30: */
  825. }
  826. } else {
  827. j1end = j1 + kd1 * (nr - 2);
  828. if (j1end >= j1) {
  829. i__3 = j1end;
  830. i__2 = kd1;
  831. for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=
  832. i__3; jin += i__2) {
  833. i__4 = *kd - 1;
  834. zrot_(&i__4, &ab[*kd - 1 + (jin + 1) *
  835. ab_dim1], &incx, &ab[*kd + (jin +
  836. 1) * ab_dim1], &incx, &d__[jin], &
  837. work[jin]);
  838. /* L40: */
  839. }
  840. }
  841. /* Computing MIN */
  842. i__2 = kdm1, i__3 = *n - j2;
  843. lend = f2cmin(i__2,i__3);
  844. last = j1end + kd1;
  845. if (lend > 0) {
  846. zrot_(&lend, &ab[*kd - 1 + (last + 1) *
  847. ab_dim1], &incx, &ab[*kd + (last + 1)
  848. * ab_dim1], &incx, &d__[last], &work[
  849. last]);
  850. }
  851. }
  852. }
  853. if (wantq) {
  854. /* accumulate product of plane rotations in Q */
  855. if (initq) {
  856. /* take advantage of the fact that Q was */
  857. /* initially the Identity matrix */
  858. iqend = f2cmax(iqend,j2);
  859. /* Computing MAX */
  860. i__2 = 0, i__3 = k - 3;
  861. i2 = f2cmax(i__2,i__3);
  862. iqaend = i__ * *kd + 1;
  863. if (k == 2) {
  864. iqaend += *kd;
  865. }
  866. iqaend = f2cmin(iqaend,iqend);
  867. i__2 = j2;
  868. i__3 = kd1;
  869. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
  870. += i__3) {
  871. ibl = i__ - i2 / kdm1;
  872. ++i2;
  873. /* Computing MAX */
  874. i__4 = 1, i__5 = j - ibl;
  875. iqb = f2cmax(i__4,i__5);
  876. nq = iqaend + 1 - iqb;
  877. /* Computing MIN */
  878. i__4 = iqaend + *kd;
  879. iqaend = f2cmin(i__4,iqend);
  880. d_cnjg(&z__1, &work[j]);
  881. zrot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
  882. &q[iqb + j * q_dim1], &c__1, &d__[j],
  883. &z__1);
  884. /* L50: */
  885. }
  886. } else {
  887. i__3 = j2;
  888. i__2 = kd1;
  889. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
  890. += i__2) {
  891. d_cnjg(&z__1, &work[j]);
  892. zrot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
  893. j * q_dim1 + 1], &c__1, &d__[j], &
  894. z__1);
  895. /* L60: */
  896. }
  897. }
  898. }
  899. if (j2 + kdn > *n) {
  900. /* adjust J2 to keep within the bounds of the matrix */
  901. --nr;
  902. j2 = j2 - kdn - 1;
  903. }
  904. i__2 = j2;
  905. i__3 = kd1;
  906. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3)
  907. {
  908. /* create nonzero element a(j-1,j+kd) outside the band */
  909. /* and store it in WORK */
  910. i__4 = j + *kd;
  911. i__5 = j;
  912. i__6 = (j + *kd) * ab_dim1 + 1;
  913. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i *
  914. ab[i__6].i, z__1.i = work[i__5].r * ab[i__6]
  915. .i + work[i__5].i * ab[i__6].r;
  916. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  917. i__4 = (j + *kd) * ab_dim1 + 1;
  918. i__5 = j;
  919. i__6 = (j + *kd) * ab_dim1 + 1;
  920. z__1.r = d__[i__5] * ab[i__6].r, z__1.i = d__[i__5] *
  921. ab[i__6].i;
  922. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  923. /* L70: */
  924. }
  925. /* L80: */
  926. }
  927. /* L90: */
  928. }
  929. }
