You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetf2_rk.c 54 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b ZHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded
  488. Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm). */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZHETF2_RK + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2_
  495. rk.f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2_
  498. rk.f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2_
  501. rk.f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZHETF2_RK( UPLO, N, A, LDA, E, IPIV, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, LDA, N */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX*16 A( LDA, * ), E ( * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > ZHETF2_RK computes the factorization of a complex Hermitian matrix A */
  516. /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
  517. /* > */
  518. /* > A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), */
  519. /* > */
  520. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  521. /* > U**H (or L**H) is the conjugate of U (or L), P is a permutation */
  522. /* > matrix, P**T is the transpose of P, and D is Hermitian and block */
  523. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  524. /* > */
  525. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  526. /* > For more information see Further Details section. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] UPLO */
  531. /* > \verbatim */
  532. /* > UPLO is CHARACTER*1 */
  533. /* > Specifies whether the upper or lower triangular part of the */
  534. /* > Hermitian matrix A is stored: */
  535. /* > = 'U': Upper triangular */
  536. /* > = 'L': Lower triangular */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] N */
  540. /* > \verbatim */
  541. /* > N is INTEGER */
  542. /* > The order of the matrix A. N >= 0. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in,out] A */
  546. /* > \verbatim */
  547. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  548. /* > On entry, the Hermitian matrix A. */
  549. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  550. /* > of A contains the upper triangular part of the matrix A, */
  551. /* > and the strictly lower triangular part of A is not */
  552. /* > referenced. */
  553. /* > */
  554. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  555. /* > of A contains the lower triangular part of the matrix A, */
  556. /* > and the strictly upper triangular part of A is not */
  557. /* > referenced. */
  558. /* > */
  559. /* > On exit, contains: */
  560. /* > a) ONLY diagonal elements of the Hermitian block diagonal */
  561. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  562. /* > (superdiagonal (or subdiagonal) elements of D */
  563. /* > are stored on exit in array E), and */
  564. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  565. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] LDA */
  569. /* > \verbatim */
  570. /* > LDA is INTEGER */
  571. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[out] E */
  575. /* > \verbatim */
  576. /* > E is COMPLEX*16 array, dimension (N) */
  577. /* > On exit, contains the superdiagonal (or subdiagonal) */
  578. /* > elements of the Hermitian block diagonal matrix D */
  579. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  580. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  581. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  582. /* > */
  583. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  584. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  585. /* > UPLO = 'U' or UPLO = 'L' cases. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[out] IPIV */
  589. /* > \verbatim */
  590. /* > IPIV is INTEGER array, dimension (N) */
  591. /* > IPIV describes the permutation matrix P in the factorization */
  592. /* > of matrix A as follows. The absolute value of IPIV(k) */
  593. /* > represents the index of row and column that were */
  594. /* > interchanged with the k-th row and column. The value of UPLO */
  595. /* > describes the order in which the interchanges were applied. */
  596. /* > Also, the sign of IPIV represents the block structure of */
  597. /* > the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 */
  598. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  599. /* > at each factorization step. For more info see Further */
  600. /* > Details section. */
  601. /* > */
  602. /* > If UPLO = 'U', */
  603. /* > ( in factorization order, k decreases from N to 1 ): */
  604. /* > a) A single positive entry IPIV(k) > 0 means: */
  605. /* > D(k,k) is a 1-by-1 diagonal block. */
  606. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  607. /* > interchanged in the matrix A(1:N,1:N); */
  608. /* > If IPIV(k) = k, no interchange occurred. */
  609. /* > */
  610. /* > b) A pair of consecutive negative entries */
