You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlasyf.c 46 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {1.,0.};
  485. static integer c__1 = 1;
  486. /* > \brief \b ZLASYF computes a partial factorization of a complex symmetric matrix using the Bunch-Kaufman d
  487. iagonal pivoting method. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZLASYF + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) */
  506. /* CHARACTER UPLO */
  507. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  508. /* INTEGER IPIV( * ) */
  509. /* COMPLEX*16 A( LDA, * ), W( LDW, * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > ZLASYF computes a partial factorization of a complex symmetric matrix */
  516. /* > A using the Bunch-Kaufman diagonal pivoting method. The partial */
  517. /* > factorization has the form: */
  518. /* > */
  519. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  520. /* > ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) */
  521. /* > */
  522. /* > A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' */
  523. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  524. /* > */
  525. /* > where the order of D is at most NB. The actual order is returned in */
  526. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  527. /* > Note that U**T denotes the transpose of U. */
  528. /* > */
  529. /* > ZLASYF is an auxiliary routine called by ZSYTRF. It uses blocked code */
  530. /* > (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */
  531. /* > A22 (if UPLO = 'L'). */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] UPLO */
  536. /* > \verbatim */
  537. /* > UPLO is CHARACTER*1 */
  538. /* > Specifies whether the upper or lower triangular part of the */
  539. /* > symmetric matrix A is stored: */
  540. /* > = 'U': Upper triangular */
  541. /* > = 'L': Lower triangular */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] N */
  545. /* > \verbatim */
  546. /* > N is INTEGER */
  547. /* > The order of the matrix A. N >= 0. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] NB */
  551. /* > \verbatim */
  552. /* > NB is INTEGER */
  553. /* > The maximum number of columns of the matrix A that should be */
  554. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  555. /* > blocks. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[out] KB */
  559. /* > \verbatim */
  560. /* > KB is INTEGER */
  561. /* > The number of columns of A that were actually factored. */
  562. /* > KB is either NB-1 or NB, or N if N <= NB. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] A */
  566. /* > \verbatim */
  567. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  568. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  569. /* > n-by-n upper triangular part of A contains the upper */
  570. /* > triangular part of the matrix A, and the strictly lower */
  571. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  572. /* > leading n-by-n lower triangular part of A contains the lower */
  573. /* > triangular part of the matrix A, and the strictly upper */
  574. /* > triangular part of A is not referenced. */
  575. /* > On exit, A contains details of the partial factorization. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDA */
  579. /* > \verbatim */
  580. /* > LDA is INTEGER */
  581. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[out] IPIV */
  585. /* > \verbatim */
  586. /* > IPIV is INTEGER array, dimension (N) */
  587. /* > Details of the interchanges and the block structure of D. */
  588. /* > */
  589. /* > If UPLO = 'U': */
  590. /* > Only the last KB elements of IPIV are set. */
  591. /* > */
  592. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  593. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  594. /* > */
  595. /* > If IPIV(k) = IPIV(k-1) < 0, then rows and columns */
  596. /* > k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  597. /* > is a 2-by-2 diagonal block. */
  598. /* > */
  599. /* > If UPLO = 'L': */
