You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clarot.c 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. #define z_abs(z) (cabs(Cd(z)))
  229. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  230. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  231. #define myexit_() break;
  232. #define mycycle() continue;
  233. #define myceiling(w) {ceil(w)}
  234. #define myhuge(w) {HUGE_VAL}
  235. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  236. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  237. /* procedure parameter types for -A and -C++ */
  238. /* Table of constant values */
  239. static integer c__4 = 4;
  240. static integer c__8 = 8;
  241. /* > \brief \b CLAROT */
  242. /* =========== DOCUMENTATION =========== */
  243. /* Online html documentation available at */
  244. /* http://www.netlib.org/lapack/explore-html/ */
  245. /* Definition: */
  246. /* =========== */
  247. /* SUBROUTINE CLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT, */
  248. /* XRIGHT ) */
  249. /* LOGICAL LLEFT, LRIGHT, LROWS */
  250. /* INTEGER LDA, NL */
  251. /* COMPLEX C, S, XLEFT, XRIGHT */
  252. /* COMPLEX A( * ) */
  253. /* > \par Purpose: */
  254. /* ============= */
  255. /* > */
  256. /* > \verbatim */
  257. /* > */
  258. /* > CLAROT applies a (Givens) rotation to two adjacent rows or */
  259. /* > columns, where one element of the first and/or last column/row */
  260. /* > for use on matrices stored in some format other than GE, so */
  261. /* > that elements of the matrix may be used or modified for which */
  262. /* > no array element is provided. */
  263. /* > */
  264. /* > One example is a symmetric matrix in SB format (bandwidth=4), for */
  265. /* > which UPLO='L': Two adjacent rows will have the format: */
  266. /* > */
  267. /* > row j: C> C> C> C> C> . . . . */
  268. /* > row j+1: C> C> C> C> C> . . . . */
  269. /* > */
  270. /* > '*' indicates elements for which storage is provided, */
  271. /* > '.' indicates elements for which no storage is provided, but */
  272. /* > are not necessarily zero; their values are determined by */
  273. /* > symmetry. ' ' indicates elements which are necessarily zero, */
  274. /* > and have no storage provided. */
  275. /* > */
  276. /* > Those columns which have two '*'s can be handled by SROT. */
  277. /* > Those columns which have no '*'s can be ignored, since as long */
  278. /* > as the Givens rotations are carefully applied to preserve */
  279. /* > symmetry, their values are determined. */
  280. /* > Those columns which have one '*' have to be handled separately, */
  281. /* > by using separate variables "p" and "q": */
  282. /* > */
  283. /* > row j: C> C> C> C> C> p . . . */
  284. /* > row j+1: q C> C> C> C> C> . . . . */
  285. /* > */
  286. /* > The element p would have to be set correctly, then that column */
  287. /* > is rotated, setting p to its new value. The next call to */
  288. /* > CLAROT would rotate columns j and j+1, using p, and restore */
  289. /* > symmetry. The element q would start out being zero, and be */
  290. /* > made non-zero by the rotation. Later, rotations would presumably */
  291. /* > be chosen to zero q out. */
  292. /* > */
  293. /* > Typical Calling Sequences: rotating the i-th and (i+1)-st rows. */
  294. /* > ------- ------- --------- */
  295. /* > */
  296. /* > General dense matrix: */
  297. /* > */
  298. /* > CALL CLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S, */
  299. /* > A(i,1),LDA, DUMMY, DUMMY) */
  300. /* > */
  301. /* > General banded matrix in GB format: */
  302. /* > */
  303. /* > j = MAX(1, i-KL ) */
  304. /* > NL = MIN( N, i+KU+1 ) + 1-j */