  930. if (*kd > 0) {
  931. /* make off-diagonal elements real and copy them to E */
  932. i__1 = *n - 1;
  933. for (i__ = 1; i__ <= i__1; ++i__) {
  934. i__3 = *kd + (i__ + 1) * ab_dim1;
  935. t.r = ab[i__3].r, t.i = ab[i__3].i;
  936. abst = z_abs(&t);
  937. i__3 = *kd + (i__ + 1) * ab_dim1;
  938. ab[i__3].r = abst, ab[i__3].i = 0.;
  939. e[i__] = abst;
  940. if (abst != 0.) {
  941. z__1.r = t.r / abst, z__1.i = t.i / abst;
  942. t.r = z__1.r, t.i = z__1.i;
  943. } else {
  944. t.r = 1., t.i = 0.;
  945. }
  946. if (i__ < *n - 1) {
  947. i__3 = *kd + (i__ + 2) * ab_dim1;
  948. i__2 = *kd + (i__ + 2) * ab_dim1;
  949. z__1.r = ab[i__2].r * t.r - ab[i__2].i * t.i, z__1.i = ab[
  950. i__2].r * t.i + ab[i__2].i * t.r;
  951. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  952. }
  953. if (wantq) {
  954. d_cnjg(&z__1, &t);
  955. zscal_(n, &z__1, &q[(i__ + 1) * q_dim1 + 1], &c__1);
  956. }
  957. /* L100: */
  958. }
  959. } else {
  960. /* set E to zero if original matrix was diagonal */
  961. i__1 = *n - 1;
  962. for (i__ = 1; i__ <= i__1; ++i__) {
  963. e[i__] = 0.;
  964. /* L110: */
  965. }
  966. }
  967. /* copy diagonal elements to D */
  968. i__1 = *n;
  969. for (i__ = 1; i__ <= i__1; ++i__) {
  970. i__3 = i__;
  971. i__2 = kd1 + i__ * ab_dim1;
  972. d__[i__3] = ab[i__2].r;
  973. /* L120: */
  974. }
  975. } else {
  976. if (*kd > 1) {
  977. /* Reduce to complex Hermitian tridiagonal form, working with */
  978. /* the lower triangle */
  979. nr = 0;
  980. j1 = kdn + 2;
  981. j2 = 1;
  982. i__1 = ab_dim1 + 1;
  983. i__3 = ab_dim1 + 1;
  984. d__1 = ab[i__3].r;
  985. ab[i__1].r = d__1, ab[i__1].i = 0.;
  986. i__1 = *n - 2;
  987. for (i__ = 1; i__ <= i__1; ++i__) {
  988. /* Reduce i-th column of matrix to tridiagonal form */
  989. for (k = kdn + 1; k >= 2; --k) {
  990. j1 += kdn;
  991. j2 += kdn;
  992. if (nr > 0) {
  993. /* generate plane rotations to annihilate nonzero */
  994. /* elements which have been created outside the band */
  995. zlargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &
  996. work[j1], &kd1, &d__[j1], &kd1);
  997. /* apply plane rotations from one side */
  998. /* Dependent on the the number of diagonals either */
  999. /* ZLARTV or ZROT is used */
  1000. if (nr > (*kd << 1) - 1) {
  1001. i__3 = *kd - 1;
  1002. for (l = 1; l <= i__3; ++l) {
  1003. zlartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) *
  1004. ab_dim1], &inca, &ab[kd1 - l + 1 + (
  1005. j1 - kd1 + l) * ab_dim1], &inca, &d__[
  1006. j1], &work[j1], &kd1);
  1007. /* L130: */
  1008. }
  1009. } else {
  1010. jend = j1 + kd1 * (nr - 1);
  1011. i__3 = jend;
  1012. i__2 = kd1;
  1013. for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <=
  1014. i__3; jinc += i__2) {
  1015. zrot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1]
  1016. , &incx, &ab[kd1 + (jinc - *kd) *
  1017. ab_dim1], &incx, &d__[jinc], &work[
  1018. jinc]);
  1019. /* L140: */
  1020. }
  1021. }
  1022. }
  1023. if (k > 2) {
  1024. if (k <= *n - i__ + 1) {