  600. /* > Only the first KB elements of IPIV are set. */
  601. /* > */
  602. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  603. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  604. /* > */
  605. /* > If IPIV(k) = IPIV(k+1) < 0, then rows and columns */
  606. /* > k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) */
  607. /* > is a 2-by-2 diagonal block. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] W */
  611. /* > \verbatim */
  612. /* > W is COMPLEX*16 array, dimension (LDW,NB) */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] LDW */
  616. /* > \verbatim */
  617. /* > LDW is INTEGER */
  618. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] INFO */
  622. /* > \verbatim */
  623. /* > INFO is INTEGER */
  624. /* > = 0: successful exit */
  625. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  626. /* > has been completed, but the block diagonal matrix D is */
  627. /* > exactly singular. */
  628. /* > \endverbatim */
  629. /* Authors: */
  630. /* ======== */
  631. /* > \author Univ. of Tennessee */
  632. /* > \author Univ. of California Berkeley */
  633. /* > \author Univ. of Colorado Denver */
  634. /* > \author NAG Ltd. */
  635. /* > \date November 2013 */
  636. /* > \ingroup complex16SYcomputational */
  637. /* > \par Contributors: */
  638. /* ================== */
  639. /* > */
  640. /* > \verbatim */
  641. /* > */
  642. /* > November 2013, Igor Kozachenko, */
  643. /* > Computer Science Division, */
  644. /* > University of California, Berkeley */
  645. /* > \endverbatim */
  646. /* ===================================================================== */
  647. /* Subroutine */ void zlasyf_(char *uplo, integer *n, integer *nb, integer *kb,
  648. doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *w,
  649. integer *ldw, integer *info)
  650. {
  651. /* System generated locals */
  652. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  653. doublereal d__1, d__2, d__3, d__4;
  654. doublecomplex z__1, z__2, z__3;
  655. /* Local variables */
  656. integer imax, jmax, j, k;
  657. doublecomplex t;
  658. doublereal alpha;
  659. extern logical lsame_(char *, char *);
  660. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  661. doublecomplex *, integer *), zgemm_(char *, char *, integer *,
  662. integer *, integer *, doublecomplex *, doublecomplex *, integer *,
  663. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  664. integer *);
  665. integer kstep;
  666. extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
  667. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  668. integer *, doublecomplex *, doublecomplex *, integer *);
  669. doublecomplex r1;
  670. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  671. doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
  672. integer *, doublecomplex *, integer *);
  673. doublecomplex d11, d21, d22;
  674. integer jb, jj, kk, jp, kp;
  675. doublereal absakk;
  676. integer kw;
  677. doublereal colmax;
  678. extern integer izamax_(integer *, doublecomplex *, integer *);
  679. doublereal rowmax;
  680. integer kkw;
  681. /* -- LAPACK computational routine (version 3.5.0) -- */
  682. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  683. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  684. /* November 2013 */
  685. /* ===================================================================== */
  686. /* Parameter adjustments */
  687. a_dim1 = *lda;
  688. a_offset = 1 + a_dim1 * 1;
  689. a -= a_offset;
  690. --ipiv;
  691. w_dim1 = *ldw;
  692. w_offset = 1 + w_dim1 * 1;
  693. w -= w_offset;
  694. /* Function Body */
  695. *info = 0;
  696. /* Initialize ALPHA for use in choosing pivot block size. */
  697. alpha = (sqrt(17.) + 1.) / 8.;
  698. if (lsame_(uplo, "U")) {
  699. /* Factorize the trailing columns of A using the upper triangle */
  700. /* of A and working backwards, and compute the matrix W = U12*D */
  701. /* for use in updating A11 */
