You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cstein.c 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__2 = 2;
  485. static integer c__1 = 1;
  486. static integer c_n1 = -1;
  487. /* > \brief \b CSTEIN */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download CSTEIN + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstein.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstein.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstein.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE CSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, */
  506. /* IWORK, IFAIL, INFO ) */
  507. /* INTEGER INFO, LDZ, M, N */
  508. /* INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ), */
  509. /* $ IWORK( * ) */
  510. /* REAL D( * ), E( * ), W( * ), WORK( * ) */
  511. /* COMPLEX Z( LDZ, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CSTEIN computes the eigenvectors of a real symmetric tridiagonal */
  518. /* > matrix T corresponding to specified eigenvalues, using inverse */
  519. /* > iteration. */
  520. /* > */
  521. /* > The maximum number of iterations allowed for each eigenvector is */
  522. /* > specified by an internal parameter MAXITS (currently set to 5). */
  523. /* > */
  524. /* > Although the eigenvectors are real, they are stored in a complex */
  525. /* > array, which may be passed to CUNMTR or CUPMTR for back */
  526. /* > transformation to the eigenvectors of a complex Hermitian matrix */
  527. /* > which was reduced to tridiagonal form. */
  528. /* > */
  529. /* > \endverbatim */
  530. /* Arguments: */
  531. /* ========== */
  532. /* > \param[in] N */
  533. /* > \verbatim */
  534. /* > N is INTEGER */
  535. /* > The order of the matrix. N >= 0. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] D */
  539. /* > \verbatim */
  540. /* > D is REAL array, dimension (N) */
  541. /* > The n diagonal elements of the tridiagonal matrix T. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] E */
  545. /* > \verbatim */
  546. /* > E is REAL array, dimension (N-1) */
  547. /* > The (n-1) subdiagonal elements of the tridiagonal matrix */
  548. /* > T, stored in elements 1 to N-1. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] M */
  552. /* > \verbatim */
  553. /* > M is INTEGER */
  554. /* > The number of eigenvectors to be found. 0 <= M <= N. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] W */
  558. /* > \verbatim */
  559. /* > W is REAL array, dimension (N) */
  560. /* > The first M elements of W contain the eigenvalues for */
  561. /* > which eigenvectors are to be computed. The eigenvalues */
  562. /* > should be grouped by split-off block and ordered from */
  563. /* > smallest to largest within the block. ( The output array */
  564. /* > W from SSTEBZ with ORDER = 'B' is expected here. ) */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] IBLOCK */
  568. /* > \verbatim */
  569. /* > IBLOCK is INTEGER array, dimension (N) */
  570. /* > The submatrix indices associated with the corresponding */
  571. /* > eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to */
  572. /* > the first submatrix from the top, =2 if W(i) belongs to */
  573. /* > the second submatrix, etc. ( The output array IBLOCK */
  574. /* > from SSTEBZ is expected here. ) */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] ISPLIT */
  578. /* > \verbatim */
  579. /* > ISPLIT is INTEGER array, dimension (N) */
  580. /* > The splitting points, at which T breaks up into submatrices. */
  581. /* > The first submatrix consists of rows/columns 1 to */
  582. /* > ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
  583. /* > through ISPLIT( 2 ), etc. */
  584. /* > ( The output array ISPLIT from SSTEBZ is expected here. ) */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] Z */