  611. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  612. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  613. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  614. /* > 1) If -IPIV(k) != k, rows and columns */
  615. /* > k and -IPIV(k) were interchanged */
  616. /* > in the matrix A(1:N,1:N). */
  617. /* > If -IPIV(k) = k, no interchange occurred. */
  618. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  619. /* > k-1 and -IPIV(k-1) were interchanged */
  620. /* > in the matrix A(1:N,1:N). */
  621. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  622. /* > */
  623. /* > c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
  624. /* > */
  625. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  626. /* > */
  627. /* > If UPLO = 'L', */
  628. /* > ( in factorization order, k increases from 1 to N ): */
  629. /* > a) A single positive entry IPIV(k) > 0 means: */
  630. /* > D(k,k) is a 1-by-1 diagonal block. */
  631. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  632. /* > interchanged in the matrix A(1:N,1:N). */
  633. /* > If IPIV(k) = k, no interchange occurred. */
  634. /* > */
  635. /* > b) A pair of consecutive negative entries */
  636. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  637. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  638. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  639. /* > 1) If -IPIV(k) != k, rows and columns */
  640. /* > k and -IPIV(k) were interchanged */
  641. /* > in the matrix A(1:N,1:N). */
  642. /* > If -IPIV(k) = k, no interchange occurred. */
  643. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  644. /* > k-1 and -IPIV(k-1) were interchanged */
  645. /* > in the matrix A(1:N,1:N). */
  646. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  647. /* > */
  648. /* > c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
  649. /* > */
  650. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] INFO */
  654. /* > \verbatim */
  655. /* > INFO is INTEGER */
  656. /* > = 0: successful exit */
  657. /* > */
  658. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  659. /* > */
  660. /* > > 0: If INFO = k, the matrix A is singular, because: */
  661. /* > If UPLO = 'U': column k in the upper */
  662. /* > triangular part of A contains all zeros. */
  663. /* > If UPLO = 'L': column k in the lower */
  664. /* > triangular part of A contains all zeros. */
  665. /* > */
  666. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  667. /* > elements of column k of U (or subdiagonal elements of */
  668. /* > column k of L ) are all zeros. The factorization has */
  669. /* > been completed, but the block diagonal matrix D is */
  670. /* > exactly singular, and division by zero will occur if */
  671. /* > it is used to solve a system of equations. */
  672. /* > */
  673. /* > NOTE: INFO only stores the first occurrence of */
  674. /* > a singularity, any subsequent occurrence of singularity */
  675. /* > is not stored in INFO even though the factorization */
  676. /* > always completes. */
  677. /* > \endverbatim */
  678. /* Authors: */
  679. /* ======== */
  680. /* > \author Univ. of Tennessee */
  681. /* > \author Univ. of California Berkeley */
  682. /* > \author Univ. of Colorado Denver */
  683. /* > \author NAG Ltd. */
  684. /* > \date December 2016 */
  685. /* > \ingroup complex16HEcomputational */
  686. /* > \par Further Details: */
  687. /* ===================== */
  688. /* > */
  689. /* > \verbatim */
  690. /* > TODO: put further details */
  691. /* > \endverbatim */
  692. /* > \par Contributors: */
  693. /* ================== */
  694. /* > */
  695. /* > \verbatim */
  696. /* > */
  697. /* > December 2016, Igor Kozachenko, */
  698. /* > Computer Science Division, */
  699. /* > University of California, Berkeley */
  700. /* > */
  701. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  702. /* > School of Mathematics, */
  703. /* > University of Manchester */
  704. /* > */
  705. /* > 01-01-96 - Based on modifications by */
  706. /* > J. Lewis, Boeing Computer Services Company */
  707. /* > A. Petitet, Computer Science Dept., */
  708. /* > Univ. of Tenn., Knoxville abd , USA */
  709. /* > \endverbatim */
  710. /* ===================================================================== */
  711. /* Subroutine */ int zhetf2_rk_(char *uplo, integer *n, doublecomplex *a,
  712. integer *lda, doublecomplex *e, integer *ipiv, integer *info)
  713. {
  714. /* System generated locals */
  715. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  716. doublereal d__1, d__2;
  717. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8;
  718. /* Local variables */
  719. logical done;
  720. integer imax, jmax;
  721. extern /* Subroutine */ int zher_(char *, integer *, doublereal *,
  722. doublecomplex *, integer *, doublecomplex *, integer *);
  723. doublereal d__;
  724. integer i__, j, k, p;
  725. doublecomplex t;
  726. doublereal alpha;
  727. extern logical lsame_(char *, char *);
  728. doublereal dtemp, sfmin;
