You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasd2.c 35 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static real c_b30 = 0.f;
  486. /* > \brief \b SLASD2 merges the two sets of singular values together into a single sorted set. Used by sbdsdc
  487. . */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download SLASD2 + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd2.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd2.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd2.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE SLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT, */
  506. /* LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX, */
  507. /* IDXC, IDXQ, COLTYP, INFO ) */
  508. /* INTEGER INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE */
  509. /* REAL ALPHA, BETA */
  510. /* INTEGER COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ), */
  511. /* $ IDXQ( * ) */
  512. /* REAL D( * ), DSIGMA( * ), U( LDU, * ), */
  513. /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
  514. /* $ Z( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > SLASD2 merges the two sets of singular values together into a single */
  521. /* > sorted set. Then it tries to deflate the size of the problem. */
  522. /* > There are two ways in which deflation can occur: when two or more */
  523. /* > singular values are close together or if there is a tiny entry in the */
  524. /* > Z vector. For each such occurrence the order of the related secular */
  525. /* > equation problem is reduced by one. */
  526. /* > */
  527. /* > SLASD2 is called from SLASD1. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[in] NL */
  532. /* > \verbatim */
  533. /* > NL is INTEGER */
  534. /* > The row dimension of the upper block. NL >= 1. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] NR */
  538. /* > \verbatim */
  539. /* > NR is INTEGER */
  540. /* > The row dimension of the lower block. NR >= 1. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] SQRE */
  544. /* > \verbatim */
  545. /* > SQRE is INTEGER */
  546. /* > = 0: the lower block is an NR-by-NR square matrix. */
  547. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  548. /* > */
  549. /* > The bidiagonal matrix has N = NL + NR + 1 rows and */
  550. /* > M = N + SQRE >= N columns. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[out] K */
  554. /* > \verbatim */
  555. /* > K is INTEGER */
  556. /* > Contains the dimension of the non-deflated matrix, */
  557. /* > This is the order of the related secular equation. 1 <= K <=N. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] D */
  561. /* > \verbatim */
  562. /* > D is REAL array, dimension (N) */
  563. /* > On entry D contains the singular values of the two submatrices */
  564. /* > to be combined. On exit D contains the trailing (N-K) updated */
  565. /* > singular values (those which were deflated) sorted into */
  566. /* > increasing order. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[out] Z */
  570. /* > \verbatim */
  571. /* > Z is REAL array, dimension (N) */
  572. /* > On exit Z contains the updating row vector in the secular */
  573. /* > equation. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] ALPHA */
  577. /* > \verbatim */
  578. /* > ALPHA is REAL */
  579. /* > Contains the diagonal element associated with the added row. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] BETA */
  583. /* > \verbatim */
  584. /* > BETA is REAL */
  585. /* > Contains the off-diagonal element associated with the added */
  586. /* > row. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in,out] U */
  590. /* > \verbatim */
  591. /* > U is REAL array, dimension (LDU,N) */
  592. /* > On entry U contains the left singular vectors of two */
  593. /* > submatrices in the two square blocks with corners at (1,1), */
  594. /* > (NL, NL), and (NL+2, NL+2), (N,N). */
  595. /* > On exit U contains the trailing (N-K) updated left singular */
  596. /* > vectors (those which were deflated) in its last N-K columns. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDU */
  600. /* > \verbatim */
  601. /* > LDU is INTEGER */
  602. /* > The leading dimension of the array U. LDU >= N. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in,out] VT */
  606. /* > \verbatim */
  607. /* > VT is REAL array, dimension (LDVT,M) */