  702. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  703. /* KW is the column of W which corresponds to column K of A */
  704. k = *n;
  705. L10:
  706. kw = *nb + k - *n;
  707. /* Exit from loop */
  708. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  709. goto L30;
  710. }
  711. /* Copy column K of A to column KW of W and update it */
  712. zcopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
  713. if (k < *n) {
  714. i__1 = *n - k;
  715. z__1.r = -1., z__1.i = 0.;
  716. zgemv_("No transpose", &k, &i__1, &z__1, &a[(k + 1) * a_dim1 + 1],
  717. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
  718. w_dim1 + 1], &c__1);
  719. }
  720. kstep = 1;
  721. /* Determine rows and columns to be interchanged and whether */
  722. /* a 1-by-1 or 2-by-2 pivot block will be used */
  723. i__1 = k + kw * w_dim1;
  724. absakk = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[k + kw *
  725. w_dim1]), abs(d__2));
  726. /* IMAX is the row-index of the largest off-diagonal element in */
  727. if (k > 1) {
  728. i__1 = k - 1;
  729. imax = izamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  730. i__1 = imax + kw * w_dim1;
  731. colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[imax +
  732. kw * w_dim1]), abs(d__2));
  733. } else {
  734. colmax = 0.;
  735. }
  736. if (f2cmax(absakk,colmax) == 0.) {
  737. /* Column K is zero or underflow: set INFO and continue */
  738. if (*info == 0) {
  739. *info = k;
  740. }
  741. kp = k;
  742. } else {
  743. if (absakk >= alpha * colmax) {
  744. /* no interchange, use 1-by-1 pivot block */
  745. kp = k;
  746. } else {
  747. /* Copy column IMAX to column KW-1 of W and update it */
  748. zcopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  749. w_dim1 + 1], &c__1);
  750. i__1 = k - imax;
  751. zcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  752. 1 + (kw - 1) * w_dim1], &c__1);
  753. if (k < *n) {
  754. i__1 = *n - k;
  755. z__1.r = -1., z__1.i = 0.;
  756. zgemv_("No transpose", &k, &i__1, &z__1, &a[(k + 1) *
  757. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  758. ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  759. }
  760. /* JMAX is the column-index of the largest off-diagonal */
  761. /* element in row IMAX, and ROWMAX is its absolute value */
  762. i__1 = k - imax;
  763. jmax = imax + izamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1],
  764. &c__1);
  765. i__1 = jmax + (kw - 1) * w_dim1;
  766. rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[
  767. jmax + (kw - 1) * w_dim1]), abs(d__2));
  768. if (imax > 1) {
  769. i__1 = imax - 1;
  770. jmax = izamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  771. /* Computing MAX */
  772. i__1 = jmax + (kw - 1) * w_dim1;
  773. d__3 = rowmax, d__4 = (d__1 = w[i__1].r, abs(d__1)) + (
  774. d__2 = d_imag(&w[jmax + (kw - 1) * w_dim1]), abs(
  775. d__2));
  776. rowmax = f2cmax(d__3,d__4);
  777. }
  778. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  779. /* no interchange, use 1-by-1 pivot block */
  780. kp = k;
  781. } else /* if(complicated condition) */ {
  782. i__1 = imax + (kw - 1) * w_dim1;
  783. if ((d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[
  784. imax + (kw - 1) * w_dim1]), abs(d__2)) >= alpha *
  785. rowmax) {
  786. /* interchange rows and columns K and IMAX, use 1-by-1 */
  787. /* pivot block */
  788. kp = imax;
  789. /* copy column KW-1 of W to column KW of W */
  790. zcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  791. w_dim1 + 1], &c__1);
  792. } else {
  793. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  794. /* pivot block */
  795. kp = imax;
  796. kstep = 2;
  797. }
  798. }
  799. }
  800. /* ============================================================ */
  801. /* KK is the column of A where pivoting step stopped */
  802. kk = k - kstep + 1;
  803. /* KKW is the column of W which corresponds to column KK of A */
  804. kkw = *nb + kk - *n;