  729. integer itemp, kstep;
  730. logical upper;
  731. doublereal r1;
  732. extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
  733. doublecomplex *, integer *);
  734. extern doublereal dlapy2_(doublereal *, doublereal *);
  735. doublereal d11;
  736. doublecomplex d12;
  737. doublereal d22;
  738. doublecomplex d21;
  739. integer ii, kk;
  740. extern doublereal dlamch_(char *);
  741. integer kp;
  742. doublereal absakk;
  743. doublecomplex wk;
  744. doublereal tt;
  745. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
  746. integer *, doublereal *, doublecomplex *, integer *);
  747. doublereal colmax;
  748. extern integer izamax_(integer *, doublecomplex *, integer *);
  749. doublereal rowmax;
  750. doublecomplex wkm1, wkp1;
  751. /* -- LAPACK computational routine (version 3.7.0) -- */
  752. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  753. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  754. /* December 2016 */
  755. /* ====================================================================== */
  756. /* Test the input parameters. */
  757. /* Parameter adjustments */
  758. a_dim1 = *lda;
  759. a_offset = 1 + a_dim1 * 1;
  760. a -= a_offset;
  761. --e;
  762. --ipiv;
  763. /* Function Body */
  764. *info = 0;
  765. upper = lsame_(uplo, "U");
  766. if (! upper && ! lsame_(uplo, "L")) {
  767. *info = -1;
  768. } else if (*n < 0) {
  769. *info = -2;
  770. } else if (*lda < f2cmax(1,*n)) {
  771. *info = -4;
  772. }
  773. if (*info != 0) {
  774. i__1 = -(*info);
  775. xerbla_("ZHETF2_RK", &i__1, (ftnlen)9);
  776. return 0;
  777. }
  778. /* Initialize ALPHA for use in choosing pivot block size. */
  779. alpha = (sqrt(17.) + 1.) / 8.;
  780. /* Compute machine safe minimum */
  781. sfmin = dlamch_("S");
  782. if (upper) {
  783. /* Factorize A as U*D*U**H using the upper triangle of A */
  784. /* Initialize the first entry of array E, where superdiagonal */
  785. /* elements of D are stored */
  786. e[1].r = 0., e[1].i = 0.;
  787. /* K is the main loop index, decreasing from N to 1 in steps of */
  788. /* 1 or 2 */
  789. k = *n;
  790. L10:
  791. /* If K < 1, exit from loop */
  792. if (k < 1) {
  793. goto L34;
  794. }
  795. kstep = 1;
  796. p = k;
  797. /* Determine rows and columns to be interchanged and whether */
  798. /* a 1-by-1 or 2-by-2 pivot block will be used */
  799. i__1 = k + k * a_dim1;
  800. absakk = (d__1 = a[i__1].r, abs(d__1));
  801. /* IMAX is the row-index of the largest off-diagonal element in */
  802. /* column K, and COLMAX is its absolute value. */
  803. /* Determine both COLMAX and IMAX. */
  804. if (k > 1) {
  805. i__1 = k - 1;
  806. imax = izamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  807. i__1 = imax + k * a_dim1;
  808. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  809. k * a_dim1]), abs(d__2));
  810. } else {
  811. colmax = 0.;
  812. }
  813. if (f2cmax(absakk,colmax) == 0.) {
  814. /* Column K is zero or underflow: set INFO and continue */
  815. if (*info == 0) {
  816. *info = k;
  817. }
  818. kp = k;
  819. i__1 = k + k * a_dim1;
  820. i__2 = k + k * a_dim1;
  821. d__1 = a[i__2].r;
  822. a[i__1].r = d__1, a[i__1].i = 0.;
  823. /* Set E( K ) to zero */
  824. if (k > 1) {
  825. i__1 = k;
  826. e[i__1].r = 0., e[i__1].i = 0.;
  827. }
  828. } else {
  829. /* ============================================================ */
  830. /* BEGIN pivot search */
  831. /* Case(1) */
  832. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  833. /* (used to handle NaN and Inf) */
  834. if (! (absakk < alpha * colmax)) {
  835. /* no interchange, use 1-by-1 pivot block */
  836. kp = k;
  837. } else {
  838. done = FALSE_;
  839. /* Loop until pivot found */
  840. L12:
  841. /* BEGIN pivot search loop body */
  842. /* JMAX is the column-index of the largest off-diagonal */
  843. /* element in row IMAX, and ROWMAX is its absolute value. */
  844. /* Determine both ROWMAX and JMAX. */
  845. if (imax != k) {
  846. i__1 = k - imax;
  847. jmax = imax + izamax_(&i__1, &a[imax + (imax + 1) *
  848. a_dim1], lda);
  849. i__1 = imax + jmax * a_dim1;
  850. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  851. a[imax + jmax * a_dim1]), abs(d__2));
  852. } else {
  853. rowmax = 0.;
  854. }
  855. if (imax > 1) {
  856. i__1 = imax - 1;
  857. itemp = izamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  858. i__1 = itemp + imax * a_dim1;
  859. dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  860. itemp + imax * a_dim1]), abs(d__2));
  861. if (dtemp > rowmax) {
  862. rowmax = dtemp;
  863. jmax = itemp;
  864. }
  865. }
  866. /* Case(2) */
  867. /* Equivalent to testing for */
  868. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  869. /* (used to handle NaN and Inf) */
  870. i__1 = imax + imax * a_dim1;
  871. if (! ((d__1 = a[i__1].r, abs(d__1)) < alpha * rowmax)) {
  872. /* interchange rows and columns K and IMAX, */
  873. /* use 1-by-1 pivot block */