  608. /* > On entry VT**T contains the right singular vectors of two */
  609. /* > submatrices in the two square blocks with corners at (1,1), */
  610. /* > (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
  611. /* > On exit VT**T contains the trailing (N-K) updated right singular */
  612. /* > vectors (those which were deflated) in its last N-K columns. */
  613. /* > In case SQRE =1, the last row of VT spans the right null */
  614. /* > space. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDVT */
  618. /* > \verbatim */
  619. /* > LDVT is INTEGER */
  620. /* > The leading dimension of the array VT. LDVT >= M. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] DSIGMA */
  624. /* > \verbatim */
  625. /* > DSIGMA is REAL array, dimension (N) */
  626. /* > Contains a copy of the diagonal elements (K-1 singular values */
  627. /* > and one zero) in the secular equation. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] U2 */
  631. /* > \verbatim */
  632. /* > U2 is REAL array, dimension (LDU2,N) */
  633. /* > Contains a copy of the first K-1 left singular vectors which */
  634. /* > will be used by SLASD3 in a matrix multiply (SGEMM) to solve */
  635. /* > for the new left singular vectors. U2 is arranged into four */
  636. /* > blocks. The first block contains a column with 1 at NL+1 and */
  637. /* > zero everywhere else; the second block contains non-zero */
  638. /* > entries only at and above NL; the third contains non-zero */
  639. /* > entries only below NL+1; and the fourth is dense. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] LDU2 */
  643. /* > \verbatim */
  644. /* > LDU2 is INTEGER */
  645. /* > The leading dimension of the array U2. LDU2 >= N. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] VT2 */
  649. /* > \verbatim */
  650. /* > VT2 is REAL array, dimension (LDVT2,N) */
  651. /* > VT2**T contains a copy of the first K right singular vectors */
  652. /* > which will be used by SLASD3 in a matrix multiply (SGEMM) to */
  653. /* > solve for the new right singular vectors. VT2 is arranged into */
  654. /* > three blocks. The first block contains a row that corresponds */
  655. /* > to the special 0 diagonal element in SIGMA; the second block */
  656. /* > contains non-zeros only at and before NL +1; the third block */
  657. /* > contains non-zeros only at and after NL +2. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[in] LDVT2 */
  661. /* > \verbatim */
  662. /* > LDVT2 is INTEGER */
  663. /* > The leading dimension of the array VT2. LDVT2 >= M. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[out] IDXP */
  667. /* > \verbatim */
  668. /* > IDXP is INTEGER array, dimension (N) */
  669. /* > This will contain the permutation used to place deflated */
  670. /* > values of D at the end of the array. On output IDXP(2:K) */
  671. /* > points to the nondeflated D-values and IDXP(K+1:N) */
  672. /* > points to the deflated singular values. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] IDX */
  676. /* > \verbatim */
  677. /* > IDX is INTEGER array, dimension (N) */
  678. /* > This will contain the permutation used to sort the contents of */
  679. /* > D into ascending order. */
  680. /* > \endverbatim */
  681. /* > */
  682. /* > \param[out] IDXC */
  683. /* > \verbatim */
  684. /* > IDXC is INTEGER array, dimension (N) */
  685. /* > This will contain the permutation used to arrange the columns */
  686. /* > of the deflated U matrix into three groups: the first group */
  687. /* > contains non-zero entries only at and above NL, the second */
  688. /* > contains non-zero entries only below NL+2, and the third is */
  689. /* > dense. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in,out] IDXQ */
  693. /* > \verbatim */
  694. /* > IDXQ is INTEGER array, dimension (N) */
  695. /* > This contains the permutation which separately sorts the two */
  696. /* > sub-problems in D into ascending order. Note that entries in */
  697. /* > the first hlaf of this permutation must first be moved one */
  698. /* > position backward; and entries in the second half */
  699. /* > must first have NL+1 added to their values. */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[out] COLTYP */
  703. /* > \verbatim */
  704. /* > COLTYP is INTEGER array, dimension (N) */
  705. /* > As workspace, this will contain a label which will indicate */
