You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgels.c 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  217. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  218. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  219. #define sig_die(s, kill) { exit(1); }
  220. #define s_stop(s, n) {exit(0);}
  221. #define z_abs(z) (cabs(Cd(z)))
  222. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  223. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  224. #define myexit_() break;
  225. #define mycycle() continue;
  226. #define myceiling(w) {ceil(w)}
  227. #define myhuge(w) {HUGE_VAL}
  228. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  229. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  230. /* -- translated by f2c (version 20000121).
  231. You must link the resulting object file with the libraries:
  232. -lf2c -lm (in that order)
  233. */
  234. /* Table of constant values */
  235. static integer c__1 = 1;
  236. static integer c_n1 = -1;
  237. static real c_b33 = 0.f;
  238. static integer c__0 = 0;
  239. /* > \brief <b> SGELS solves overdetermined or underdetermined systems for GE matrices</b> */
  240. /* =========== DOCUMENTATION =========== */
  241. /* Online html documentation available at */
  242. /* http://www.netlib.org/lapack/explore-html/ */
  243. /* > \htmlonly */
  244. /* > Download SGELS + dependencies */
  245. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgels.f
  246. "> */
  247. /* > [TGZ]</a> */
  248. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgels.f
  249. "> */
  250. /* > [ZIP]</a> */
  251. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgels.f
  252. "> */
  253. /* > [TXT]</a> */
  254. /* > \endhtmlonly */
  255. /* Definition: */
  256. /* =========== */
  257. /* SUBROUTINE SGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, */
  258. /* INFO ) */
  259. /* CHARACTER TRANS */
  260. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS */
  261. /* REAL A( LDA, * ), B( LDB, * ), WORK( * ) */
  262. /* > \par Purpose: */
  263. /* ============= */
  264. /* > */
  265. /* > \verbatim */
  266. /* > */
  267. /* > SGELS solves overdetermined or underdetermined real linear systems */
  268. /* > involving an M-by-N matrix A, or its transpose, using a QR or LQ */
  269. /* > factorization of A. It is assumed that A has full rank. */
  270. /* > */
  271. /* > The following options are provided: */
  272. /* > */
  273. /* > 1. If TRANS = 'N' and m >= n: find the least squares solution of */
  274. /* > an overdetermined system, i.e., solve the least squares problem */
  275. /* > minimize || B - A*X ||. */
  276. /* > */
  277. /* > 2. If TRANS = 'N' and m < n: find the minimum norm solution of */
  278. /* > an underdetermined system A * X = B. */
  279. /* > */
  280. /* > 3. If TRANS = 'T' and m >= n: find the minimum norm solution of */
  281. /* > an underdetermined system A**T * X = B. */
  282. /* > */
  283. /* > 4. If TRANS = 'T' and m < n: find the least squares solution of */
  284. /* > an overdetermined system, i.e., solve the least squares problem */
  285. /* > minimize || B - A**T * X ||. */
  286. /* > */
  287. /* > Several right hand side vectors b and solution vectors x can be */
  288. /* > handled in a single call; they are stored as the columns of the */
  289. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  290. /* > matrix X. */
  291. /* > \endverbatim */
  292. /* Arguments: */
  293. /* ========== */
  294. /* > \param[in] TRANS */
  295. /* > \verbatim */
  296. /* > TRANS is CHARACTER*1 */
  297. /* > = 'N': the linear system involves A; */
  298. /* > = 'T': the linear system involves A**T. */