  305. /* > CALL CLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S, */
  306. /* > A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT ) */
  307. /* > */
  308. /* > [ note that i+1-j is just MIN(i,KL+1) ] */
  309. /* > */
  310. /* > Symmetric banded matrix in SY format, bandwidth K, */
  311. /* > lower triangle only: */
  312. /* > */
  313. /* > j = MAX(1, i-K ) */
  314. /* > NL = MIN( K+1, i ) + 1 */
  315. /* > CALL CLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S, */
  316. /* > A(i,j), LDA, XLEFT, XRIGHT ) */
  317. /* > */
  318. /* > Same, but upper triangle only: */
  319. /* > */
  320. /* > NL = MIN( K+1, N-i ) + 1 */
  321. /* > CALL CLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S, */
  322. /* > A(i,i), LDA, XLEFT, XRIGHT ) */
  323. /* > */
  324. /* > Symmetric banded matrix in SB format, bandwidth K, */
  325. /* > lower triangle only: */
  326. /* > */
  327. /* > [ same as for SY, except:] */
  328. /* > . . . . */
  329. /* > A(i+1-j,j), LDA-1, XLEFT, XRIGHT ) */
  330. /* > */
  331. /* > [ note that i+1-j is just MIN(i,K+1) ] */
  332. /* > */
  333. /* > Same, but upper triangle only: */
  334. /* > . . . */
  335. /* > A(K+1,i), LDA-1, XLEFT, XRIGHT ) */
  336. /* > */
  337. /* > Rotating columns is just the transpose of rotating rows, except */
  338. /* > for GB and SB: (rotating columns i and i+1) */
  339. /* > */
  340. /* > GB: */
  341. /* > j = MAX(1, i-KU ) */
  342. /* > NL = MIN( N, i+KL+1 ) + 1-j */
  343. /* > CALL CLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S, */
  344. /* > A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM ) */
  345. /* > */
  346. /* > [note that KU+j+1-i is just MAX(1,KU+2-i)] */
  347. /* > */
  348. /* > SB: (upper triangle) */
  349. /* > */
  350. /* > . . . . . . */
  351. /* > A(K+j+1-i,i),LDA-1, XTOP, XBOTTM ) */
  352. /* > */
  353. /* > SB: (lower triangle) */
  354. /* > */
  355. /* > . . . . . . */
  356. /* > A(1,i),LDA-1, XTOP, XBOTTM ) */
  357. /* > \endverbatim */
  358. /* Arguments: */
  359. /* ========== */
  360. /* > \verbatim */
  361. /* > LROWS - LOGICAL */
  362. /* > If .TRUE., then CLAROT will rotate two rows. If .FALSE., */
  363. /* > then it will rotate two columns. */
  364. /* > Not modified. */
  365. /* > */
  366. /* > LLEFT - LOGICAL */
  367. /* > If .TRUE., then XLEFT will be used instead of the */
  368. /* > corresponding element of A for the first element in the */
  369. /* > second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) */
  370. /* > If .FALSE., then the corresponding element of A will be */
  371. /* > used. */
  372. /* > Not modified. */
  373. /* > */
  374. /* > LRIGHT - LOGICAL */
  375. /* > If .TRUE., then XRIGHT will be used instead of the */
  376. /* > corresponding element of A for the last element in the */
  377. /* > first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If */
  378. /* > .FALSE., then the corresponding element of A will be used. */
  379. /* > Not modified. */
  380. /* > */
  381. /* > NL - INTEGER */
  382. /* > The length of the rows (if LROWS=.TRUE.) or columns (if */
  383. /* > LROWS=.FALSE.) to be rotated. If XLEFT and/or XRIGHT are */
  384. /* > used, the columns/rows they are in should be included in */
  385. /* > NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at */
  386. /* > least 2. The number of rows/columns to be rotated */
  387. /* > exclusive of those involving XLEFT and/or XRIGHT may */
  388. /* > not be negative, i.e., NL minus how many of LLEFT and */
  389. /* > LRIGHT are .TRUE. must be at least zero; if not, XERBLA */
  390. /* > will be called. */
  391. /* > Not modified. */
  392. /* > */
