You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd2.c 35 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static doublereal c_b30 = 0.;
  488. /* > \brief \b DLASD2 merges the two sets of singular values together into a single sorted set. Used by sbdsdc
  489. . */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DLASD2 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd2.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd2.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd2.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT, */
  508. /* LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX, */
  509. /* IDXC, IDXQ, COLTYP, INFO ) */
  510. /* INTEGER INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE */
  511. /* DOUBLE PRECISION ALPHA, BETA */
  512. /* INTEGER COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ), */
  513. /* $ IDXQ( * ) */
  514. /* DOUBLE PRECISION D( * ), DSIGMA( * ), U( LDU, * ), */
  515. /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
  516. /* $ Z( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > DLASD2 merges the two sets of singular values together into a single */
  523. /* > sorted set. Then it tries to deflate the size of the problem. */
  524. /* > There are two ways in which deflation can occur: when two or more */
  525. /* > singular values are close together or if there is a tiny entry in the */
  526. /* > Z vector. For each such occurrence the order of the related secular */
  527. /* > equation problem is reduced by one. */
  528. /* > */
  529. /* > DLASD2 is called from DLASD1. */
  530. /* > \endverbatim */
  531. /* Arguments: */
  532. /* ========== */
  533. /* > \param[in] NL */
  534. /* > \verbatim */
  535. /* > NL is INTEGER */
  536. /* > The row dimension of the upper block. NL >= 1. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] NR */
  540. /* > \verbatim */
  541. /* > NR is INTEGER */
  542. /* > The row dimension of the lower block. NR >= 1. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] SQRE */
  546. /* > \verbatim */
  547. /* > SQRE is INTEGER */
  548. /* > = 0: the lower block is an NR-by-NR square matrix. */
  549. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  550. /* > */
  551. /* > The bidiagonal matrix has N = NL + NR + 1 rows and */
  552. /* > M = N + SQRE >= N columns. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[out] K */
  556. /* > \verbatim */
  557. /* > K is INTEGER */
  558. /* > Contains the dimension of the non-deflated matrix, */
  559. /* > This is the order of the related secular equation. 1 <= K <=N. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] D */
  563. /* > \verbatim */
  564. /* > D is DOUBLE PRECISION array, dimension(N) */
  565. /* > On entry D contains the singular values of the two submatrices */
  566. /* > to be combined. On exit D contains the trailing (N-K) updated */
  567. /* > singular values (those which were deflated) sorted into */
  568. /* > increasing order. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[out] Z */
  572. /* > \verbatim */
  573. /* > Z is DOUBLE PRECISION array, dimension(N) */
  574. /* > On exit Z contains the updating row vector in the secular */
  575. /* > equation. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] ALPHA */
  579. /* > \verbatim */
  580. /* > ALPHA is DOUBLE PRECISION */
  581. /* > Contains the diagonal element associated with the added row. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] BETA */
  585. /* > \verbatim */
  586. /* > BETA is DOUBLE PRECISION */
  587. /* > Contains the off-diagonal element associated with the added */
  588. /* > row. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in,out] U */
  592. /* > \verbatim */
  593. /* > U is DOUBLE PRECISION array, dimension(LDU,N) */
  594. /* > On entry U contains the left singular vectors of two */
  595. /* > submatrices in the two square blocks with corners at (1,1), */
  596. /* > (NL, NL), and (NL+2, NL+2), (N,N). */
  597. /* > On exit U contains the trailing (N-K) updated left singular */
  598. /* > vectors (those which were deflated) in its last N-K columns. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] LDU */
  602. /* > \verbatim */
  603. /* > LDU is INTEGER */
  604. /* > The leading dimension of the array U. LDU >= N. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in,out] VT */
  608. /* > \verbatim */
  609. /* > VT is DOUBLE PRECISION array, dimension(LDVT,M) */