  299. /* > \endverbatim */
  300. /* > */
  301. /* > \param[in] M */
  302. /* > \verbatim */
  303. /* > M is INTEGER */
  304. /* > The number of rows of the matrix A. M >= 0. */
  305. /* > \endverbatim */
  306. /* > */
  307. /* > \param[in] N */
  308. /* > \verbatim */
  309. /* > N is INTEGER */
  310. /* > The number of columns of the matrix A. N >= 0. */
  311. /* > \endverbatim */
  312. /* > */
  313. /* > \param[in] NRHS */
  314. /* > \verbatim */
  315. /* > NRHS is INTEGER */
  316. /* > The number of right hand sides, i.e., the number of */
  317. /* > columns of the matrices B and X. NRHS >=0. */
  318. /* > \endverbatim */
  319. /* > */
  320. /* > \param[in,out] A */
  321. /* > \verbatim */
  322. /* > A is REAL array, dimension (LDA,N) */
  323. /* > On entry, the M-by-N matrix A. */
  324. /* > On exit, */
  325. /* > if M >= N, A is overwritten by details of its QR */
  326. /* > factorization as returned by SGEQRF; */
  327. /* > if M < N, A is overwritten by details of its LQ */
  328. /* > factorization as returned by SGELQF. */
  329. /* > \endverbatim */
  330. /* > */
  331. /* > \param[in] LDA */
  332. /* > \verbatim */
  333. /* > LDA is INTEGER */
  334. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  335. /* > \endverbatim */
  336. /* > */
  337. /* > \param[in,out] B */
  338. /* > \verbatim */
  339. /* > B is REAL array, dimension (LDB,NRHS) */
  340. /* > On entry, the matrix B of right hand side vectors, stored */
  341. /* > columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
  342. /* > if TRANS = 'T'. */
  343. /* > On exit, if INFO = 0, B is overwritten by the solution */
  344. /* > vectors, stored columnwise: */
  345. /* > if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
  346. /* > squares solution vectors; the residual sum of squares for the */
  347. /* > solution in each column is given by the sum of squares of */
  348. /* > elements N+1 to M in that column; */
  349. /* > if TRANS = 'N' and m < n, rows 1 to N of B contain the */
  350. /* > minimum norm solution vectors; */
  351. /* > if TRANS = 'T' and m >= n, rows 1 to M of B contain the */
  352. /* > minimum norm solution vectors; */
  353. /* > if TRANS = 'T' and m < n, rows 1 to M of B contain the */
  354. /* > least squares solution vectors; the residual sum of squares */
  355. /* > for the solution in each column is given by the sum of */
  356. /* > squares of elements M+1 to N in that column. */
  357. /* > \endverbatim */
  358. /* > */
  359. /* > \param[in] LDB */
  360. /* > \verbatim */
  361. /* > LDB is INTEGER */
  362. /* > The leading dimension of the array B. LDB >= MAX(1,M,N). */
  363. /* > \endverbatim */
  364. /* > */
  365. /* > \param[out] WORK */
  366. /* > \verbatim */
  367. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  368. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  369. /* > \endverbatim */
  370. /* > */
  371. /* > \param[in] LWORK */
  372. /* > \verbatim */
  373. /* > LWORK is INTEGER */
  374. /* > The dimension of the array WORK. */
  375. /* > LWORK >= f2cmax( 1, MN + f2cmax( MN, NRHS ) ). */
  376. /* > For optimal performance, */
  377. /* > LWORK >= f2cmax( 1, MN + f2cmax( MN, NRHS )*NB ). */
  378. /* > where MN = f2cmin(M,N) and NB is the optimum block size. */
  379. /* > */
  380. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  381. /* > only calculates the optimal size of the WORK array, returns */
  382. /* > this value as the first entry of the WORK array, and no error */
  383. /* > message related to LWORK is issued by XERBLA. */
  384. /* > \endverbatim */
  385. /* > */
  386. /* > \param[out] INFO */
  387. /* > \verbatim */