  706. /* > which of the following types a column in the U2 matrix or a */
  707. /* > row in the VT2 matrix is: */
  708. /* > 1 : non-zero in the upper half only */
  709. /* > 2 : non-zero in the lower half only */
  710. /* > 3 : dense */
  711. /* > 4 : deflated */
  712. /* > */
  713. /* > On exit, it is an array of dimension 4, with COLTYP(I) being */
  714. /* > the dimension of the I-th type columns. */
  715. /* > \endverbatim */
  716. /* > */
  717. /* > \param[out] INFO */
  718. /* > \verbatim */
  719. /* > INFO is INTEGER */
  720. /* > = 0: successful exit. */
  721. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  722. /* > \endverbatim */
  723. /* Authors: */
  724. /* ======== */
  725. /* > \author Univ. of Tennessee */
  726. /* > \author Univ. of California Berkeley */
  727. /* > \author Univ. of Colorado Denver */
  728. /* > \author NAG Ltd. */
  729. /* > \date December 2016 */
  730. /* > \ingroup OTHERauxiliary */
  731. /* > \par Contributors: */
  732. /* ================== */
  733. /* > */
  734. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  735. /* > California at Berkeley, USA */
  736. /* > */
  737. /* ===================================================================== */
  738. /* Subroutine */ void slasd2_(integer *nl, integer *nr, integer *sqre, integer
  739. *k, real *d__, real *z__, real *alpha, real *beta, real *u, integer *
  740. ldu, real *vt, integer *ldvt, real *dsigma, real *u2, integer *ldu2,
  741. real *vt2, integer *ldvt2, integer *idxp, integer *idx, integer *idxc,
  742. integer *idxq, integer *coltyp, integer *info)
  743. {
  744. /* System generated locals */
  745. integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
  746. vt2_dim1, vt2_offset, i__1;
  747. real r__1, r__2;
  748. /* Local variables */
  749. integer idxi, idxj, ctot[4];
  750. extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
  751. integer *, real *, real *);
  752. real c__;
  753. integer i__, j, m, n;
  754. real s;
  755. integer idxjp, jprev, k2;
  756. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  757. integer *);
  758. real z1;
  759. extern real slapy2_(real *, real *);
  760. integer ct, jp;
  761. extern real slamch_(char *);
  762. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  763. extern void slamrg_(
  764. integer *, integer *, real *, integer *, integer *, integer *);
  765. real hlftol;
  766. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  767. integer *, real *, integer *), slaset_(char *, integer *,
  768. integer *, real *, real *, real *, integer *);
  769. real eps, tau, tol;
  770. integer psm[4], nlp1, nlp2;
  771. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  772. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  773. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  774. /* December 2016 */
  775. /* ===================================================================== */
  776. /* Test the input parameters. */
  777. /* Parameter adjustments */
  778. --d__;
  779. --z__;
  780. u_dim1 = *ldu;
  781. u_offset = 1 + u_dim1 * 1;
  782. u -= u_offset;
  783. vt_dim1 = *ldvt;
  784. vt_offset = 1 + vt_dim1 * 1;
  785. vt -= vt_offset;
  786. --dsigma;
  787. u2_dim1 = *ldu2;
  788. u2_offset = 1 + u2_dim1 * 1;
  789. u2 -= u2_offset;
  790. vt2_dim1 = *ldvt2;
  791. vt2_offset = 1 + vt2_dim1 * 1;
  792. vt2 -= vt2_offset;
  793. --idxp;
  794. --idx;
  795. --idxc;
  796. --idxq;
  797. --coltyp;
  798. /* Function Body */
  799. *info = 0;
  800. if (*nl < 1) {
  801. *info = -1;
  802. } else if (*nr < 1) {
  803. *info = -2;
  804. } else if (*sqre != 1 && *sqre != 0) {
  805. *info = -3;
  806. }
  807. n = *nl + *nr + 1;
  808. m = n + *sqre;
  809. if (*ldu < n) {
  810. *info = -10;
  811. } else if (*ldvt < m) {
  812. *info = -12;
  813. } else if (*ldu2 < n) {
  814. *info = -15;
  815. } else if (*ldvt2 < m) {
  816. *info = -17;
  817. }
  818. if (*info != 0) {
  819. i__1 = -(*info);
  820. xerbla_("SLASD2", &i__1, (ftnlen)6);
  821. return;
  822. }
  823. nlp1 = *nl + 1;
  824. nlp2 = *nl + 2;
  825. /* Generate the first part of the vector Z; and move the singular */
  826. /* values in the first part of D one position backward. */
  827. z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
  828. z__[1] = z1;
  829. for (i__ = *nl; i__ >= 1; --i__) {
  830. z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
  831. d__[i__ + 1] = d__[i__];