  610. /* > On entry VT**T contains the right singular vectors of two */
  611. /* > submatrices in the two square blocks with corners at (1,1), */
  612. /* > (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
  613. /* > On exit VT**T contains the trailing (N-K) updated right singular */
  614. /* > vectors (those which were deflated) in its last N-K columns. */
  615. /* > In case SQRE =1, the last row of VT spans the right null */
  616. /* > space. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] LDVT */
  620. /* > \verbatim */
  621. /* > LDVT is INTEGER */
  622. /* > The leading dimension of the array VT. LDVT >= M. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] DSIGMA */
  626. /* > \verbatim */
  627. /* > DSIGMA is DOUBLE PRECISION array, dimension (N) */
  628. /* > Contains a copy of the diagonal elements (K-1 singular values */
  629. /* > and one zero) in the secular equation. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] U2 */
  633. /* > \verbatim */
  634. /* > U2 is DOUBLE PRECISION array, dimension(LDU2,N) */
  635. /* > Contains a copy of the first K-1 left singular vectors which */
  636. /* > will be used by DLASD3 in a matrix multiply (DGEMM) to solve */
  637. /* > for the new left singular vectors. U2 is arranged into four */
  638. /* > blocks. The first block contains a column with 1 at NL+1 and */
  639. /* > zero everywhere else; the second block contains non-zero */
  640. /* > entries only at and above NL; the third contains non-zero */
  641. /* > entries only below NL+1; and the fourth is dense. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[in] LDU2 */
  645. /* > \verbatim */
  646. /* > LDU2 is INTEGER */
  647. /* > The leading dimension of the array U2. LDU2 >= N. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] VT2 */
  651. /* > \verbatim */
  652. /* > VT2 is DOUBLE PRECISION array, dimension(LDVT2,N) */
  653. /* > VT2**T contains a copy of the first K right singular vectors */
  654. /* > which will be used by DLASD3 in a matrix multiply (DGEMM) to */
  655. /* > solve for the new right singular vectors. VT2 is arranged into */
  656. /* > three blocks. The first block contains a row that corresponds */
  657. /* > to the special 0 diagonal element in SIGMA; the second block */
  658. /* > contains non-zeros only at and before NL +1; the third block */
  659. /* > contains non-zeros only at and after NL +2. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[in] LDVT2 */
  663. /* > \verbatim */
  664. /* > LDVT2 is INTEGER */
  665. /* > The leading dimension of the array VT2. LDVT2 >= M. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] IDXP */
  669. /* > \verbatim */
  670. /* > IDXP is INTEGER array, dimension(N) */
  671. /* > This will contain the permutation used to place deflated */
  672. /* > values of D at the end of the array. On output IDXP(2:K) */
  673. /* > points to the nondeflated D-values and IDXP(K+1:N) */
  674. /* > points to the deflated singular values. */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[out] IDX */
  678. /* > \verbatim */
  679. /* > IDX is INTEGER array, dimension(N) */
  680. /* > This will contain the permutation used to sort the contents of */
  681. /* > D into ascending order. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[out] IDXC */
  685. /* > \verbatim */
  686. /* > IDXC is INTEGER array, dimension(N) */
  687. /* > This will contain the permutation used to arrange the columns */
  688. /* > of the deflated U matrix into three groups: the first group */
  689. /* > contains non-zero entries only at and above NL, the second */
  690. /* > contains non-zero entries only below NL+2, and the third is */
  691. /* > dense. */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[in,out] IDXQ */
  695. /* > \verbatim */
  696. /* > IDXQ is INTEGER array, dimension(N) */
  697. /* > This contains the permutation which separately sorts the two */
  698. /* > sub-problems in D into ascending order. Note that entries in */
  699. /* > the first hlaf of this permutation must first be moved one */
  700. /* > position backward; and entries in the second half */
  701. /* > must first have NL+1 added to their values. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] COLTYP */
  705. /* > \verbatim */
  706. /* > COLTYP is INTEGER array, dimension(N) */
  707. /* > As workspace, this will contain a label which will indicate */