  874. kp = imax;
  875. done = TRUE_;
  876. /* Case(3) */
  877. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  878. /* (used to handle NaN and Inf) */
  879. } else if (p == jmax || rowmax <= colmax) {
  880. /* interchange rows and columns K-1 and IMAX, */
  881. /* use 2-by-2 pivot block */
  882. kp = imax;
  883. kstep = 2;
  884. done = TRUE_;
  885. /* Case(4) */
  886. } else {
  887. /* Pivot not found: set params and repeat */
  888. p = imax;
  889. colmax = rowmax;
  890. imax = jmax;
  891. }
  892. /* END pivot search loop body */
  893. if (! done) {
  894. goto L12;
  895. }
  896. }
  897. /* END pivot search */
  898. /* ============================================================ */
  899. /* KK is the column of A where pivoting step stopped */
  900. kk = k - kstep + 1;
  901. /* For only a 2x2 pivot, interchange rows and columns K and P */
  902. /* in the leading submatrix A(1:k,1:k) */
  903. if (kstep == 2 && p != k) {
  904. /* (1) Swap columnar parts */
  905. if (p > 1) {
  906. i__1 = p - 1;
  907. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  908. 1], &c__1);
  909. }
  910. /* (2) Swap and conjugate middle parts */
  911. i__1 = k - 1;
  912. for (j = p + 1; j <= i__1; ++j) {
  913. d_cnjg(&z__1, &a[j + k * a_dim1]);
  914. t.r = z__1.r, t.i = z__1.i;
  915. i__2 = j + k * a_dim1;
  916. d_cnjg(&z__1, &a[p + j * a_dim1]);
  917. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  918. i__2 = p + j * a_dim1;
  919. a[i__2].r = t.r, a[i__2].i = t.i;
  920. /* L14: */
  921. }
  922. /* (3) Swap and conjugate corner elements at row-col interserction */
  923. i__1 = p + k * a_dim1;
  924. d_cnjg(&z__1, &a[p + k * a_dim1]);
  925. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  926. /* (4) Swap diagonal elements at row-col intersection */
  927. i__1 = k + k * a_dim1;
  928. r1 = a[i__1].r;
  929. i__1 = k + k * a_dim1;
  930. i__2 = p + p * a_dim1;
  931. d__1 = a[i__2].r;
  932. a[i__1].r = d__1, a[i__1].i = 0.;
  933. i__1 = p + p * a_dim1;
  934. a[i__1].r = r1, a[i__1].i = 0.;
  935. /* Convert upper triangle of A into U form by applying */
  936. /* the interchanges in columns k+1:N. */
  937. if (k < *n) {
  938. i__1 = *n - k;
  939. zswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
  940. 1) * a_dim1], lda);
  941. }
  942. }
  943. /* For both 1x1 and 2x2 pivots, interchange rows and */
  944. /* columns KK and KP in the leading submatrix A(1:k,1:k) */
  945. if (kp != kk) {
  946. /* (1) Swap columnar parts */
  947. if (kp > 1) {
  948. i__1 = kp - 1;
  949. zswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  950. + 1], &c__1);
  951. }
  952. /* (2) Swap and conjugate middle parts */
  953. i__1 = kk - 1;
  954. for (j = kp + 1; j <= i__1; ++j) {
  955. d_cnjg(&z__1, &a[j + kk * a_dim1]);
  956. t.r = z__1.r, t.i = z__1.i;
  957. i__2 = j + kk * a_dim1;
  958. d_cnjg(&z__1, &a[kp + j * a_dim1]);
  959. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  960. i__2 = kp + j * a_dim1;
  961. a[i__2].r = t.r, a[i__2].i = t.i;
  962. /* L15: */
  963. }
  964. /* (3) Swap and conjugate corner elements at row-col interserction */
  965. i__1 = kp + kk * a_dim1;
  966. d_cnjg(&z__1, &a[kp + kk * a_dim1]);
  967. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  968. /* (4) Swap diagonal elements at row-col intersection */
  969. i__1 = kk + kk * a_dim1;
  970. r1 = a[i__1].r;
  971. i__1 = kk + kk * a_dim1;
  972. i__2 = kp + kp * a_dim1;
  973. d__1 = a[i__2].r;
  974. a[i__1].r = d__1, a[i__1].i = 0.;
  975. i__1 = kp + kp * a_dim1;
  976. a[i__1].r = r1, a[i__1].i = 0.;
  977. if (kstep == 2) {
  978. /* (*) Make sure that diagonal element of pivot is real */
  979. i__1 = k + k * a_dim1;
  980. i__2 = k + k * a_dim1;
  981. d__1 = a[i__2].r;
  982. a[i__1].r = d__1, a[i__1].i = 0.;
  983. /* (5) Swap row elements */
  984. i__1 = k - 1 + k * a_dim1;
  985. t.r = a[i__1].r, t.i = a[i__1].i;
  986. i__1 = k - 1 + k * a_dim1;
  987. i__2 = kp + k * a_dim1;
  988. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  989. i__1 = kp + k * a_dim1;
  990. a[i__1].r = t.r, a[i__1].i = t.i;
  991. }
  992. /* Convert upper triangle of A into U form by applying */
  993. /* the interchanges in columns k+1:N. */
  994. if (k < *n) {
  995. i__1 = *n - k;
  996. zswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  997. + 1) * a_dim1], lda);
  998. }
  999. } else {
  1000. /* (*) Make sure that diagonal element of pivot is real */
  1001. i__1 = k + k * a_dim1;
  1002. i__2 = k + k * a_dim1;
  1003. d__1 = a[i__2].r;
  1004. a[i__1].r = d__1, a[i__1].i = 0.;
  1005. if (kstep == 2) {
  1006. i__1 = k - 1 + (k - 1) * a_dim1;
  1007. i__2 = k - 1 + (k - 1) * a_dim1;
  1008. d__1 = a[i__2].r;
  1009. a[i__1].r = d__1, a[i__1].i = 0.;
  1010. }
  1011. }
  1012. /* Update the leading submatrix */
  1013. if (kstep == 1) {
  1014. /* 1-by-1 pivot block D(k): column k now holds */
  1015. /* W(k) = U(k)*D(k) */
  1016. /* where U(k) is the k-th column of U */
  1017. if (k > 1) {