  388. /* > INFO is INTEGER */
  389. /* > = 0: successful exit */
  390. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  391. /* > > 0: if INFO = i, the i-th diagonal element of the */
  392. /* > triangular factor of A is zero, so that A does not have */
  393. /* > full rank; the least squares solution could not be */
  394. /* > computed. */
  395. /* > \endverbatim */
  396. /* Authors: */
  397. /* ======== */
  398. /* > \author Univ. of Tennessee */
  399. /* > \author Univ. of California Berkeley */
  400. /* > \author Univ. of Colorado Denver */
  401. /* > \author NAG Ltd. */
  402. /* > \date December 2016 */
  403. /* > \ingroup realGEsolve */
  404. /* ===================================================================== */
  405. /* Subroutine */ void sgels_(char *trans, integer *m, integer *n, integer *
  406. nrhs, real *a, integer *lda, real *b, integer *ldb, real *work,
  407. integer *lwork, integer *info)
  408. {
  409. /* System generated locals */
  410. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
  411. /* Local variables */
  412. real anrm, bnrm;
  413. integer brow;
  414. logical tpsd;
  415. integer i__, j, iascl, ibscl;
  416. extern logical lsame_(char *, char *);
  417. integer wsize;
  418. real rwork[1];
  419. integer nb;
  420. extern /* Subroutine */ void slabad_(real *, real *);
  421. integer mn;
  422. extern real slamch_(char *), slange_(char *, integer *, integer *,
  423. real *, integer *, real *);
  424. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  425. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  426. integer *, integer *, ftnlen, ftnlen);
  427. integer scllen;
  428. real bignum;
  429. extern /* Subroutine */ void sgelqf_(integer *, integer *, real *, integer
  430. *, real *, real *, integer *, integer *), slascl_(char *, integer
  431. *, integer *, real *, real *, integer *, integer *, real *,
  432. integer *, integer *), sgeqrf_(integer *, integer *, real
  433. *, integer *, real *, real *, integer *, integer *), slaset_(char
  434. *, integer *, integer *, real *, real *, real *, integer *);
  435. real smlnum;
  436. extern /* Subroutine */ void sormlq_(char *, char *, integer *, integer *,
  437. integer *, real *, integer *, real *, real *, integer *, real *,
  438. integer *, integer *);
  439. logical lquery;
  440. extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
  441. integer *, real *, integer *, real *, real *, integer *, real *,
  442. integer *, integer *);
  443. extern int strtrs_(char *, char *,
  444. char *, integer *, integer *, real *, integer *, real *, integer *
  445. , integer *);
  446. /* -- LAPACK driver routine (version 3.7.0) -- */
  447. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  448. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  449. /* December 2016 */
  450. /* ===================================================================== */
  451. /* Test the input arguments. */
  452. /* Parameter adjustments */
  453. a_dim1 = *lda;
  454. a_offset = 1 + a_dim1 * 1;
  455. a -= a_offset;
  456. b_dim1 = *ldb;
  457. b_offset = 1 + b_dim1 * 1;
  458. b -= b_offset;
  459. --work;
  460. /* Function Body */
  461. *info = 0;
  462. mn = f2cmin(*m,*n);
  463. lquery = *lwork == -1;
  464. if (! (lsame_(trans, "N") || lsame_(trans, "T"))) {
  465. *info = -1;
  466. } else if (*m < 0) {
  467. *info = -2;
  468. } else if (*n < 0) {
  469. *info = -3;
  470. } else if (*nrhs < 0) {
  471. *info = -4;
  472. } else if (*lda < f2cmax(1,*m)) {
  473. *info = -6;
  474. } else /* if(complicated condition) */ {
  475. /* Computing MAX */
  476. i__1 = f2cmax(1,*m);
  477. if (*ldb < f2cmax(i__1,*n)) {