  708. /* > which of the following types a column in the U2 matrix or a */
  709. /* > row in the VT2 matrix is: */
  710. /* > 1 : non-zero in the upper half only */
  711. /* > 2 : non-zero in the lower half only */
  712. /* > 3 : dense */
  713. /* > 4 : deflated */
  714. /* > */
  715. /* > On exit, it is an array of dimension 4, with COLTYP(I) being */
  716. /* > the dimension of the I-th type columns. */
  717. /* > \endverbatim */
  718. /* > */
  719. /* > \param[out] INFO */
  720. /* > \verbatim */
  721. /* > INFO is INTEGER */
  722. /* > = 0: successful exit. */
  723. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  724. /* > \endverbatim */
  725. /* Authors: */
  726. /* ======== */
  727. /* > \author Univ. of Tennessee */
  728. /* > \author Univ. of California Berkeley */
  729. /* > \author Univ. of Colorado Denver */
  730. /* > \author NAG Ltd. */
  731. /* > \date June 2017 */
  732. /* > \ingroup OTHERauxiliary */
  733. /* > \par Contributors: */
  734. /* ================== */
  735. /* > */
  736. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  737. /* > California at Berkeley, USA */
  738. /* > */
  739. /* ===================================================================== */
  740. /* Subroutine */ int dlasd2_(integer *nl, integer *nr, integer *sqre, integer
  741. *k, doublereal *d__, doublereal *z__, doublereal *alpha, doublereal *
  742. beta, doublereal *u, integer *ldu, doublereal *vt, integer *ldvt,
  743. doublereal *dsigma, doublereal *u2, integer *ldu2, doublereal *vt2,
  744. integer *ldvt2, integer *idxp, integer *idx, integer *idxc, integer *
  745. idxq, integer *coltyp, integer *info)
  746. {
  747. /* System generated locals */
  748. integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
  749. vt2_dim1, vt2_offset, i__1;
  750. doublereal d__1, d__2;
  751. /* Local variables */
  752. integer idxi, idxj;
  753. extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
  754. doublereal *, integer *, doublereal *, doublereal *);
  755. integer ctot[4];
  756. doublereal c__;
  757. integer i__, j, m, n;
  758. doublereal s;
  759. integer idxjp;
  760. extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
  761. doublereal *, integer *);
  762. integer jprev, k2;
  763. doublereal z1;
  764. extern doublereal dlapy2_(doublereal *, doublereal *);
  765. integer ct;
  766. extern doublereal dlamch_(char *);
  767. integer jp;
  768. extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
  769. integer *, integer *, integer *), dlacpy_(char *, integer *,
  770. integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *,
  771. doublereal *, doublereal *, integer *), xerbla_(char *,
  772. integer *, ftnlen);
  773. doublereal hlftol, eps, tau, tol;
  774. integer psm[4], nlp1, nlp2;
  775. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  776. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  777. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  778. /* June 2017 */
  779. /* ===================================================================== */
  780. /* Test the input parameters. */
  781. /* Parameter adjustments */
  782. --d__;
  783. --z__;
  784. u_dim1 = *ldu;
  785. u_offset = 1 + u_dim1 * 1;
  786. u -= u_offset;
  787. vt_dim1 = *ldvt;
  788. vt_offset = 1 + vt_dim1 * 1;
  789. vt -= vt_offset;
  790. --dsigma;
  791. u2_dim1 = *ldu2;
  792. u2_offset = 1 + u2_dim1 * 1;
  793. u2 -= u2_offset;
  794. vt2_dim1 = *ldvt2;
  795. vt2_offset = 1 + vt2_dim1 * 1;
  796. vt2 -= vt2_offset;
  797. --idxp;
  798. --idx;
  799. --idxc;
  800. --idxq;
  801. --coltyp;
  802. /* Function Body */
  803. *info = 0;
  804. if (*nl < 1) {
  805. *info = -1;
  806. } else if (*nr < 1) {
  807. *info = -2;
  808. } else if (*sqre != 1 && *sqre != 0) {
  809. *info = -3;
  810. }
  811. n = *nl + *nr + 1;
  812. m = n + *sqre;
  813. if (*ldu < n) {
  814. *info = -10;
  815. } else if (*ldvt < m) {
  816. *info = -12;
  817. } else if (*ldu2 < n) {
  818. *info = -15;
  819. } else if (*ldvt2 < m) {
  820. *info = -17;
  821. }
  822. if (*info != 0) {
  823. i__1 = -(*info);
  824. xerbla_("DLASD2", &i__1, (ftnlen)6);
  825. return 0;
  826. }
  827. nlp1 = *nl + 1;
  828. nlp2 = *nl + 2;
  829. /* Generate the first part of the vector Z; and move the singular */
  830. /* values in the first part of D one position backward. */
  831. z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
  832. z__[1] = z1;
  833. for (i__ = *nl; i__ >= 1; --i__) {