  832. idxq[i__ + 1] = idxq[i__] + 1;
  833. /* L10: */
  834. }
  835. /* Generate the second part of the vector Z. */
  836. i__1 = m;
  837. for (i__ = nlp2; i__ <= i__1; ++i__) {
  838. z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
  839. /* L20: */
  840. }
  841. /* Initialize some reference arrays. */
  842. i__1 = nlp1;
  843. for (i__ = 2; i__ <= i__1; ++i__) {
  844. coltyp[i__] = 1;
  845. /* L30: */
  846. }
  847. i__1 = n;
  848. for (i__ = nlp2; i__ <= i__1; ++i__) {
  849. coltyp[i__] = 2;
  850. /* L40: */
  851. }
  852. /* Sort the singular values into increasing order */
  853. i__1 = n;
  854. for (i__ = nlp2; i__ <= i__1; ++i__) {
  855. idxq[i__] += nlp1;
  856. /* L50: */
  857. }
  858. /* DSIGMA, IDXC, IDXC, and the first column of U2 */
  859. /* are used as storage space. */
  860. i__1 = n;
  861. for (i__ = 2; i__ <= i__1; ++i__) {
  862. dsigma[i__] = d__[idxq[i__]];
  863. u2[i__ + u2_dim1] = z__[idxq[i__]];
  864. idxc[i__] = coltyp[idxq[i__]];
  865. /* L60: */
  866. }
  867. slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
  868. i__1 = n;
  869. for (i__ = 2; i__ <= i__1; ++i__) {
  870. idxi = idx[i__] + 1;
  871. d__[i__] = dsigma[idxi];
  872. z__[i__] = u2[idxi + u2_dim1];
  873. coltyp[i__] = idxc[idxi];
  874. /* L70: */
  875. }
  876. /* Calculate the allowable deflation tolerance */
  877. eps = slamch_("Epsilon");
  878. /* Computing MAX */
  879. r__1 = abs(*alpha), r__2 = abs(*beta);
  880. tol = f2cmax(r__1,r__2);
  881. /* Computing MAX */
  882. r__2 = (r__1 = d__[n], abs(r__1));
  883. tol = eps * 8.f * f2cmax(r__2,tol);
  884. /* There are 2 kinds of deflation -- first a value in the z-vector */
  885. /* is small, second two (or more) singular values are very close */
  886. /* together (their difference is small). */
  887. /* If the value in the z-vector is small, we simply permute the */
  888. /* array so that the corresponding singular value is moved to the */
  889. /* end. */
  890. /* If two values in the D-vector are close, we perform a two-sided */
  891. /* rotation designed to make one of the corresponding z-vector */
  892. /* entries zero, and then permute the array so that the deflated */
  893. /* singular value is moved to the end. */
  894. /* If there are multiple singular values then the problem deflates. */
  895. /* Here the number of equal singular values are found. As each equal */
  896. /* singular value is found, an elementary reflector is computed to */
  897. /* rotate the corresponding singular subspace so that the */
  898. /* corresponding components of Z are zero in this new basis. */
  899. *k = 1;
  900. k2 = n + 1;
  901. i__1 = n;
  902. for (j = 2; j <= i__1; ++j) {
  903. if ((r__1 = z__[j], abs(r__1)) <= tol) {
  904. /* Deflate due to small z component. */
  905. --k2;
  906. idxp[k2] = j;
  907. coltyp[j] = 4;
  908. if (j == n) {
  909. goto L120;
  910. }
  911. } else {
  912. jprev = j;
  913. goto L90;
  914. }
  915. /* L80: */
  916. }
  917. L90:
  918. j = jprev;
  919. L100:
  920. ++j;
  921. if (j > n) {
  922. goto L110;
  923. }
  924. if ((r__1 = z__[j], abs(r__1)) <= tol) {
  925. /* Deflate due to small z component. */
  926. --k2;
  927. idxp[k2] = j;
  928. coltyp[j] = 4;
  929. } else {
  930. /* Check if singular values are close enough to allow deflation. */
  931. if ((r__1 = d__[j] - d__[jprev], abs(r__1)) <= tol) {
  932. /* Deflation is possible. */
  933. s = z__[jprev];
  934. c__ = z__[j];
  935. /* Find sqrt(a**2+b**2) without overflow or */
  936. /* destructive underflow. */
  937. tau = slapy2_(&c__, &s);
  938. c__ /= tau;
  939. s = -s / tau;
  940. z__[j] = tau;
  941. z__[jprev] = 0.f;
  942. /* Apply back the Givens rotation to the left and right */
  943. /* singular vector matrices. */
  944. idxjp = idxq[idx[jprev] + 1];
  945. idxj = idxq[idx[j] + 1];
  946. if (idxjp <= nlp1) {
  947. --idxjp;
  948. }
  949. if (idxj <= nlp1) {
  950. --idxj;
  951. }
  952. srot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
  953. c__1, &c__, &s);
  954. srot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
  955. c__, &s);
  956. if (coltyp[j] != coltyp[jprev]) {
  957. coltyp[j] = 3;
  958. }
  959. coltyp[jprev] = 4;
  960. --k2;
  961. idxp[k2] = jprev;
  962. jprev = j;
  963. } else {
  964. ++(*k);
  965. u2[*k + u2_dim1] = z__[jprev];
  966. dsigma[*k] = d__[jprev];
  967. idxp[*k] = jprev;