  393. /* > C, S - COMPLEX */
  394. /* > Specify the Givens rotation to be applied. If LROWS is */
  395. /* > true, then the matrix ( c s ) */
  396. /* > ( _ _ ) */
  397. /* > (-s c ) is applied from the left; */
  398. /* > if false, then the transpose (not conjugated) thereof is */
  399. /* > applied from the right. Note that in contrast to the */
  400. /* > output of CROTG or to most versions of CROT, both C and S */
  401. /* > are complex. For a Givens rotation, |C|**2 + |S|**2 should */
  402. /* > be 1, but this is not checked. */
  403. /* > Not modified. */
  404. /* > */
  405. /* > A - COMPLEX array. */
  406. /* > The array containing the rows/columns to be rotated. The */
  407. /* > first element of A should be the upper left element to */
  408. /* > be rotated. */
  409. /* > Read and modified. */
  410. /* > */
  411. /* > LDA - INTEGER */
  412. /* > The "effective" leading dimension of A. If A contains */
  413. /* > a matrix stored in GE, HE, or SY format, then this is just */
  414. /* > the leading dimension of A as dimensioned in the calling */
  415. /* > routine. If A contains a matrix stored in band (GB, HB, or */
  416. /* > SB) format, then this should be *one less* than the leading */
  417. /* > dimension used in the calling routine. Thus, if A were */
  418. /* > dimensioned A(LDA,*) in CLAROT, then A(1,j) would be the */
  419. /* > j-th element in the first of the two rows to be rotated, */
  420. /* > and A(2,j) would be the j-th in the second, regardless of */
  421. /* > how the array may be stored in the calling routine. [A */
  422. /* > cannot, however, actually be dimensioned thus, since for */
  423. /* > band format, the row number may exceed LDA, which is not */
  424. /* > legal FORTRAN.] */
  425. /* > If LROWS=.TRUE., then LDA must be at least 1, otherwise */
  426. /* > it must be at least NL minus the number of .TRUE. values */
  427. /* > in XLEFT and XRIGHT. */
  428. /* > Not modified. */
  429. /* > */
  430. /* > XLEFT - COMPLEX */
  431. /* > If LLEFT is .TRUE., then XLEFT will be used and modified */
  432. /* > instead of A(2,1) (if LROWS=.TRUE.) or A(1,2) */
  433. /* > (if LROWS=.FALSE.). */
  434. /* > Read and modified. */
  435. /* > */
  436. /* > XRIGHT - COMPLEX */
  437. /* > If LRIGHT is .TRUE., then XRIGHT will be used and modified */
  438. /* > instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1) */
  439. /* > (if LROWS=.FALSE.). */
  440. /* > Read and modified. */
  441. /* > \endverbatim */
  442. /* Authors: */
  443. /* ======== */
  444. /* > \author Univ. of Tennessee */
  445. /* > \author Univ. of California Berkeley */
  446. /* > \author Univ. of Colorado Denver */
  447. /* > \author NAG Ltd. */
  448. /* > \date December 2016 */
  449. /* > \ingroup complex_matgen */
  450. /* ===================================================================== */
  451. /* Subroutine */ void clarot_(logical *lrows, logical *lleft, logical *lright,
  452. integer *nl, complex *c__, complex *s, complex *a, integer *lda,
  453. complex *xleft, complex *xright)
  454. {
  455. /* System generated locals */
  456. integer i__1, i__2, i__3, i__4;
  457. complex q__1, q__2, q__3, q__4, q__5, q__6;
  458. /* Local variables */
  459. integer iinc, j, inext;
  460. complex tempx;
  461. integer ix, iy, nt;
  462. complex xt[2], yt[2];
  463. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  464. integer iyt;
  465. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  466. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  467. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  468. /* December 2016 */
  469. /* ===================================================================== */