  834. z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
  835. d__[i__ + 1] = d__[i__];
  836. idxq[i__ + 1] = idxq[i__] + 1;
  837. /* L10: */
  838. }
  839. /* Generate the second part of the vector Z. */
  840. i__1 = m;
  841. for (i__ = nlp2; i__ <= i__1; ++i__) {
  842. z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
  843. /* L20: */
  844. }
  845. /* Initialize some reference arrays. */
  846. i__1 = nlp1;
  847. for (i__ = 2; i__ <= i__1; ++i__) {
  848. coltyp[i__] = 1;
  849. /* L30: */
  850. }
  851. i__1 = n;
  852. for (i__ = nlp2; i__ <= i__1; ++i__) {
  853. coltyp[i__] = 2;
  854. /* L40: */
  855. }
  856. /* Sort the singular values into increasing order */
  857. i__1 = n;
  858. for (i__ = nlp2; i__ <= i__1; ++i__) {
  859. idxq[i__] += nlp1;
  860. /* L50: */
  861. }
  862. /* DSIGMA, IDXC, IDXC, and the first column of U2 */
  863. /* are used as storage space. */
  864. i__1 = n;
  865. for (i__ = 2; i__ <= i__1; ++i__) {
  866. dsigma[i__] = d__[idxq[i__]];
  867. u2[i__ + u2_dim1] = z__[idxq[i__]];
  868. idxc[i__] = coltyp[idxq[i__]];
  869. /* L60: */
  870. }
  871. dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
  872. i__1 = n;
  873. for (i__ = 2; i__ <= i__1; ++i__) {
  874. idxi = idx[i__] + 1;
  875. d__[i__] = dsigma[idxi];
  876. z__[i__] = u2[idxi + u2_dim1];
  877. coltyp[i__] = idxc[idxi];
  878. /* L70: */
  879. }
  880. /* Calculate the allowable deflation tolerance */
  881. eps = dlamch_("Epsilon");
  882. /* Computing MAX */
  883. d__1 = abs(*alpha), d__2 = abs(*beta);
  884. tol = f2cmax(d__1,d__2);
  885. /* Computing MAX */
  886. d__2 = (d__1 = d__[n], abs(d__1));
  887. tol = eps * 8. * f2cmax(d__2,tol);
  888. /* There are 2 kinds of deflation -- first a value in the z-vector */
  889. /* is small, second two (or more) singular values are very close */
  890. /* together (their difference is small). */
  891. /* If the value in the z-vector is small, we simply permute the */
  892. /* array so that the corresponding singular value is moved to the */
  893. /* end. */
  894. /* If two values in the D-vector are close, we perform a two-sided */
  895. /* rotation designed to make one of the corresponding z-vector */
  896. /* entries zero, and then permute the array so that the deflated */
  897. /* singular value is moved to the end. */
  898. /* If there are multiple singular values then the problem deflates. */
  899. /* Here the number of equal singular values are found. As each equal */
  900. /* singular value is found, an elementary reflector is computed to */
  901. /* rotate the corresponding singular subspace so that the */
  902. /* corresponding components of Z are zero in this new basis. */
  903. *k = 1;
  904. k2 = n + 1;
  905. i__1 = n;
  906. for (j = 2; j <= i__1; ++j) {
  907. if ((d__1 = z__[j], abs(d__1)) <= tol) {
  908. /* Deflate due to small z component. */
  909. --k2;
  910. idxp[k2] = j;
  911. coltyp[j] = 4;
  912. if (j == n) {
  913. goto L120;
  914. }
  915. } else {
  916. jprev = j;
  917. goto L90;
  918. }
  919. /* L80: */
  920. }
  921. L90:
  922. j = jprev;
  923. L100:
  924. ++j;
  925. if (j > n) {
  926. goto L110;
  927. }
  928. if ((d__1 = z__[j], abs(d__1)) <= tol) {
  929. /* Deflate due to small z component. */
  930. --k2;
  931. idxp[k2] = j;
  932. coltyp[j] = 4;
  933. } else {
  934. /* Check if singular values are close enough to allow deflation. */
  935. if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
  936. /* Deflation is possible. */
  937. s = z__[jprev];
  938. c__ = z__[j];
  939. /* Find sqrt(a**2+b**2) without overflow or */
  940. /* destructive underflow. */
  941. tau = dlapy2_(&c__, &s);
  942. c__ /= tau;
  943. s = -s / tau;
  944. z__[j] = tau;
  945. z__[jprev] = 0.;
  946. /* Apply back the Givens rotation to the left and right */
  947. /* singular vector matrices. */
  948. idxjp = idxq[idx[jprev] + 1];
  949. idxj = idxq[idx[j] + 1];
  950. if (idxjp <= nlp1) {
  951. --idxjp;
  952. }
  953. if (idxj <= nlp1) {
  954. --idxj;
  955. }
  956. drot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
  957. c__1, &c__, &s);
  958. drot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
  959. c__, &s);
  960. if (coltyp[j] != coltyp[jprev]) {
  961. coltyp[j] = 3;
  962. }
  963. coltyp[jprev] = 4;
  964. --k2;
  965. idxp[k2] = jprev;
  966. jprev = j;
  967. } else {
  968. ++(*k);
  969. u2[*k + u2_dim1] = z__[jprev];
