You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claic1.c 28 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b CLAIC1 applies one step of incremental condition estimation. */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download CLAIC1 + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claic1.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claic1.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claic1.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE CLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C ) */
  504. /* INTEGER J, JOB */
  505. /* REAL SEST, SESTPR */
  506. /* COMPLEX C, GAMMA, S */
  507. /* COMPLEX W( J ), X( J ) */
  508. /* > \par Purpose: */
  509. /* ============= */
  510. /* > */
  511. /* > \verbatim */
  512. /* > */
  513. /* > CLAIC1 applies one step of incremental condition estimation in */
  514. /* > its simplest version: */
  515. /* > */
  516. /* > Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j */
  517. /* > lower triangular matrix L, such that */
  518. /* > twonorm(L*x) = sest */
  519. /* > Then CLAIC1 computes sestpr, s, c such that */
  520. /* > the vector */
  521. /* > [ s*x ] */
  522. /* > xhat = [ c ] */
  523. /* > is an approximate singular vector of */
  524. /* > [ L 0 ] */
  525. /* > Lhat = [ w**H gamma ] */
  526. /* > in the sense that */
  527. /* > twonorm(Lhat*xhat) = sestpr. */
  528. /* > */
  529. /* > Depending on JOB, an estimate for the largest or smallest singular */
  530. /* > value is computed. */
  531. /* > */
  532. /* > Note that [s c]**H and sestpr**2 is an eigenpair of the system */
  533. /* > */
  534. /* > diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ] */
  535. /* > [ conjg(gamma) ] */
  536. /* > */
  537. /* > where alpha = x**H*w. */
  538. /* > \endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] JOB */
  542. /* > \verbatim */
  543. /* > JOB is INTEGER */
  544. /* > = 1: an estimate for the largest singular value is computed. */
  545. /* > = 2: an estimate for the smallest singular value is computed. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] J */
  549. /* > \verbatim */
  550. /* > J is INTEGER */
  551. /* > Length of X and W */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] X */
  555. /* > \verbatim */
  556. /* > X is COMPLEX array, dimension (J) */
  557. /* > The j-vector x. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] SEST */
  561. /* > \verbatim */
  562. /* > SEST is REAL */
  563. /* > Estimated singular value of j by j matrix L */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] W */
  567. /* > \verbatim */
  568. /* > W is COMPLEX array, dimension (J) */
  569. /* > The j-vector w. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] GAMMA */
  573. /* > \verbatim */
  574. /* > GAMMA is COMPLEX */
  575. /* > The diagonal element gamma. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[out] SESTPR */
  579. /* > \verbatim */
  580. /* > SESTPR is REAL */
  581. /* > Estimated singular value of (j+1) by (j+1) matrix Lhat. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[out] S */
  585. /* > \verbatim */
  586. /* > S is COMPLEX */
  587. /* > Sine needed in forming xhat. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] C */
  591. /* > \verbatim */
  592. /* > C is COMPLEX */
  593. /* > Cosine needed in forming xhat. */
  594. /* > \endverbatim */
  595. /* Authors: */
  596. /* ======== */
  597. /* > \author Univ. of Tennessee */
  598. /* > \author Univ. of California Berkeley */
  599. /* > \author Univ. of Colorado Denver */
  600. /* > \author NAG Ltd. */
  601. /* > \date December 2016 */
  602. /* > \ingroup complexOTHERauxiliary */
  603. /* ===================================================================== */
  604. /* Subroutine */ void claic1_(integer *job, integer *j, complex *x, real *sest,
  605. complex *w, complex *gamma, real *sestpr, complex *s, complex *c__)
  606. {
  607. /* System generated locals */
  608. real r__1, r__2;
  609. complex q__1, q__2, q__3, q__4, q__5, q__6;
  610. /* Local variables */
  611. complex sine;
  612. real test, zeta1, zeta2, b, t;
  613. complex alpha;
  614. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  615. *, complex *, integer *);
  616. real norma, s1, s2, absgam, absalp;
  617. extern real slamch_(char *);