  1018. /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
  1019. /* store U(k) in column k */
  1020. i__1 = k + k * a_dim1;
  1021. if ((d__1 = a[i__1].r, abs(d__1)) >= sfmin) {
  1022. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  1023. /* A := A - U(k)*D(k)*U(k)**T */
  1024. /* = A - W(k)*1/D(k)*W(k)**T */
  1025. i__1 = k + k * a_dim1;
  1026. d11 = 1. / a[i__1].r;
  1027. i__1 = k - 1;
  1028. d__1 = -d11;
  1029. zher_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &
  1030. a[a_offset], lda);
  1031. /* Store U(k) in column k */
  1032. i__1 = k - 1;
  1033. zdscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
  1034. } else {
  1035. /* Store L(k) in column K */
  1036. i__1 = k + k * a_dim1;
  1037. d11 = a[i__1].r;
  1038. i__1 = k - 1;
  1039. for (ii = 1; ii <= i__1; ++ii) {
  1040. i__2 = ii + k * a_dim1;
  1041. i__3 = ii + k * a_dim1;
  1042. z__1.r = a[i__3].r / d11, z__1.i = a[i__3].i /
  1043. d11;
  1044. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1045. /* L16: */
  1046. }
  1047. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1048. /* A := A - U(k)*D(k)*U(k)**T */
  1049. /* = A - W(k)*(1/D(k))*W(k)**T */
  1050. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1051. i__1 = k - 1;
  1052. d__1 = -d11;
  1053. zher_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &
  1054. a[a_offset], lda);
  1055. }
  1056. /* Store the superdiagonal element of D in array E */
  1057. i__1 = k;
  1058. e[i__1].r = 0., e[i__1].i = 0.;
  1059. }
  1060. } else {
  1061. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  1062. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  1063. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  1064. /* of U */
  1065. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  1066. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  1067. /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
  1068. /* and store L(k) and L(k+1) in columns k and k+1 */
  1069. if (k > 2) {
  1070. /* D = |A12| */
  1071. i__1 = k - 1 + k * a_dim1;
  1072. d__1 = a[i__1].r;
  1073. d__2 = d_imag(&a[k - 1 + k * a_dim1]);
  1074. d__ = dlapy2_(&d__1, &d__2);
  1075. i__1 = k + k * a_dim1;
  1076. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1077. d11 = z__1.r;
  1078. i__1 = k - 1 + (k - 1) * a_dim1;
  1079. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1080. d22 = z__1.r;
  1081. i__1 = k - 1 + k * a_dim1;
  1082. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1083. d12.r = z__1.r, d12.i = z__1.i;
  1084. tt = 1. / (d11 * d22 - 1.);
  1085. for (j = k - 2; j >= 1; --j) {
  1086. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1087. i__1 = j + (k - 1) * a_dim1;
  1088. z__3.r = d11 * a[i__1].r, z__3.i = d11 * a[i__1].i;
  1089. d_cnjg(&z__5, &d12);
  1090. i__2 = j + k * a_dim1;
  1091. z__4.r = z__5.r * a[i__2].r - z__5.i * a[i__2].i,
  1092. z__4.i = z__5.r * a[i__2].i + z__5.i * a[i__2]
  1093. .r;
  1094. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1095. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1096. wkm1.r = z__1.r, wkm1.i = z__1.i;
  1097. i__1 = j + k * a_dim1;
  1098. z__3.r = d22 * a[i__1].r, z__3.i = d22 * a[i__1].i;
  1099. i__2 = j + (k - 1) * a_dim1;
  1100. z__4.r = d12.r * a[i__2].r - d12.i * a[i__2].i,
  1101. z__4.i = d12.r * a[i__2].i + d12.i * a[i__2]
  1102. .r;
  1103. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1104. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1105. wk.r = z__1.r, wk.i = z__1.i;
  1106. /* Perform a rank-2 update of A(1:k-2,1:k-2) */
  1107. for (i__ = j; i__ >= 1; --i__) {
  1108. i__1 = i__ + j * a_dim1;
  1109. i__2 = i__ + j * a_dim1;
  1110. i__3 = i__ + k * a_dim1;
  1111. z__4.r = a[i__3].r / d__, z__4.i = a[i__3].i /
  1112. d__;
  1113. d_cnjg(&z__5, &wk);
  1114. z__3.r = z__4.r * z__5.r - z__4.i * z__5.i,
  1115. z__3.i = z__4.r * z__5.i + z__4.i *
  1116. z__5.r;
  1117. z__2.r = a[i__2].r - z__3.r, z__2.i = a[i__2].i -
  1118. z__3.i;
  1119. i__4 = i__ + (k - 1) * a_dim1;
  1120. z__7.r = a[i__4].r / d__, z__7.i = a[i__4].i /
  1121. d__;
  1122. d_cnjg(&z__8, &wkm1);
  1123. z__6.r = z__7.r * z__8.r - z__7.i * z__8.i,
  1124. z__6.i = z__7.r * z__8.i + z__7.i *
  1125. z__8.r;
  1126. z__1.r = z__2.r - z__6.r, z__1.i = z__2.i -
  1127. z__6.i;
  1128. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1129. /* L20: */
  1130. }
  1131. /* Store U(k) and U(k-1) in cols k and k-1 for row J */
  1132. i__1 = j + k * a_dim1;
  1133. z__1.r = wk.r / d__, z__1.i = wk.i / d__;
  1134. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1135. i__1 = j + (k - 1) * a_dim1;
  1136. z__1.r = wkm1.r / d__, z__1.i = wkm1.i / d__;
  1137. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1138. /* (*) Make sure that diagonal element of pivot is real */
  1139. i__1 = j + j * a_dim1;
  1140. i__2 = j + j * a_dim1;
  1141. d__1 = a[i__2].r;
  1142. z__1.r = d__1, z__1.i = 0.;
  1143. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1144. /* L30: */