  968. jprev = j;
  969. }
  970. }
  971. goto L100;
  972. L110:
  973. /* Record the last singular value. */
  974. ++(*k);
  975. u2[*k + u2_dim1] = z__[jprev];
  976. dsigma[*k] = d__[jprev];
  977. idxp[*k] = jprev;
  978. L120:
  979. /* Count up the total number of the various types of columns, then */
  980. /* form a permutation which positions the four column types into */
  981. /* four groups of uniform structure (although one or more of these */
  982. /* groups may be empty). */
  983. for (j = 1; j <= 4; ++j) {
  984. ctot[j - 1] = 0;
  985. /* L130: */
  986. }
  987. i__1 = n;
  988. for (j = 2; j <= i__1; ++j) {
  989. ct = coltyp[j];
  990. ++ctot[ct - 1];
  991. /* L140: */
  992. }
  993. /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
  994. psm[0] = 2;
  995. psm[1] = ctot[0] + 2;
  996. psm[2] = psm[1] + ctot[1];
  997. psm[3] = psm[2] + ctot[2];
  998. /* Fill out the IDXC array so that the permutation which it induces */
  999. /* will place all type-1 columns first, all type-2 columns next, */
  1000. /* then all type-3's, and finally all type-4's, starting from the */
  1001. /* second column. This applies similarly to the rows of VT. */
  1002. i__1 = n;
  1003. for (j = 2; j <= i__1; ++j) {
  1004. jp = idxp[j];
  1005. ct = coltyp[jp];
  1006. idxc[psm[ct - 1]] = j;
  1007. ++psm[ct - 1];
  1008. /* L150: */
  1009. }
  1010. /* Sort the singular values and corresponding singular vectors into */
  1011. /* DSIGMA, U2, and VT2 respectively. The singular values/vectors */
  1012. /* which were not deflated go into the first K slots of DSIGMA, U2, */
  1013. /* and VT2 respectively, while those which were deflated go into the */
  1014. /* last N - K slots, except that the first column/row will be treated */
  1015. /* separately. */
  1016. i__1 = n;
  1017. for (j = 2; j <= i__1; ++j) {
  1018. jp = idxp[j];
  1019. dsigma[j] = d__[jp];
  1020. idxj = idxq[idx[idxp[idxc[j]]] + 1];
  1021. if (idxj <= nlp1) {
  1022. --idxj;
  1023. }
  1024. scopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
  1025. scopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
  1026. /* L160: */
  1027. }
  1028. /* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
  1029. dsigma[1] = 0.f;
  1030. hlftol = tol / 2.f;
  1031. if (abs(dsigma[2]) <= hlftol) {
  1032. dsigma[2] = hlftol;
  1033. }
  1034. if (m > n) {
  1035. z__[1] = slapy2_(&z1, &z__[m]);
  1036. if (z__[1] <= tol) {
  1037. c__ = 1.f;
  1038. s = 0.f;
  1039. z__[1] = tol;
  1040. } else {
  1041. c__ = z1 / z__[1];
  1042. s = z__[m] / z__[1];
  1043. }
  1044. } else {
  1045. if (abs(z1) <= tol) {
  1046. z__[1] = tol;
  1047. } else {
  1048. z__[1] = z1;
  1049. }
  1050. }
  1051. /* Move the rest of the updating row to Z. */
  1052. i__1 = *k - 1;
  1053. scopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
  1054. /* Determine the first column of U2, the first row of VT2 and the */
  1055. /* last row of VT. */
  1056. slaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
  1057. u2[nlp1 + u2_dim1] = 1.f;
  1058. if (m > n) {
  1059. i__1 = nlp1;
  1060. for (i__ = 1; i__ <= i__1; ++i__) {
  1061. vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
  1062. vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
  1063. /* L170: */
  1064. }
  1065. i__1 = m;
  1066. for (i__ = nlp2; i__ <= i__1; ++i__) {
  1067. vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
  1068. vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
  1069. /* L180: */
  1070. }
  1071. } else {
  1072. scopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
  1073. }
  1074. if (m > n) {
  1075. scopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
  1076. }
  1077. /* The deflated singular values and their corresponding vectors go */
  1078. /* into the back of D, U, and V respectively. */
  1079. if (n > *k) {
  1080. i__1 = n - *k;
  1081. scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
  1082. i__1 = n - *k;
  1083. slacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
  1084. * u_dim1 + 1], ldu);
  1085. i__1 = n - *k;
  1086. slacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
  1087. vt_dim1], ldvt);
  1088. }
  1089. /* Copy CTOT into COLTYP for referencing in SLASD3. */
  1090. for (j = 1; j <= 4; ++j) {
  1091. coltyp[j] = ctot[j - 1];
  1092. /* L190: */
  1093. }
  1094. return;
  1095. /* End of SLASD2 */
  1096. } /* slasd2_ */