  588. /* > \verbatim */
  589. /* > Z is COMPLEX array, dimension (LDZ, M) */
  590. /* > The computed eigenvectors. The eigenvector associated */
  591. /* > with the eigenvalue W(i) is stored in the i-th column of */
  592. /* > Z. Any vector which fails to converge is set to its current */
  593. /* > iterate after MAXITS iterations. */
  594. /* > The imaginary parts of the eigenvectors are set to zero. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDZ */
  598. /* > \verbatim */
  599. /* > LDZ is INTEGER */
  600. /* > The leading dimension of the array Z. LDZ >= f2cmax(1,N). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] WORK */
  604. /* > \verbatim */
  605. /* > WORK is REAL array, dimension (5*N) */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] IWORK */
  609. /* > \verbatim */
  610. /* > IWORK is INTEGER array, dimension (N) */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] IFAIL */
  614. /* > \verbatim */
  615. /* > IFAIL is INTEGER array, dimension (M) */
  616. /* > On normal exit, all elements of IFAIL are zero. */
  617. /* > If one or more eigenvectors fail to converge after */
  618. /* > MAXITS iterations, then their indices are stored in */
  619. /* > array IFAIL. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] INFO */
  623. /* > \verbatim */
  624. /* > INFO is INTEGER */
  625. /* > = 0: successful exit */
  626. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  627. /* > > 0: if INFO = i, then i eigenvectors failed to converge */
  628. /* > in MAXITS iterations. Their indices are stored in */
  629. /* > array IFAIL. */
  630. /* > \endverbatim */
  631. /* > \par Internal Parameters: */
  632. /* ========================= */
  633. /* > */
  634. /* > \verbatim */
  635. /* > MAXITS INTEGER, default = 5 */
  636. /* > The maximum number of iterations performed. */
  637. /* > */
  638. /* > EXTRA INTEGER, default = 2 */
  639. /* > The number of iterations performed after norm growth */
  640. /* > criterion is satisfied, should be at least 1. */
  641. /* > \endverbatim */
  642. /* Authors: */
  643. /* ======== */
  644. /* > \author Univ. of Tennessee */
  645. /* > \author Univ. of California Berkeley */
  646. /* > \author Univ. of Colorado Denver */
  647. /* > \author NAG Ltd. */
  648. /* > \date December 2016 */
  649. /* > \ingroup complexOTHERcomputational */
  650. /* ===================================================================== */
  651. /* Subroutine */ void cstein_(integer *n, real *d__, real *e, integer *m, real
  652. *w, integer *iblock, integer *isplit, complex *z__, integer *ldz,
  653. real *work, integer *iwork, integer *ifail, integer *info)
  654. {
  655. /* System generated locals */
  656. integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
  657. real r__1, r__2, r__3, r__4, r__5;
  658. complex q__1;
  659. /* Local variables */
  660. integer jblk, nblk, jmax;
  661. extern real snrm2_(integer *, real *, integer *);
  662. integer i__, j, iseed[4], gpind, iinfo;
  663. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  664. integer b1, j1;
  665. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  666. integer *);
  667. real ortol;
  668. integer indrv1, indrv2, indrv3, indrv4, indrv5, bn, jr;
  669. real xj;
  670. extern real slamch_(char *);
  671. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  672. extern void slagtf_(
  673. integer *, real *, real *, real *, real *, real *, real *,
  674. integer *, integer *);
  675. integer nrmchk;
  676. extern integer isamax_(integer *, real *, integer *);
  677. extern /* Subroutine */ void slagts_(integer *, integer *, real *, real *,
  678. real *, real *, integer *, real *, real *, integer *);
  679. integer blksiz;