  1145. }
  1146. }
  1147. /* Copy superdiagonal elements of D(K) to E(K) and */
  1148. /* ZERO out superdiagonal entry of A */
  1149. i__1 = k;
  1150. i__2 = k - 1 + k * a_dim1;
  1151. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  1152. i__1 = k - 1;
  1153. e[i__1].r = 0., e[i__1].i = 0.;
  1154. i__1 = k - 1 + k * a_dim1;
  1155. a[i__1].r = 0., a[i__1].i = 0.;
  1156. }
  1157. /* End column K is nonsingular */
  1158. }
  1159. /* Store details of the interchanges in IPIV */
  1160. if (kstep == 1) {
  1161. ipiv[k] = kp;
  1162. } else {
  1163. ipiv[k] = -p;
  1164. ipiv[k - 1] = -kp;
  1165. }
  1166. /* Decrease K and return to the start of the main loop */
  1167. k -= kstep;
  1168. goto L10;
  1169. L34:
  1170. ;
  1171. } else {
  1172. /* Factorize A as L*D*L**H using the lower triangle of A */
  1173. /* Initialize the unused last entry of the subdiagonal array E. */
  1174. i__1 = *n;
  1175. e[i__1].r = 0., e[i__1].i = 0.;
  1176. /* K is the main loop index, increasing from 1 to N in steps of */
  1177. /* 1 or 2 */
  1178. k = 1;
  1179. L40:
  1180. /* If K > N, exit from loop */
  1181. if (k > *n) {
  1182. goto L64;
  1183. }
  1184. kstep = 1;
  1185. p = k;
  1186. /* Determine rows and columns to be interchanged and whether */
  1187. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1188. i__1 = k + k * a_dim1;
  1189. absakk = (d__1 = a[i__1].r, abs(d__1));
  1190. /* IMAX is the row-index of the largest off-diagonal element in */
  1191. /* column K, and COLMAX is its absolute value. */
  1192. /* Determine both COLMAX and IMAX. */
  1193. if (k < *n) {
  1194. i__1 = *n - k;
  1195. imax = k + izamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  1196. i__1 = imax + k * a_dim1;
  1197. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  1198. k * a_dim1]), abs(d__2));
  1199. } else {
  1200. colmax = 0.;
  1201. }
  1202. if (f2cmax(absakk,colmax) == 0.) {
  1203. /* Column K is zero or underflow: set INFO and continue */
  1204. if (*info == 0) {
  1205. *info = k;
  1206. }
  1207. kp = k;
  1208. i__1 = k + k * a_dim1;
  1209. i__2 = k + k * a_dim1;
  1210. d__1 = a[i__2].r;
  1211. a[i__1].r = d__1, a[i__1].i = 0.;
  1212. /* Set E( K ) to zero */
  1213. if (k < *n) {
  1214. i__1 = k;
  1215. e[i__1].r = 0., e[i__1].i = 0.;
  1216. }
  1217. } else {
  1218. /* ============================================================ */
  1219. /* BEGIN pivot search */
  1220. /* Case(1) */
  1221. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1222. /* (used to handle NaN and Inf) */
  1223. if (! (absakk < alpha * colmax)) {
  1224. /* no interchange, use 1-by-1 pivot block */
  1225. kp = k;
  1226. } else {
  1227. done = FALSE_;
  1228. /* Loop until pivot found */
  1229. L42:
  1230. /* BEGIN pivot search loop body */
  1231. /* JMAX is the column-index of the largest off-diagonal */
  1232. /* element in row IMAX, and ROWMAX is its absolute value. */
  1233. /* Determine both ROWMAX and JMAX. */
  1234. if (imax != k) {
  1235. i__1 = imax - k;
  1236. jmax = k - 1 + izamax_(&i__1, &a[imax + k * a_dim1], lda);
  1237. i__1 = imax + jmax * a_dim1;
  1238. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  1239. a[imax + jmax * a_dim1]), abs(d__2));
  1240. } else {
  1241. rowmax = 0.;
  1242. }
  1243. if (imax < *n) {
  1244. i__1 = *n - imax;
  1245. itemp = imax + izamax_(&i__1, &a[imax + 1 + imax * a_dim1]
  1246. , &c__1);
  1247. i__1 = itemp + imax * a_dim1;
  1248. dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  1249. itemp + imax * a_dim1]), abs(d__2));
  1250. if (dtemp > rowmax) {
  1251. rowmax = dtemp;
  1252. jmax = itemp;
  1253. }
  1254. }
  1255. /* Case(2) */
  1256. /* Equivalent to testing for */
  1257. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  1258. /* (used to handle NaN and Inf) */
  1259. i__1 = imax + imax * a_dim1;
  1260. if (! ((d__1 = a[i__1].r, abs(d__1)) < alpha * rowmax)) {
  1261. /* interchange rows and columns K and IMAX, */
  1262. /* use 1-by-1 pivot block */
  1263. kp = imax;
  1264. done = TRUE_;
  1265. /* Case(3) */
  1266. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1267. /* (used to handle NaN and Inf) */
  1268. } else if (p == jmax || rowmax <= colmax) {
  1269. /* interchange rows and columns K+1 and IMAX, */
  1270. /* use 2-by-2 pivot block */
  1271. kp = imax;
  1272. kstep = 2;
  1273. done = TRUE_;
  1274. /* Case(4) */
  1275. } else {
  1276. /* Pivot not found: set params and repeat */
  1277. p = imax;
  1278. colmax = rowmax;
  1279. imax = jmax;
  1280. }
  1281. /* END pivot search loop body */
  1282. if (! done) {
  1283. goto L42;
  1284. }
  1285. }
  1286. /* END pivot search */
  1287. /* ============================================================ */
  1288. /* KK is the column of A where pivoting step stopped */
  1289. kk = k + kstep - 1;
  1290. /* For only a 2x2 pivot, interchange rows and columns K and P */
  1291. /* in the trailing submatrix A(k:n,k:n) */