  805. /* Interchange rows and columns KP and KK. */
  806. /* Updated column KP is already stored in column KKW of W. */
  807. if (kp != kk) {
  808. /* Copy non-updated column KK to column KP of submatrix A */
  809. /* at step K. No need to copy element into column K */
  810. /* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
  811. /* will be later overwritten. */
  812. i__1 = kp + kp * a_dim1;
  813. i__2 = kk + kk * a_dim1;
  814. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  815. i__1 = kk - 1 - kp;
  816. zcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  817. 1) * a_dim1], lda);
  818. if (kp > 1) {
  819. i__1 = kp - 1;
  820. zcopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  821. + 1], &c__1);
  822. }
  823. /* Interchange rows KK and KP in last K+1 to N columns of A */
  824. /* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
  825. /* later overwritten). Interchange rows KK and KP */
  826. /* in last KKW to NB columns of W. */
  827. if (k < *n) {
  828. i__1 = *n - k;
  829. zswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  830. + 1) * a_dim1], lda);
  831. }
  832. i__1 = *n - kk + 1;
  833. zswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  834. w_dim1], ldw);
  835. }
  836. if (kstep == 1) {
  837. /* 1-by-1 pivot block D(k): column kw of W now holds */
  838. /* W(kw) = U(k)*D(k), */
  839. /* where U(k) is the k-th column of U */
  840. /* Store subdiag. elements of column U(k) */
  841. /* and 1-by-1 block D(k) in column k of A. */
  842. /* NOTE: Diagonal element U(k,k) is a UNIT element */
  843. /* and not stored. */
  844. /* A(k,k) := D(k,k) = W(k,kw) */
  845. /* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
  846. zcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  847. c__1);
  848. z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
  849. r1.r = z__1.r, r1.i = z__1.i;
  850. i__1 = k - 1;
  851. zscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  852. } else {
  853. /* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
  854. /* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
  855. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  856. /* of U */
  857. /* Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
  858. /* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
  859. /* NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
  860. /* block and not stored. */
  861. /* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
  862. /* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
  863. /* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
  864. if (k > 2) {
  865. /* Compose the columns of the inverse of 2-by-2 pivot */
  866. /* block D in the following way to reduce the number */
  867. /* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by */
  868. /* this inverse */
  869. /* D**(-1) = ( d11 d21 )**(-1) = */
  870. /* ( d21 d22 ) */
  871. /* = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = */
  872. /* ( (-d21 ) ( d11 ) ) */
  873. /* = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * */
  874. /* * ( ( d22/d21 ) ( -1 ) ) = */
  875. /* ( ( -1 ) ( d11/d21 ) ) */
  876. /* = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = */
  877. /* ( ( -1 ) ( D22 ) ) */
  878. /* = 1/d21 * T * ( ( D11 ) ( -1 ) ) */
  879. /* ( ( -1 ) ( D22 ) ) */
  880. /* = D21 * ( ( D11 ) ( -1 ) ) */
  881. /* ( ( -1 ) ( D22 ) ) */
  882. i__1 = k - 1 + kw * w_dim1;
  883. d21.r = w[i__1].r, d21.i = w[i__1].i;
  884. z_div(&z__1, &w[k + kw * w_dim1], &d21);
  885. d11.r = z__1.r, d11.i = z__1.i;
  886. z_div(&z__1, &w[k - 1 + (kw - 1) * w_dim1], &d21);
  887. d22.r = z__1.r, d22.i = z__1.i;
  888. z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r *
  889. d22.i + d11.i * d22.r;
  890. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  891. z_div(&z__1, &c_b1, &z__2);
  892. t.r = z__1.r, t.i = z__1.i;
  893. z_div(&z__1, &t, &d21);
  894. d21.r = z__1.r, d21.i = z__1.i;