  478. *info = -8;
  479. } else /* if(complicated condition) */ {
  480. /* Computing MAX */
  481. i__1 = 1, i__2 = mn + f2cmax(mn,*nrhs);
  482. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  483. *info = -10;
  484. }
  485. }
  486. }
  487. /* Figure out optimal block size */
  488. if (*info == 0 || *info == -10) {
  489. tpsd = TRUE_;
  490. if (lsame_(trans, "N")) {
  491. tpsd = FALSE_;
  492. }
  493. if (*m >= *n) {
  494. nb = ilaenv_(&c__1, "SGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
  495. (ftnlen)1);
  496. if (tpsd) {
  497. /* Computing MAX */
  498. i__1 = nb, i__2 = ilaenv_(&c__1, "SORMQR", "LN", m, nrhs, n, &
  499. c_n1, (ftnlen)6, (ftnlen)2);
  500. nb = f2cmax(i__1,i__2);
  501. } else {
  502. /* Computing MAX */
  503. i__1 = nb, i__2 = ilaenv_(&c__1, "SORMQR", "LT", m, nrhs, n, &
  504. c_n1, (ftnlen)6, (ftnlen)2);
  505. nb = f2cmax(i__1,i__2);
  506. }
  507. } else {
  508. nb = ilaenv_(&c__1, "SGELQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
  509. (ftnlen)1);
  510. if (tpsd) {
  511. /* Computing MAX */
  512. i__1 = nb, i__2 = ilaenv_(&c__1, "SORMLQ", "LT", n, nrhs, m, &
  513. c_n1, (ftnlen)6, (ftnlen)2);
  514. nb = f2cmax(i__1,i__2);
  515. } else {
  516. /* Computing MAX */
  517. i__1 = nb, i__2 = ilaenv_(&c__1, "SORMLQ", "LN", n, nrhs, m, &
  518. c_n1, (ftnlen)6, (ftnlen)2);
  519. nb = f2cmax(i__1,i__2);
  520. }
  521. }
  522. /* Computing MAX */
  523. i__1 = 1, i__2 = mn + f2cmax(mn,*nrhs) * nb;
  524. wsize = f2cmax(i__1,i__2);
  525. work[1] = (real) wsize;
  526. }
  527. if (*info != 0) {
  528. i__1 = -(*info);
  529. xerbla_("SGELS ", &i__1, (ftnlen)6);
  530. return;
  531. } else if (lquery) {
  532. return;
  533. }
  534. /* Quick return if possible */
  535. /* Computing MIN */
  536. i__1 = f2cmin(*m,*n);
  537. if (f2cmin(i__1,*nrhs) == 0) {
  538. i__1 = f2cmax(*m,*n);
  539. slaset_("Full", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb);
  540. return;
  541. }
  542. /* Get machine parameters */
  543. smlnum = slamch_("S") / slamch_("P");
  544. bignum = 1.f / smlnum;
  545. slabad_(&smlnum, &bignum);
  546. /* Scale A, B if f2cmax element outside range [SMLNUM,BIGNUM] */
  547. anrm = slange_("M", m, n, &a[a_offset], lda, rwork);
  548. iascl = 0;
  549. if (anrm > 0.f && anrm < smlnum) {
  550. /* Scale matrix norm up to SMLNUM */
  551. slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  552. info);
  553. iascl = 1;
  554. } else if (anrm > bignum) {
  555. /* Scale matrix norm down to BIGNUM */
  556. slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  557. info);
  558. iascl = 2;
  559. } else if (anrm == 0.f) {
  560. /* Matrix all zero. Return zero solution. */
  561. i__1 = f2cmax(*m,*n);
  562. slaset_("F", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb);
  563. goto L50;
  564. }
  565. brow = *m;
  566. if (tpsd) {
  567. brow = *n;
  568. }
  569. bnrm = slange_("M", &brow, nrhs, &b[b_offset], ldb, rwork);
  570. ibscl = 0;
  571. if (bnrm > 0.f && bnrm < smlnum) {
  572. /* Scale matrix norm up to SMLNUM */
  573. slascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset],
  574. ldb, info);
  575. ibscl = 1;
  576. } else if (bnrm > bignum) {
  577. /* Scale matrix norm down to BIGNUM */
  578. slascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset],
  579. ldb, info);
  580. ibscl = 2;
  581. }
  582. if (*m >= *n) {
  583. /* compute QR factorization of A */
  584. i__1 = *lwork - mn;
  585. sgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
  586. ;
  587. /* workspace at least N, optimally N*NB */
  588. if (! tpsd) {
  589. /* Least-Squares Problem f2cmin || A * X - B || */