  1292. if (kstep == 2 && p != k) {
  1293. /* (1) Swap columnar parts */
  1294. if (p < *n) {
  1295. i__1 = *n - p;
  1296. zswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1297. * a_dim1], &c__1);
  1298. }
  1299. /* (2) Swap and conjugate middle parts */
  1300. i__1 = p - 1;
  1301. for (j = k + 1; j <= i__1; ++j) {
  1302. d_cnjg(&z__1, &a[j + k * a_dim1]);
  1303. t.r = z__1.r, t.i = z__1.i;
  1304. i__2 = j + k * a_dim1;
  1305. d_cnjg(&z__1, &a[p + j * a_dim1]);
  1306. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1307. i__2 = p + j * a_dim1;
  1308. a[i__2].r = t.r, a[i__2].i = t.i;
  1309. /* L44: */
  1310. }
  1311. /* (3) Swap and conjugate corner elements at row-col interserction */
  1312. i__1 = p + k * a_dim1;
  1313. d_cnjg(&z__1, &a[p + k * a_dim1]);
  1314. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1315. /* (4) Swap diagonal elements at row-col intersection */
  1316. i__1 = k + k * a_dim1;
  1317. r1 = a[i__1].r;
  1318. i__1 = k + k * a_dim1;
  1319. i__2 = p + p * a_dim1;
  1320. d__1 = a[i__2].r;
  1321. a[i__1].r = d__1, a[i__1].i = 0.;
  1322. i__1 = p + p * a_dim1;
  1323. a[i__1].r = r1, a[i__1].i = 0.;
  1324. /* Convert lower triangle of A into L form by applying */
  1325. /* the interchanges in columns 1:k-1. */
  1326. if (k > 1) {
  1327. i__1 = k - 1;
  1328. zswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1329. }
  1330. }
  1331. /* For both 1x1 and 2x2 pivots, interchange rows and */
  1332. /* columns KK and KP in the trailing submatrix A(k:n,k:n) */
  1333. if (kp != kk) {
  1334. /* (1) Swap columnar parts */
  1335. if (kp < *n) {
  1336. i__1 = *n - kp;
  1337. zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1338. + kp * a_dim1], &c__1);
  1339. }
  1340. /* (2) Swap and conjugate middle parts */
  1341. i__1 = kp - 1;
  1342. for (j = kk + 1; j <= i__1; ++j) {
  1343. d_cnjg(&z__1, &a[j + kk * a_dim1]);
  1344. t.r = z__1.r, t.i = z__1.i;
  1345. i__2 = j + kk * a_dim1;
  1346. d_cnjg(&z__1, &a[kp + j * a_dim1]);
  1347. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1348. i__2 = kp + j * a_dim1;
  1349. a[i__2].r = t.r, a[i__2].i = t.i;
  1350. /* L45: */
  1351. }
  1352. /* (3) Swap and conjugate corner elements at row-col interserction */
  1353. i__1 = kp + kk * a_dim1;
  1354. d_cnjg(&z__1, &a[kp + kk * a_dim1]);
  1355. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1356. /* (4) Swap diagonal elements at row-col intersection */
  1357. i__1 = kk + kk * a_dim1;
  1358. r1 = a[i__1].r;
  1359. i__1 = kk + kk * a_dim1;
  1360. i__2 = kp + kp * a_dim1;
  1361. d__1 = a[i__2].r;
  1362. a[i__1].r = d__1, a[i__1].i = 0.;
  1363. i__1 = kp + kp * a_dim1;
  1364. a[i__1].r = r1, a[i__1].i = 0.;
  1365. if (kstep == 2) {
  1366. /* (*) Make sure that diagonal element of pivot is real */
  1367. i__1 = k + k * a_dim1;
  1368. i__2 = k + k * a_dim1;
  1369. d__1 = a[i__2].r;
  1370. a[i__1].r = d__1, a[i__1].i = 0.;
  1371. /* (5) Swap row elements */
  1372. i__1 = k + 1 + k * a_dim1;
  1373. t.r = a[i__1].r, t.i = a[i__1].i;
  1374. i__1 = k + 1 + k * a_dim1;
  1375. i__2 = kp + k * a_dim1;
  1376. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1377. i__1 = kp + k * a_dim1;
  1378. a[i__1].r = t.r, a[i__1].i = t.i;
  1379. }
  1380. /* Convert lower triangle of A into L form by applying */
  1381. /* the interchanges in columns 1:k-1. */
  1382. if (k > 1) {
  1383. i__1 = k - 1;
  1384. zswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1385. }
  1386. } else {
  1387. /* (*) Make sure that diagonal element of pivot is real */
  1388. i__1 = k + k * a_dim1;
  1389. i__2 = k + k * a_dim1;
  1390. d__1 = a[i__2].r;
  1391. a[i__1].r = d__1, a[i__1].i = 0.;
  1392. if (kstep == 2) {
  1393. i__1 = k + 1 + (k + 1) * a_dim1;
  1394. i__2 = k + 1 + (k + 1) * a_dim1;
  1395. d__1 = a[i__2].r;
  1396. a[i__1].r = d__1, a[i__1].i = 0.;
  1397. }
  1398. }
  1399. /* Update the trailing submatrix */
  1400. if (kstep == 1) {
  1401. /* 1-by-1 pivot block D(k): column k of A now holds */
  1402. /* W(k) = L(k)*D(k), */
  1403. /* where L(k) is the k-th column of L */
  1404. if (k < *n) {
  1405. /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
  1406. /* store L(k) in column k */
  1407. /* Handle division by a small number */
  1408. i__1 = k + k * a_dim1;
  1409. if ((d__1 = a[i__1].r, abs(d__1)) >= sfmin) {
  1410. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1411. /* A := A - L(k)*D(k)*L(k)**T */
  1412. /* = A - W(k)*(1/D(k))*W(k)**T */
  1413. i__1 = k + k * a_dim1;
  1414. d11 = 1. / a[i__1].r;
  1415. i__1 = *n - k;
  1416. d__1 = -d11;
  1417. zher_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &
  1418. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1419. /* Store L(k) in column k */
  1420. i__1 = *n - k;
  1421. zdscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
  1422. } else {
  1423. /* Store L(k) in column k */
  1424. i__1 = k + k * a_dim1;
  1425. d11 = a[i__1].r;
  1426. i__1 = *n;
  1427. for (ii = k + 1; ii <= i__1; ++ii) {