  895. /* Update elements in columns A(k-1) and A(k) as */
  896. /* dot products of rows of ( W(kw-1) W(kw) ) and columns */
  897. /* of D**(-1) */
  898. i__1 = k - 2;
  899. for (j = 1; j <= i__1; ++j) {
  900. i__2 = j + (k - 1) * a_dim1;
  901. i__3 = j + (kw - 1) * w_dim1;
  902. z__3.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  903. z__3.i = d11.r * w[i__3].i + d11.i * w[i__3]
  904. .r;
  905. i__4 = j + kw * w_dim1;
  906. z__2.r = z__3.r - w[i__4].r, z__2.i = z__3.i - w[i__4]
  907. .i;
  908. z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i =
  909. d21.r * z__2.i + d21.i * z__2.r;
  910. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  911. i__2 = j + k * a_dim1;
  912. i__3 = j + kw * w_dim1;
  913. z__3.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  914. z__3.i = d22.r * w[i__3].i + d22.i * w[i__3]
  915. .r;
  916. i__4 = j + (kw - 1) * w_dim1;
  917. z__2.r = z__3.r - w[i__4].r, z__2.i = z__3.i - w[i__4]
  918. .i;
  919. z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i =
  920. d21.r * z__2.i + d21.i * z__2.r;
  921. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  922. /* L20: */
  923. }
  924. }
  925. /* Copy D(k) to A */
  926. i__1 = k - 1 + (k - 1) * a_dim1;
  927. i__2 = k - 1 + (kw - 1) * w_dim1;
  928. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  929. i__1 = k - 1 + k * a_dim1;
  930. i__2 = k - 1 + kw * w_dim1;
  931. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  932. i__1 = k + k * a_dim1;
  933. i__2 = k + kw * w_dim1;
  934. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  935. }
  936. }
  937. /* Store details of the interchanges in IPIV */
  938. if (kstep == 1) {
  939. ipiv[k] = kp;
  940. } else {
  941. ipiv[k] = -kp;
  942. ipiv[k - 1] = -kp;
  943. }
  944. /* Decrease K and return to the start of the main loop */
  945. k -= kstep;
  946. goto L10;
  947. L30:
  948. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  949. /* A11 := A11 - U12*D*U12**T = A11 - U12*W**T */
  950. /* computing blocks of NB columns at a time */
  951. i__1 = -(*nb);
  952. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  953. i__1) {
  954. /* Computing MIN */
  955. i__2 = *nb, i__3 = k - j + 1;
  956. jb = f2cmin(i__2,i__3);
  957. /* Update the upper triangle of the diagonal block */
  958. i__2 = j + jb - 1;
  959. for (jj = j; jj <= i__2; ++jj) {
  960. i__3 = jj - j + 1;
  961. i__4 = *n - k;
  962. z__1.r = -1., z__1.i = 0.;
  963. zgemv_("No transpose", &i__3, &i__4, &z__1, &a[j + (k + 1) *
  964. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1,
  965. &a[j + jj * a_dim1], &c__1);
  966. /* L40: */
  967. }
  968. /* Update the rectangular superdiagonal block */
  969. i__2 = j - 1;
  970. i__3 = *n - k;
  971. z__1.r = -1., z__1.i = 0.;
  972. zgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &z__1, &a[(
  973. k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw,
  974. &c_b1, &a[j * a_dim1 + 1], lda);
  975. /* L50: */
  976. }
  977. /* Put U12 in standard form by partially undoing the interchanges */
  978. /* in columns k+1:n looping backwards from k+1 to n */
  979. j = k + 1;
  980. L60:
  981. /* Undo the interchanges (if any) of rows JJ and JP at each */
  982. /* step J */
  983. /* (Here, J is a diagonal index) */
  984. jj = j;
  985. jp = ipiv[j];
  986. if (jp < 0) {
  987. jp = -jp;
  988. /* (Here, J is a diagonal index) */
  989. ++j;
  990. }
  991. /* (NOTE: Here, J is used to determine row length. Length N-J+1 */
  992. /* of the rows to swap back doesn't include diagonal element) */
  993. ++j;
  994. if (jp != jj && j <= *n) {
  995. i__1 = *n - j + 1;
  996. zswap_(&i__1, &a[jp + j * a_dim1], lda, &a[jj + j * a_dim1], lda);
  997. }
  998. if (j < *n) {
  999. goto L60;
  1000. }
  1001. /* Set KB to the number of columns factorized */
  1002. *kb = *n - k;
  1003. } else {
  1004. /* Factorize the leading columns of A using the lower triangle */
  1005. /* of A and working forwards, and compute the matrix W = L21*D */