  470. /* Set up indices, arrays for ends */
  471. /* Parameter adjustments */
  472. --a;
  473. /* Function Body */
  474. if (*lrows) {
  475. iinc = *lda;
  476. inext = 1;
  477. } else {
  478. iinc = 1;
  479. inext = *lda;
  480. }
  481. if (*lleft) {
  482. nt = 1;
  483. ix = iinc + 1;
  484. iy = *lda + 2;
  485. xt[0].r = a[1].r, xt[0].i = a[1].i;
  486. yt[0].r = xleft->r, yt[0].i = xleft->i;
  487. } else {
  488. nt = 0;
  489. ix = 1;
  490. iy = inext + 1;
  491. }
  492. if (*lright) {
  493. iyt = inext + 1 + (*nl - 1) * iinc;
  494. ++nt;
  495. i__1 = nt - 1;
  496. xt[i__1].r = xright->r, xt[i__1].i = xright->i;
  497. i__1 = nt - 1;
  498. i__2 = iyt;
  499. yt[i__1].r = a[i__2].r, yt[i__1].i = a[i__2].i;
  500. }
  501. /* Check for errors */
  502. if (*nl < nt) {
  503. xerbla_("CLAROT", &c__4, 6);
  504. return;
  505. }
  506. if (*lda <= 0 || ! (*lrows) && *lda < *nl - nt) {
  507. xerbla_("CLAROT", &c__8, 6);
  508. return;
  509. }
  510. /* Rotate */
  511. /* CROT( NL-NT, A(IX),IINC, A(IY),IINC, C, S ) with complex C, S */
  512. i__1 = *nl - nt - 1;
  513. for (j = 0; j <= i__1; ++j) {
  514. i__2 = ix + j * iinc;
  515. q__2.r = c__->r * a[i__2].r - c__->i * a[i__2].i, q__2.i = c__->r * a[
  516. i__2].i + c__->i * a[i__2].r;
  517. i__3 = iy + j * iinc;
  518. q__3.r = s->r * a[i__3].r - s->i * a[i__3].i, q__3.i = s->r * a[i__3]
  519. .i + s->i * a[i__3].r;
  520. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  521. tempx.r = q__1.r, tempx.i = q__1.i;
  522. i__2 = iy + j * iinc;
  523. r_cnjg(&q__4, s);
  524. q__3.r = -q__4.r, q__3.i = -q__4.i;
  525. i__3 = ix + j * iinc;
  526. q__2.r = q__3.r * a[i__3].r - q__3.i * a[i__3].i, q__2.i = q__3.r * a[
  527. i__3].i + q__3.i * a[i__3].r;
  528. r_cnjg(&q__6, c__);
  529. i__4 = iy + j * iinc;
  530. q__5.r = q__6.r * a[i__4].r - q__6.i * a[i__4].i, q__5.i = q__6.r * a[
  531. i__4].i + q__6.i * a[i__4].r;
  532. q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
  533. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  534. i__2 = ix + j * iinc;
  535. a[i__2].r = tempx.r, a[i__2].i = tempx.i;
  536. /* L10: */
  537. }
  538. /* CROT( NT, XT,1, YT,1, C, S ) with complex C, S */
  539. i__1 = nt;
  540. for (j = 1; j <= i__1; ++j) {
  541. i__2 = j - 1;
  542. q__2.r = c__->r * xt[i__2].r - c__->i * xt[i__2].i, q__2.i = c__->r *
  543. xt[i__2].i + c__->i * xt[i__2].r;
  544. i__3 = j - 1;
  545. q__3.r = s->r * yt[i__3].r - s->i * yt[i__3].i, q__3.i = s->r * yt[
  546. i__3].i + s->i * yt[i__3].r;
  547. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  548. tempx.r = q__1.r, tempx.i = q__1.i;
  549. i__2 = j - 1;
  550. r_cnjg(&q__4, s);
  551. q__3.r = -q__4.r, q__3.i = -q__4.i;
  552. i__3 = j - 1;
  553. q__2.r = q__3.r * xt[i__3].r - q__3.i * xt[i__3].i, q__2.i = q__3.r *
  554. xt[i__3].i + q__3.i * xt[i__3].r;
  555. r_cnjg(&q__6, c__);
  556. i__4 = j - 1;
  557. q__5.r = q__6.r * yt[i__4].r - q__6.i * yt[i__4].i, q__5.i = q__6.r *
  558. yt[i__4].i + q__6.i * yt[i__4].r;
  559. q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
  560. yt[i__2].r = q__1.r, yt[i__2].i = q__1.i;
  561. i__2 = j - 1;
  562. xt[i__2].r = tempx.r, xt[i__2].i = tempx.i;
  563. /* L20: */
  564. }
  565. /* Stuff values back into XLEFT, XRIGHT, etc. */
  566. if (*lleft) {
  567. a[1].r = xt[0].r, a[1].i = xt[0].i;
  568. xleft->r = yt[0].r, xleft->i = yt[0].i;
  569. }
  570. if (*lright) {
  571. i__1 = nt - 1;
  572. xright->r = xt[i__1].r, xright->i = xt[i__1].i;
  573. i__1 = iyt;
  574. i__2 = nt - 1;
  575. a[i__1].r = yt[i__2].r, a[i__1].i = yt[i__2].i;
  576. }
  577. return;
  578. /* End of CLAROT */
  579. } /* clarot_ */