  680. real onenrm, pertol;
  681. extern /* Subroutine */ void slarnv_(integer *, integer *, integer *, real
  682. *);
  683. real stpcrt, scl, eps, ctr, sep, nrm, tol;
  684. integer its;
  685. real xjm, eps1;
  686. /* -- LAPACK computational routine (version 3.7.0) -- */
  687. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  688. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  689. /* December 2016 */
  690. /* ===================================================================== */
  691. /* Test the input parameters. */
  692. /* Parameter adjustments */
  693. --d__;
  694. --e;
  695. --w;
  696. --iblock;
  697. --isplit;
  698. z_dim1 = *ldz;
  699. z_offset = 1 + z_dim1 * 1;
  700. z__ -= z_offset;
  701. --work;
  702. --iwork;
  703. --ifail;
  704. /* Function Body */
  705. *info = 0;
  706. i__1 = *m;
  707. for (i__ = 1; i__ <= i__1; ++i__) {
  708. ifail[i__] = 0;
  709. /* L10: */
  710. }
  711. if (*n < 0) {
  712. *info = -1;
  713. } else if (*m < 0 || *m > *n) {
  714. *info = -4;
  715. } else if (*ldz < f2cmax(1,*n)) {
  716. *info = -9;
  717. } else {
  718. i__1 = *m;
  719. for (j = 2; j <= i__1; ++j) {
  720. if (iblock[j] < iblock[j - 1]) {
  721. *info = -6;
  722. goto L30;
  723. }
  724. if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
  725. *info = -5;
  726. goto L30;
  727. }
  728. /* L20: */
  729. }
  730. L30:
  731. ;
  732. }
  733. if (*info != 0) {
  734. i__1 = -(*info);
  735. xerbla_("CSTEIN", &i__1, (ftnlen)6);
  736. return;
  737. }
  738. /* Quick return if possible */
  739. if (*n == 0 || *m == 0) {
  740. return;
  741. } else if (*n == 1) {
  742. i__1 = z_dim1 + 1;
  743. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  744. return;
  745. }
  746. /* Get machine constants. */
  747. eps = slamch_("Precision");
  748. /* Initialize seed for random number generator SLARNV. */
  749. for (i__ = 1; i__ <= 4; ++i__) {
  750. iseed[i__ - 1] = 1;
  751. /* L40: */
  752. }
  753. /* Initialize pointers. */
  754. indrv1 = 0;
  755. indrv2 = indrv1 + *n;
  756. indrv3 = indrv2 + *n;
  757. indrv4 = indrv3 + *n;
  758. indrv5 = indrv4 + *n;
  759. /* Compute eigenvectors of matrix blocks. */
  760. j1 = 1;
  761. i__1 = iblock[*m];
  762. for (nblk = 1; nblk <= i__1; ++nblk) {
  763. /* Find starting and ending indices of block nblk. */
  764. if (nblk == 1) {
  765. b1 = 1;
  766. } else {
  767. b1 = isplit[nblk - 1] + 1;
  768. }
  769. bn = isplit[nblk];
  770. blksiz = bn - b1 + 1;
  771. if (blksiz == 1) {
  772. goto L60;
  773. }
  774. gpind = j1;
  775. /* Compute reorthogonalization criterion and stopping criterion. */
  776. onenrm = (r__1 = d__[b1], abs(r__1)) + (r__2 = e[b1], abs(r__2));
  777. /* Computing MAX */
  778. r__3 = onenrm, r__4 = (r__1 = d__[bn], abs(r__1)) + (r__2 = e[bn - 1],
  779. abs(r__2));
  780. onenrm = f2cmax(r__3,r__4);
  781. i__2 = bn - 1;
  782. for (i__ = b1 + 1; i__ <= i__2; ++i__) {
  783. /* Computing MAX */
  784. r__4 = onenrm, r__5 = (r__1 = d__[i__], abs(r__1)) + (r__2 = e[
  785. i__ - 1], abs(r__2)) + (r__3 = e[i__], abs(r__3));
  786. onenrm = f2cmax(r__4,r__5);
  787. /* L50: */
  788. }
  789. ortol = onenrm * .001f;
  790. stpcrt = sqrt(.1f / blksiz);
  791. /* Loop through eigenvalues of block nblk. */
  792. L60:
  793. jblk = 0;
  794. i__2 = *m;
  795. for (j = j1; j <= i__2; ++j) {
  796. if (iblock[j] != nblk) {
  797. j1 = j;
  798. goto L180;
  799. }
  800. ++jblk;
  801. xj = w[j];
  802. /* Skip all the work if the block size is one. */
  803. if (blksiz == 1) {
  804. work[indrv1 + 1] = 1.f;
  805. goto L140;
  806. }
  807. /* If eigenvalues j and j-1 are too close, add a relatively */
  808. /* small perturbation. */
  809. if (jblk > 1) {
  810. eps1 = (r__1 = eps * xj, abs(r__1));
  811. pertol = eps1 * 10.f;