  1006. /* for use in updating A22 */
  1007. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  1008. k = 1;
  1009. L70:
  1010. /* Exit from loop */
  1011. if (k >= *nb && *nb < *n || k > *n) {
  1012. goto L90;
  1013. }
  1014. /* Copy column K of A to column K of W and update it */
  1015. i__1 = *n - k + 1;
  1016. zcopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
  1017. i__1 = *n - k + 1;
  1018. i__2 = k - 1;
  1019. z__1.r = -1., z__1.i = 0.;
  1020. zgemv_("No transpose", &i__1, &i__2, &z__1, &a[k + a_dim1], lda, &w[k
  1021. + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1);
  1022. kstep = 1;
  1023. /* Determine rows and columns to be interchanged and whether */
  1024. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1025. i__1 = k + k * w_dim1;
  1026. absakk = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[k + k *
  1027. w_dim1]), abs(d__2));
  1028. /* IMAX is the row-index of the largest off-diagonal element in */
  1029. if (k < *n) {
  1030. i__1 = *n - k;
  1031. imax = k + izamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1032. i__1 = imax + k * w_dim1;
  1033. colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[imax +
  1034. k * w_dim1]), abs(d__2));
  1035. } else {
  1036. colmax = 0.;
  1037. }
  1038. if (f2cmax(absakk,colmax) == 0.) {
  1039. /* Column K is zero or underflow: set INFO and continue */
  1040. if (*info == 0) {
  1041. *info = k;
  1042. }
  1043. kp = k;
  1044. } else {
  1045. if (absakk >= alpha * colmax) {
  1046. /* no interchange, use 1-by-1 pivot block */
  1047. kp = k;
  1048. } else {
  1049. /* Copy column IMAX to column K+1 of W and update it */
  1050. i__1 = imax - k;
  1051. zcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  1052. w_dim1], &c__1);
  1053. i__1 = *n - imax + 1;
  1054. zcopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k +
  1055. 1) * w_dim1], &c__1);
  1056. i__1 = *n - k + 1;
  1057. i__2 = k - 1;
  1058. z__1.r = -1., z__1.i = 0.;
  1059. zgemv_("No transpose", &i__1, &i__2, &z__1, &a[k + a_dim1],
  1060. lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k + 1) *
  1061. w_dim1], &c__1);
  1062. /* JMAX is the column-index of the largest off-diagonal */
  1063. /* element in row IMAX, and ROWMAX is its absolute value */
  1064. i__1 = imax - k;
  1065. jmax = k - 1 + izamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)
  1066. ;
  1067. i__1 = jmax + (k + 1) * w_dim1;
  1068. rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[
  1069. jmax + (k + 1) * w_dim1]), abs(d__2));
  1070. if (imax < *n) {
  1071. i__1 = *n - imax;
  1072. jmax = imax + izamax_(&i__1, &w[imax + 1 + (k + 1) *
  1073. w_dim1], &c__1);
  1074. /* Computing MAX */
  1075. i__1 = jmax + (k + 1) * w_dim1;
  1076. d__3 = rowmax, d__4 = (d__1 = w[i__1].r, abs(d__1)) + (
  1077. d__2 = d_imag(&w[jmax + (k + 1) * w_dim1]), abs(
  1078. d__2));
  1079. rowmax = f2cmax(d__3,d__4);
  1080. }
  1081. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  1082. /* no interchange, use 1-by-1 pivot block */
  1083. kp = k;
  1084. } else /* if(complicated condition) */ {
  1085. i__1 = imax + (k + 1) * w_dim1;
  1086. if ((d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[
  1087. imax + (k + 1) * w_dim1]), abs(d__2)) >= alpha *
  1088. rowmax) {
  1089. /* interchange rows and columns K and IMAX, use 1-by-1 */
  1090. /* pivot block */
  1091. kp = imax;
  1092. /* copy column K+1 of W to column K of W */
  1093. i__1 = *n - k + 1;
  1094. zcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k +
  1095. k * w_dim1], &c__1);
  1096. } else {
  1097. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  1098. /* pivot block */
  1099. kp = imax;
  1100. kstep = 2;
  1101. }
  1102. }
  1103. }
  1104. /* ============================================================ */
  1105. /* KK is the column of A where pivoting step stopped */
  1106. kk = k + kstep - 1;
  1107. /* Interchange rows and columns KP and KK. */