  590. /* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) */
  591. i__1 = *lwork - mn;
  592. sormqr_("Left", "Transpose", m, nrhs, n, &a[a_offset], lda, &work[
  593. 1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
  594. /* workspace at least NRHS, optimally NRHS*NB */
  595. /* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */
  596. strtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset]
  597. , lda, &b[b_offset], ldb, info);
  598. if (*info > 0) {
  599. return;
  600. }
  601. scllen = *n;
  602. } else {
  603. /* Underdetermined system of equations A**T * X = B */
  604. /* B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS) */
  605. strtrs_("Upper", "Transpose", "Non-unit", n, nrhs, &a[a_offset],
  606. lda, &b[b_offset], ldb, info);
  607. if (*info > 0) {
  608. return;
  609. }
  610. /* B(N+1:M,1:NRHS) = ZERO */
  611. i__1 = *nrhs;
  612. for (j = 1; j <= i__1; ++j) {
  613. i__2 = *m;
  614. for (i__ = *n + 1; i__ <= i__2; ++i__) {
  615. b[i__ + j * b_dim1] = 0.f;
  616. /* L10: */
  617. }
  618. /* L20: */
  619. }
  620. /* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */
  621. i__1 = *lwork - mn;
  622. sormqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, &
  623. work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
  624. /* workspace at least NRHS, optimally NRHS*NB */
  625. scllen = *m;
  626. }
  627. } else {
  628. /* Compute LQ factorization of A */
  629. i__1 = *lwork - mn;
  630. sgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
  631. ;
  632. /* workspace at least M, optimally M*NB. */
  633. if (! tpsd) {
  634. /* underdetermined system of equations A * X = B */
  635. /* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */
  636. strtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset]
  637. , lda, &b[b_offset], ldb, info);
  638. if (*info > 0) {
  639. return;
  640. }
  641. /* B(M+1:N,1:NRHS) = 0 */
  642. i__1 = *nrhs;
  643. for (j = 1; j <= i__1; ++j) {
  644. i__2 = *n;
  645. for (i__ = *m + 1; i__ <= i__2; ++i__) {
  646. b[i__ + j * b_dim1] = 0.f;
  647. /* L30: */
  648. }
  649. /* L40: */
  650. }
  651. /* B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS) */
  652. i__1 = *lwork - mn;
  653. sormlq_("Left", "Transpose", n, nrhs, m, &a[a_offset], lda, &work[
  654. 1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
  655. /* workspace at least NRHS, optimally NRHS*NB */
  656. scllen = *n;
  657. } else {
  658. /* overdetermined system f2cmin || A**T * X - B || */
  659. /* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */
  660. i__1 = *lwork - mn;
  661. sormlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, &
  662. work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
  663. /* workspace at least NRHS, optimally NRHS*NB */
  664. /* B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS) */
  665. strtrs_("Lower", "Transpose", "Non-unit", m, nrhs, &a[a_offset],
  666. lda, &b[b_offset], ldb, info);
  667. if (*info > 0) {
  668. return;
  669. }
  670. scllen = *m;
  671. }
  672. }
  673. /* Undo scaling */
  674. if (iascl == 1) {
  675. slascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
  676. , ldb, info);
  677. } else if (iascl == 2) {
  678. slascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
  679. , ldb, info);
  680. }
  681. if (ibscl == 1) {
  682. slascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
  683. , ldb, info);
  684. } else if (ibscl == 2) {
  685. slascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
  686. , ldb, info);
  687. }
  688. L50:
  689. work[1] = (real) wsize;
  690. return;
  691. /* End of SGELS */
  692. } /* sgels_ */