  1025. /* generate plane rotation to annihilate a(i+k-1,i) */
  1026. /* within the band */
  1027. zlartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ *
  1028. ab_dim1], &d__[i__ + k - 1], &work[i__ +
  1029. k - 1], &temp);
  1030. i__2 = k - 1 + i__ * ab_dim1;
  1031. ab[i__2].r = temp.r, ab[i__2].i = temp.i;
  1032. /* apply rotation from the left */
  1033. i__2 = k - 3;
  1034. i__3 = *ldab - 1;
  1035. i__4 = *ldab - 1;
  1036. zrot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &
  1037. i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &
  1038. i__4, &d__[i__ + k - 1], &work[i__ + k -
  1039. 1]);
  1040. }
  1041. ++nr;
  1042. j1 = j1 - kdn - 1;
  1043. }
  1044. /* apply plane rotations from both sides to diagonal */
  1045. /* blocks */
  1046. if (nr > 0) {
  1047. zlar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 *
  1048. ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &
  1049. inca, &d__[j1], &work[j1], &kd1);
  1050. }
  1051. /* apply plane rotations from the right */
  1052. /* Dependent on the the number of diagonals either */
  1053. /* ZLARTV or ZROT is used */
  1054. if (nr > 0) {
  1055. zlacgv_(&nr, &work[j1], &kd1);
  1056. if (nr > (*kd << 1) - 1) {
  1057. i__2 = *kd - 1;
  1058. for (l = 1; l <= i__2; ++l) {
  1059. if (j2 + l > *n) {
  1060. nrt = nr - 1;
  1061. } else {
  1062. nrt = nr;
  1063. }
  1064. if (nrt > 0) {
  1065. zlartv_(&nrt, &ab[l + 2 + (j1 - 1) *
  1066. ab_dim1], &inca, &ab[l + 1 + j1 *
  1067. ab_dim1], &inca, &d__[j1], &work[
  1068. j1], &kd1);
  1069. }
  1070. /* L150: */
  1071. }
  1072. } else {
  1073. j1end = j1 + kd1 * (nr - 2);
  1074. if (j1end >= j1) {
  1075. i__2 = j1end;
  1076. i__3 = kd1;
  1077. for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 :
  1078. j1inc <= i__2; j1inc += i__3) {
  1079. zrot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 +
  1080. 3], &c__1, &ab[j1inc * ab_dim1 +
  1081. 2], &c__1, &d__[j1inc], &work[
  1082. j1inc]);
  1083. /* L160: */
  1084. }
  1085. }
  1086. /* Computing MIN */
  1087. i__3 = kdm1, i__2 = *n - j2;
  1088. lend = f2cmin(i__3,i__2);
  1089. last = j1end + kd1;
  1090. if (lend > 0) {
  1091. zrot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &
  1092. c__1, &ab[last * ab_dim1 + 2], &c__1,
  1093. &d__[last], &work[last]);
  1094. }
  1095. }
  1096. }
  1097. if (wantq) {
  1098. /* accumulate product of plane rotations in Q */
  1099. if (initq) {
  1100. /* take advantage of the fact that Q was */
  1101. /* initially the Identity matrix */
  1102. iqend = f2cmax(iqend,j2);
  1103. /* Computing MAX */
  1104. i__3 = 0, i__2 = k - 3;
  1105. i2 = f2cmax(i__3,i__2);
  1106. iqaend = i__ * *kd + 1;
  1107. if (k == 2) {
  1108. iqaend += *kd;
  1109. }
  1110. iqaend = f2cmin(iqaend,iqend);
  1111. i__3 = j2;
  1112. i__2 = kd1;
  1113. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
  1114. += i__2) {
  1115. ibl = i__ - i2 / kdm1;
  1116. ++i2;
  1117. /* Computing MAX */
  1118. i__4 = 1, i__5 = j - ibl;