  1108. /* Updated column KP is already stored in column KK of W. */
  1109. if (kp != kk) {
  1110. /* Copy non-updated column KK to column KP of submatrix A */
  1111. /* at step K. No need to copy element into column K */
  1112. /* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
  1113. /* will be later overwritten. */
  1114. i__1 = kp + kp * a_dim1;
  1115. i__2 = kk + kk * a_dim1;
  1116. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1117. i__1 = kp - kk - 1;
  1118. zcopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
  1119. 1) * a_dim1], lda);
  1120. if (kp < *n) {
  1121. i__1 = *n - kp;
  1122. zcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1123. + kp * a_dim1], &c__1);
  1124. }
  1125. /* Interchange rows KK and KP in first K-1 columns of A */
  1126. /* (columns K (or K and K+1 for 2-by-2 pivot) of A will be */
  1127. /* later overwritten). Interchange rows KK and KP */
  1128. /* in first KK columns of W. */
  1129. if (k > 1) {
  1130. i__1 = k - 1;
  1131. zswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1132. }
  1133. zswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1134. }
  1135. if (kstep == 1) {
  1136. /* 1-by-1 pivot block D(k): column k of W now holds */
  1137. /* W(k) = L(k)*D(k), */
  1138. /* where L(k) is the k-th column of L */
  1139. /* Store subdiag. elements of column L(k) */
  1140. /* and 1-by-1 block D(k) in column k of A. */
  1141. /* (NOTE: Diagonal element L(k,k) is a UNIT element */
  1142. /* and not stored) */
  1143. /* A(k,k) := D(k,k) = W(k,k) */
  1144. /* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
  1145. i__1 = *n - k + 1;
  1146. zcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1147. c__1);
  1148. if (k < *n) {
  1149. z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
  1150. r1.r = z__1.r, r1.i = z__1.i;
  1151. i__1 = *n - k;
  1152. zscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1153. }
  1154. } else {
  1155. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1156. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1157. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1158. /* of L */
  1159. /* Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
  1160. /* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
  1161. /* (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
  1162. /* block and not stored) */
  1163. /* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
  1164. /* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
  1165. /* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
  1166. if (k < *n - 1) {
  1167. /* Compose the columns of the inverse of 2-by-2 pivot */
  1168. /* block D in the following way to reduce the number */
  1169. /* of FLOPS when we myltiply panel ( W(k) W(k+1) ) by */
  1170. /* this inverse */
  1171. /* D**(-1) = ( d11 d21 )**(-1) = */
  1172. /* ( d21 d22 ) */
  1173. /* = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = */
  1174. /* ( (-d21 ) ( d11 ) ) */
  1175. /* = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * */
  1176. /* * ( ( d22/d21 ) ( -1 ) ) = */
  1177. /* ( ( -1 ) ( d11/d21 ) ) */
  1178. /* = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = */
  1179. /* ( ( -1 ) ( D22 ) ) */
  1180. /* = 1/d21 * T * ( ( D11 ) ( -1 ) ) */
  1181. /* ( ( -1 ) ( D22 ) ) */
  1182. /* = D21 * ( ( D11 ) ( -1 ) ) */
  1183. /* ( ( -1 ) ( D22 ) ) */
  1184. i__1 = k + 1 + k * w_dim1;
  1185. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1186. z_div(&z__1, &w[k + 1 + (k + 1) * w_dim1], &d21);
  1187. d11.r = z__1.r, d11.i = z__1.i;
  1188. z_div(&z__1, &w[k + k * w_dim1], &d21);
  1189. d22.r = z__1.r, d22.i = z__1.i;
  1190. z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r *
  1191. d22.i + d11.i * d22.r;
  1192. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  1193. z_div(&z__1, &c_b1, &z__2);
  1194. t.r = z__1.r, t.i = z__1.i;
  1195. z_div(&z__1, &t, &d21);
  1196. d21.r = z__1.r, d21.i = z__1.i;