  1428. i__2 = ii + k * a_dim1;
  1429. i__3 = ii + k * a_dim1;
  1430. z__1.r = a[i__3].r / d11, z__1.i = a[i__3].i /
  1431. d11;
  1432. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1433. /* L46: */
  1434. }
  1435. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1436. /* A := A - L(k)*D(k)*L(k)**T */
  1437. /* = A - W(k)*(1/D(k))*W(k)**T */
  1438. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1439. i__1 = *n - k;
  1440. d__1 = -d11;
  1441. zher_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &
  1442. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1443. }
  1444. /* Store the subdiagonal element of D in array E */
  1445. i__1 = k;
  1446. e[i__1].r = 0., e[i__1].i = 0.;
  1447. }
  1448. } else {
  1449. /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
  1450. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1451. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1452. /* of L */
  1453. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1454. /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
  1455. /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
  1456. /* and store L(k) and L(k+1) in columns k and k+1 */
  1457. if (k < *n - 1) {
  1458. /* D = |A21| */
  1459. i__1 = k + 1 + k * a_dim1;
  1460. d__1 = a[i__1].r;
  1461. d__2 = d_imag(&a[k + 1 + k * a_dim1]);
  1462. d__ = dlapy2_(&d__1, &d__2);
  1463. i__1 = k + 1 + (k + 1) * a_dim1;
  1464. d11 = a[i__1].r / d__;
  1465. i__1 = k + k * a_dim1;
  1466. d22 = a[i__1].r / d__;
  1467. i__1 = k + 1 + k * a_dim1;
  1468. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1469. d21.r = z__1.r, d21.i = z__1.i;
  1470. tt = 1. / (d11 * d22 - 1.);
  1471. i__1 = *n;
  1472. for (j = k + 2; j <= i__1; ++j) {
  1473. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1474. i__2 = j + k * a_dim1;
  1475. z__3.r = d11 * a[i__2].r, z__3.i = d11 * a[i__2].i;
  1476. i__3 = j + (k + 1) * a_dim1;
  1477. z__4.r = d21.r * a[i__3].r - d21.i * a[i__3].i,
  1478. z__4.i = d21.r * a[i__3].i + d21.i * a[i__3]
  1479. .r;
  1480. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1481. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1482. wk.r = z__1.r, wk.i = z__1.i;
  1483. i__2 = j + (k + 1) * a_dim1;
  1484. z__3.r = d22 * a[i__2].r, z__3.i = d22 * a[i__2].i;
  1485. d_cnjg(&z__5, &d21);
  1486. i__3 = j + k * a_dim1;
  1487. z__4.r = z__5.r * a[i__3].r - z__5.i * a[i__3].i,
  1488. z__4.i = z__5.r * a[i__3].i + z__5.i * a[i__3]
  1489. .r;
  1490. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1491. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1492. wkp1.r = z__1.r, wkp1.i = z__1.i;
  1493. /* Perform a rank-2 update of A(k+2:n,k+2:n) */
  1494. i__2 = *n;
  1495. for (i__ = j; i__ <= i__2; ++i__) {
  1496. i__3 = i__ + j * a_dim1;
  1497. i__4 = i__ + j * a_dim1;
  1498. i__5 = i__ + k * a_dim1;
  1499. z__4.r = a[i__5].r / d__, z__4.i = a[i__5].i /
  1500. d__;
  1501. d_cnjg(&z__5, &wk);
  1502. z__3.r = z__4.r * z__5.r - z__4.i * z__5.i,
  1503. z__3.i = z__4.r * z__5.i + z__4.i *
  1504. z__5.r;
  1505. z__2.r = a[i__4].r - z__3.r, z__2.i = a[i__4].i -
  1506. z__3.i;
  1507. i__6 = i__ + (k + 1) * a_dim1;
  1508. z__7.r = a[i__6].r / d__, z__7.i = a[i__6].i /
  1509. d__;
  1510. d_cnjg(&z__8, &wkp1);
  1511. z__6.r = z__7.r * z__8.r - z__7.i * z__8.i,
  1512. z__6.i = z__7.r * z__8.i + z__7.i *
  1513. z__8.r;
  1514. z__1.r = z__2.r - z__6.r, z__1.i = z__2.i -
  1515. z__6.i;
  1516. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  1517. /* L50: */
  1518. }
  1519. /* Store L(k) and L(k+1) in cols k and k+1 for row J */
  1520. i__2 = j + k * a_dim1;
  1521. z__1.r = wk.r / d__, z__1.i = wk.i / d__;
  1522. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1523. i__2 = j + (k + 1) * a_dim1;
  1524. z__1.r = wkp1.r / d__, z__1.i = wkp1.i / d__;
  1525. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1526. /* (*) Make sure that diagonal element of pivot is real */
  1527. i__2 = j + j * a_dim1;
  1528. i__3 = j + j * a_dim1;
  1529. d__1 = a[i__3].r;
  1530. z__1.r = d__1, z__1.i = 0.;
  1531. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1532. /* L60: */
  1533. }
  1534. }
  1535. /* Copy subdiagonal elements of D(K) to E(K) and */
  1536. /* ZERO out subdiagonal entry of A */
  1537. i__1 = k;
  1538. i__2 = k + 1 + k * a_dim1;
  1539. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  1540. i__1 = k + 1;
  1541. e[i__1].r = 0., e[i__1].i = 0.;
  1542. i__1 = k + 1 + k * a_dim1;
  1543. a[i__1].r = 0., a[i__1].i = 0.;
  1544. }
  1545. /* End column K is nonsingular */
  1546. }
  1547. /* Store details of the interchanges in IPIV */
  1548. if (kstep == 1) {
  1549. ipiv[k] = kp;
  1550. } else {
  1551. ipiv[k] = -p;
  1552. ipiv[k + 1] = -kp;
  1553. }
  1554. /* Increase K and return to the start of the main loop */
  1555. k += kstep;
  1556. goto L40;
  1557. L64:
  1558. ;
  1559. }
  1560. return 0;
  1561. /* End of ZHETF2_RK */
  1562. } /* zhetf2_rk__ */