  1119. iqb = f2cmax(i__4,i__5);
  1120. nq = iqaend + 1 - iqb;
  1121. /* Computing MIN */
  1122. i__4 = iqaend + *kd;
  1123. iqaend = f2cmin(i__4,iqend);
  1124. zrot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
  1125. &q[iqb + j * q_dim1], &c__1, &d__[j],
  1126. &work[j]);
  1127. /* L170: */
  1128. }
  1129. } else {
  1130. i__2 = j2;
  1131. i__3 = kd1;
  1132. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
  1133. += i__3) {
  1134. zrot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
  1135. j * q_dim1 + 1], &c__1, &d__[j], &
  1136. work[j]);
  1137. /* L180: */
  1138. }
  1139. }
  1140. }
  1141. if (j2 + kdn > *n) {
  1142. /* adjust J2 to keep within the bounds of the matrix */
  1143. --nr;
  1144. j2 = j2 - kdn - 1;
  1145. }
  1146. i__3 = j2;
  1147. i__2 = kd1;
  1148. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2)
  1149. {
  1150. /* create nonzero element a(j+kd,j-1) outside the */
  1151. /* band and store it in WORK */
  1152. i__4 = j + *kd;
  1153. i__5 = j;
  1154. i__6 = kd1 + j * ab_dim1;
  1155. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i *
  1156. ab[i__6].i, z__1.i = work[i__5].r * ab[i__6]
  1157. .i + work[i__5].i * ab[i__6].r;
  1158. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1159. i__4 = kd1 + j * ab_dim1;
  1160. i__5 = j;
  1161. i__6 = kd1 + j * ab_dim1;
  1162. z__1.r = d__[i__5] * ab[i__6].r, z__1.i = d__[i__5] *
  1163. ab[i__6].i;
  1164. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1165. /* L190: */
  1166. }
  1167. /* L200: */
  1168. }
  1169. /* L210: */
  1170. }
  1171. }
  1172. if (*kd > 0) {
  1173. /* make off-diagonal elements real and copy them to E */
  1174. i__1 = *n - 1;
  1175. for (i__ = 1; i__ <= i__1; ++i__) {
  1176. i__2 = i__ * ab_dim1 + 2;
  1177. t.r = ab[i__2].r, t.i = ab[i__2].i;
  1178. abst = z_abs(&t);
  1179. i__2 = i__ * ab_dim1 + 2;
  1180. ab[i__2].r = abst, ab[i__2].i = 0.;
  1181. e[i__] = abst;
  1182. if (abst != 0.) {
  1183. z__1.r = t.r / abst, z__1.i = t.i / abst;
  1184. t.r = z__1.r, t.i = z__1.i;
  1185. } else {
  1186. t.r = 1., t.i = 0.;
  1187. }
  1188. if (i__ < *n - 1) {
  1189. i__2 = (i__ + 1) * ab_dim1 + 2;
  1190. i__3 = (i__ + 1) * ab_dim1 + 2;
  1191. z__1.r = ab[i__3].r * t.r - ab[i__3].i * t.i, z__1.i = ab[
  1192. i__3].r * t.i + ab[i__3].i * t.r;
  1193. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1194. }
  1195. if (wantq) {
  1196. zscal_(n, &t, &q[(i__ + 1) * q_dim1 + 1], &c__1);
  1197. }
  1198. /* L220: */
  1199. }
  1200. } else {
  1201. /* set E to zero if original matrix was diagonal */
  1202. i__1 = *n - 1;
  1203. for (i__ = 1; i__ <= i__1; ++i__) {
  1204. e[i__] = 0.;
  1205. /* L230: */
  1206. }
  1207. }
  1208. /* copy diagonal elements to D */
  1209. i__1 = *n;
  1210. for (i__ = 1; i__ <= i__1; ++i__) {
  1211. i__2 = i__;
  1212. i__3 = i__ * ab_dim1 + 1;
  1213. d__[i__2] = ab[i__3].r;
  1214. /* L240: */
  1215. }
  1216. }
  1217. return;
  1218. /* End of ZHBTRD */
  1219. } /* zhbtrd_ */