  1197. /* Update elements in columns A(k) and A(k+1) as */
  1198. /* dot products of rows of ( W(k) W(k+1) ) and columns */
  1199. /* of D**(-1) */
  1200. i__1 = *n;
  1201. for (j = k + 2; j <= i__1; ++j) {
  1202. i__2 = j + k * a_dim1;
  1203. i__3 = j + k * w_dim1;
  1204. z__3.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1205. z__3.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1206. .r;
  1207. i__4 = j + (k + 1) * w_dim1;
  1208. z__2.r = z__3.r - w[i__4].r, z__2.i = z__3.i - w[i__4]
  1209. .i;
  1210. z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i =
  1211. d21.r * z__2.i + d21.i * z__2.r;
  1212. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1213. i__2 = j + (k + 1) * a_dim1;
  1214. i__3 = j + (k + 1) * w_dim1;
  1215. z__3.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1216. z__3.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1217. .r;
  1218. i__4 = j + k * w_dim1;
  1219. z__2.r = z__3.r - w[i__4].r, z__2.i = z__3.i - w[i__4]
  1220. .i;
  1221. z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i =
  1222. d21.r * z__2.i + d21.i * z__2.r;
  1223. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1224. /* L80: */
  1225. }
  1226. }
  1227. /* Copy D(k) to A */
  1228. i__1 = k + k * a_dim1;
  1229. i__2 = k + k * w_dim1;
  1230. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1231. i__1 = k + 1 + k * a_dim1;
  1232. i__2 = k + 1 + k * w_dim1;
  1233. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1234. i__1 = k + 1 + (k + 1) * a_dim1;
  1235. i__2 = k + 1 + (k + 1) * w_dim1;
  1236. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1237. }
  1238. }
  1239. /* Store details of the interchanges in IPIV */
  1240. if (kstep == 1) {
  1241. ipiv[k] = kp;
  1242. } else {
  1243. ipiv[k] = -kp;
  1244. ipiv[k + 1] = -kp;
  1245. }
  1246. /* Increase K and return to the start of the main loop */
  1247. k += kstep;
  1248. goto L70;
  1249. L90:
  1250. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1251. /* A22 := A22 - L21*D*L21**T = A22 - L21*W**T */
  1252. /* computing blocks of NB columns at a time */
  1253. i__1 = *n;
  1254. i__2 = *nb;
  1255. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1256. /* Computing MIN */
  1257. i__3 = *nb, i__4 = *n - j + 1;
  1258. jb = f2cmin(i__3,i__4);
  1259. /* Update the lower triangle of the diagonal block */
  1260. i__3 = j + jb - 1;
  1261. for (jj = j; jj <= i__3; ++jj) {
  1262. i__4 = j + jb - jj;
  1263. i__5 = k - 1;
  1264. z__1.r = -1., z__1.i = 0.;
  1265. zgemv_("No transpose", &i__4, &i__5, &z__1, &a[jj + a_dim1],
  1266. lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1]
  1267. , &c__1);
  1268. /* L100: */
  1269. }
  1270. /* Update the rectangular subdiagonal block */
  1271. if (j + jb <= *n) {
  1272. i__3 = *n - j - jb + 1;
  1273. i__4 = k - 1;
  1274. z__1.r = -1., z__1.i = 0.;
  1275. zgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &z__1,
  1276. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1,
  1277. &a[j + jb + j * a_dim1], lda);
  1278. }
  1279. /* L110: */
  1280. }
  1281. /* Put L21 in standard form by partially undoing the interchanges */
  1282. /* of rows in columns 1:k-1 looping backwards from k-1 to 1 */
  1283. j = k - 1;
  1284. L120:
  1285. /* Undo the interchanges (if any) of rows JJ and JP at each */
  1286. /* step J */
  1287. /* (Here, J is a diagonal index) */
  1288. jj = j;
  1289. jp = ipiv[j];
  1290. if (jp < 0) {
  1291. jp = -jp;
  1292. /* (Here, J is a diagonal index) */
  1293. --j;
  1294. }
  1295. /* (NOTE: Here, J is used to determine row length. Length J */
  1296. /* of the rows to swap back doesn't include diagonal element) */
  1297. --j;
  1298. if (jp != jj && j >= 1) {
  1299. zswap_(&j, &a[jp + a_dim1], lda, &a[jj + a_dim1], lda);
  1300. }
  1301. if (j > 1) {
  1302. goto L120;
  1303. }
  1304. /* Set KB to the number of columns factorized */
  1305. *kb = k - 1;
  1306. }
  1307. return;
  1308. /* End of ZLASYF */
  1309. } /* zlasyf_ */