  970. dsigma[*k] = d__[jprev];
  971. idxp[*k] = jprev;
  972. jprev = j;
  973. }
  974. }
  975. goto L100;
  976. L110:
  977. /* Record the last singular value. */
  978. ++(*k);
  979. u2[*k + u2_dim1] = z__[jprev];
  980. dsigma[*k] = d__[jprev];
  981. idxp[*k] = jprev;
  982. L120:
  983. /* Count up the total number of the various types of columns, then */
  984. /* form a permutation which positions the four column types into */
  985. /* four groups of uniform structure (although one or more of these */
  986. /* groups may be empty). */
  987. for (j = 1; j <= 4; ++j) {
  988. ctot[j - 1] = 0;
  989. /* L130: */
  990. }
  991. i__1 = n;
  992. for (j = 2; j <= i__1; ++j) {
  993. ct = coltyp[j];
  994. ++ctot[ct - 1];
  995. /* L140: */
  996. }
  997. /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
  998. psm[0] = 2;
  999. psm[1] = ctot[0] + 2;
  1000. psm[2] = psm[1] + ctot[1];
  1001. psm[3] = psm[2] + ctot[2];
  1002. /* Fill out the IDXC array so that the permutation which it induces */
  1003. /* will place all type-1 columns first, all type-2 columns next, */
  1004. /* then all type-3's, and finally all type-4's, starting from the */
  1005. /* second column. This applies similarly to the rows of VT. */
  1006. i__1 = n;
  1007. for (j = 2; j <= i__1; ++j) {
  1008. jp = idxp[j];
  1009. ct = coltyp[jp];
  1010. idxc[psm[ct - 1]] = j;
  1011. ++psm[ct - 1];
  1012. /* L150: */
  1013. }
  1014. /* Sort the singular values and corresponding singular vectors into */
  1015. /* DSIGMA, U2, and VT2 respectively. The singular values/vectors */
  1016. /* which were not deflated go into the first K slots of DSIGMA, U2, */
  1017. /* and VT2 respectively, while those which were deflated go into the */
  1018. /* last N - K slots, except that the first column/row will be treated */
  1019. /* separately. */
  1020. i__1 = n;
  1021. for (j = 2; j <= i__1; ++j) {
  1022. jp = idxp[j];
  1023. dsigma[j] = d__[jp];
  1024. idxj = idxq[idx[idxp[idxc[j]]] + 1];
  1025. if (idxj <= nlp1) {
  1026. --idxj;
  1027. }
  1028. dcopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
  1029. dcopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
  1030. /* L160: */
  1031. }
  1032. /* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
  1033. dsigma[1] = 0.;
  1034. hlftol = tol / 2.;
  1035. if (abs(dsigma[2]) <= hlftol) {
  1036. dsigma[2] = hlftol;
  1037. }
  1038. if (m > n) {
  1039. z__[1] = dlapy2_(&z1, &z__[m]);
  1040. if (z__[1] <= tol) {
  1041. c__ = 1.;
  1042. s = 0.;
  1043. z__[1] = tol;
  1044. } else {
  1045. c__ = z1 / z__[1];
  1046. s = z__[m] / z__[1];
  1047. }
  1048. } else {
  1049. if (abs(z1) <= tol) {
  1050. z__[1] = tol;
  1051. } else {
  1052. z__[1] = z1;
  1053. }
  1054. }
  1055. /* Move the rest of the updating row to Z. */
  1056. i__1 = *k - 1;
  1057. dcopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
  1058. /* Determine the first column of U2, the first row of VT2 and the */
  1059. /* last row of VT. */
  1060. dlaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
  1061. u2[nlp1 + u2_dim1] = 1.;
  1062. if (m > n) {
  1063. i__1 = nlp1;
  1064. for (i__ = 1; i__ <= i__1; ++i__) {
  1065. vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
  1066. vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
  1067. /* L170: */
  1068. }
  1069. i__1 = m;
  1070. for (i__ = nlp2; i__ <= i__1; ++i__) {
  1071. vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
  1072. vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
  1073. /* L180: */
  1074. }
  1075. } else {
  1076. dcopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
  1077. }
  1078. if (m > n) {
  1079. dcopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
  1080. }
  1081. /* The deflated singular values and their corresponding vectors go */
  1082. /* into the back of D, U, and V respectively. */
  1083. if (n > *k) {
  1084. i__1 = n - *k;
  1085. dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
  1086. i__1 = n - *k;
  1087. dlacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
  1088. * u_dim1 + 1], ldu);
  1089. i__1 = n - *k;
  1090. dlacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
  1091. vt_dim1], ldvt);
  1092. }
  1093. /* Copy CTOT into COLTYP for referencing in DLASD3. */
  1094. for (j = 1; j <= 4; ++j) {
  1095. coltyp[j] = ctot[j - 1];
  1096. /* L190: */
  1097. }
  1098. return 0;
  1099. /* End of DLASD2 */
  1100. } /* dlasd2_ */