  812. sep = xj - xjm;
  813. if (sep < pertol) {
  814. xj = xjm + pertol;
  815. }
  816. }
  817. its = 0;
  818. nrmchk = 0;
  819. /* Get random starting vector. */
  820. slarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);
  821. /* Copy the matrix T so it won't be destroyed in factorization. */
  822. scopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
  823. i__3 = blksiz - 1;
  824. scopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
  825. i__3 = blksiz - 1;
  826. scopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);
  827. /* Compute LU factors with partial pivoting ( PT = LU ) */
  828. tol = 0.f;
  829. slagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
  830. indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);
  831. /* Update iteration count. */
  832. L70:
  833. ++its;
  834. if (its > 5) {
  835. goto L120;
  836. }
  837. /* Normalize and scale the righthand side vector Pb. */
  838. jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
  839. /* Computing MAX */
  840. r__3 = eps, r__4 = (r__1 = work[indrv4 + blksiz], abs(r__1));
  841. scl = blksiz * onenrm * f2cmax(r__3,r__4) / (r__2 = work[indrv1 +
  842. jmax], abs(r__2));
  843. sscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
  844. /* Solve the system LU = Pb. */
  845. slagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
  846. work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
  847. indrv1 + 1], &tol, &iinfo);
  848. /* Reorthogonalize by modified Gram-Schmidt if eigenvalues are */
  849. /* close enough. */
  850. if (jblk == 1) {
  851. goto L110;
  852. }
  853. if ((r__1 = xj - xjm, abs(r__1)) > ortol) {
  854. gpind = j;
  855. }
  856. if (gpind != j) {
  857. i__3 = j - 1;
  858. for (i__ = gpind; i__ <= i__3; ++i__) {
  859. ctr = 0.f;
  860. i__4 = blksiz;
  861. for (jr = 1; jr <= i__4; ++jr) {
  862. i__5 = b1 - 1 + jr + i__ * z_dim1;
  863. ctr += work[indrv1 + jr] * z__[i__5].r;
  864. /* L80: */
  865. }
  866. i__4 = blksiz;
  867. for (jr = 1; jr <= i__4; ++jr) {
  868. i__5 = b1 - 1 + jr + i__ * z_dim1;
  869. work[indrv1 + jr] -= ctr * z__[i__5].r;
  870. /* L90: */
  871. }
  872. /* L100: */
  873. }
  874. }
  875. /* Check the infinity norm of the iterate. */
  876. L110:
  877. jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
  878. nrm = (r__1 = work[indrv1 + jmax], abs(r__1));
  879. /* Continue for additional iterations after norm reaches */
  880. /* stopping criterion. */
  881. if (nrm < stpcrt) {
  882. goto L70;
  883. }
  884. ++nrmchk;
  885. if (nrmchk < 3) {
  886. goto L70;
  887. }
  888. goto L130;
  889. /* If stopping criterion was not satisfied, update info and */
  890. /* store eigenvector number in array ifail. */
  891. L120:
  892. ++(*info);
  893. ifail[*info] = j;
  894. /* Accept iterate as jth eigenvector. */
  895. L130:
  896. scl = 1.f / snrm2_(&blksiz, &work[indrv1 + 1], &c__1);
  897. jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
  898. if (work[indrv1 + jmax] < 0.f) {
  899. scl = -scl;
  900. }
  901. sscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
  902. L140:
  903. i__3 = *n;
  904. for (i__ = 1; i__ <= i__3; ++i__) {
  905. i__4 = i__ + j * z_dim1;
  906. z__[i__4].r = 0.f, z__[i__4].i = 0.f;
  907. /* L150: */
  908. }
  909. i__3 = blksiz;
  910. for (i__ = 1; i__ <= i__3; ++i__) {
  911. i__4 = b1 + i__ - 1 + j * z_dim1;
  912. i__5 = indrv1 + i__;
  913. q__1.r = work[i__5], q__1.i = 0.f;
  914. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  915. /* L160: */
  916. }
  917. /* Save the shift to check eigenvalue spacing at next */
  918. /* iteration. */
  919. xjm = xj;
  920. /* L170: */
  921. }
  922. L180:
  923. ;
  924. }
  925. return;
  926. /* End of CSTEIN */
  927. } /* cstein_ */