  618. complex cosine;
  619. real absest, scl, eps, tmp;
  620. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  621. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  622. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  623. /* December 2016 */
  624. /* ===================================================================== */
  625. /* Parameter adjustments */
  626. --w;
  627. --x;
  628. /* Function Body */
  629. eps = slamch_("Epsilon");
  630. cdotc_(&q__1, j, &x[1], &c__1, &w[1], &c__1);
  631. alpha.r = q__1.r, alpha.i = q__1.i;
  632. absalp = c_abs(&alpha);
  633. absgam = c_abs(gamma);
  634. absest = abs(*sest);
  635. if (*job == 1) {
  636. /* Estimating largest singular value */
  637. /* special cases */
  638. if (*sest == 0.f) {
  639. s1 = f2cmax(absgam,absalp);
  640. if (s1 == 0.f) {
  641. s->r = 0.f, s->i = 0.f;
  642. c__->r = 1.f, c__->i = 0.f;
  643. *sestpr = 0.f;
  644. } else {
  645. q__1.r = alpha.r / s1, q__1.i = alpha.i / s1;
  646. s->r = q__1.r, s->i = q__1.i;
  647. q__1.r = gamma->r / s1, q__1.i = gamma->i / s1;
  648. c__->r = q__1.r, c__->i = q__1.i;
  649. r_cnjg(&q__4, s);
  650. q__3.r = s->r * q__4.r - s->i * q__4.i, q__3.i = s->r *
  651. q__4.i + s->i * q__4.r;
  652. r_cnjg(&q__6, c__);
  653. q__5.r = c__->r * q__6.r - c__->i * q__6.i, q__5.i = c__->r *
  654. q__6.i + c__->i * q__6.r;
  655. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  656. c_sqrt(&q__1, &q__2);
  657. tmp = q__1.r;
  658. q__1.r = s->r / tmp, q__1.i = s->i / tmp;
  659. s->r = q__1.r, s->i = q__1.i;
  660. q__1.r = c__->r / tmp, q__1.i = c__->i / tmp;
  661. c__->r = q__1.r, c__->i = q__1.i;
  662. *sestpr = s1 * tmp;
  663. }
  664. return;
  665. } else if (absgam <= eps * absest) {
  666. s->r = 1.f, s->i = 0.f;
  667. c__->r = 0.f, c__->i = 0.f;
  668. tmp = f2cmax(absest,absalp);
  669. s1 = absest / tmp;
  670. s2 = absalp / tmp;
  671. *sestpr = tmp * sqrt(s1 * s1 + s2 * s2);
  672. return;
  673. } else if (absalp <= eps * absest) {
  674. s1 = absgam;
  675. s2 = absest;
  676. if (s1 <= s2) {
  677. s->r = 1.f, s->i = 0.f;
  678. c__->r = 0.f, c__->i = 0.f;
  679. *sestpr = s2;
  680. } else {
  681. s->r = 0.f, s->i = 0.f;
  682. c__->r = 1.f, c__->i = 0.f;
  683. *sestpr = s1;
  684. }
  685. return;
  686. } else if (absest <= eps * absalp || absest <= eps * absgam) {
  687. s1 = absgam;
  688. s2 = absalp;
  689. if (s1 <= s2) {
  690. tmp = s1 / s2;
  691. scl = sqrt(tmp * tmp + 1.f);
  692. *sestpr = s2 * scl;
  693. q__2.r = alpha.r / s2, q__2.i = alpha.i / s2;
  694. q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
  695. s->r = q__1.r, s->i = q__1.i;
  696. q__2.r = gamma->r / s2, q__2.i = gamma->i / s2;
  697. q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
  698. c__->r = q__1.r, c__->i = q__1.i;
  699. } else {
  700. tmp = s2 / s1;
  701. scl = sqrt(tmp * tmp + 1.f);
  702. *sestpr = s1 * scl;
  703. q__2.r = alpha.r / s1, q__2.i = alpha.i / s1;
  704. q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
  705. s->r = q__1.r, s->i = q__1.i;
  706. q__2.r = gamma->r / s1, q__2.i = gamma->i / s1;
  707. q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
  708. c__->r = q__1.r, c__->i = q__1.i;
  709. }
  710. return;
  711. } else {
  712. /* normal case */
  713. zeta1 = absalp / absest;
  714. zeta2 = absgam / absest;
  715. b = (1.f - zeta1 * zeta1 - zeta2 * zeta2) * .5f;
  716. r__1 = zeta1 * zeta1;
  717. c__->r = r__1, c__->i = 0.f;
  718. if (b > 0.f) {
  719. r__1 = b * b;
  720. q__4.r = r__1 + c__->r, q__4.i = c__->i;
  721. c_sqrt(&q__3, &q__4);
  722. q__2.r = b + q__3.r, q__2.i = q__3.i;
  723. c_div(&q__1, c__, &q__2);
  724. t = q__1.r;
  725. } else {
  726. r__1 = b * b;
  727. q__3.r = r__1 + c__->r, q__3.i = c__->i;
  728. c_sqrt(&q__2, &q__3);
  729. q__1.r = q__2.r - b, q__1.i = q__2.i;
  730. t = q__1.r;
  731. }
  732. q__3.r = alpha.r / absest, q__3.i = alpha.i / absest;
  733. q__2.r = -q__3.r, q__2.i = -q__3.i;
  734. q__1.r = q__2.r / t, q__1.i = q__2.i / t;
  735. sine.r = q__1.r, sine.i = q__1.i;
  736. q__3.r = gamma->r / absest, q__3.i = gamma->i / absest;
  737. q__2.r = -q__3.r, q__2.i = -q__3.i;
  738. r__1 = t + 1.f;
  739. q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
  740. cosine.r = q__1.r, cosine.i = q__1.i;
  741. r_cnjg(&q__4, &sine);
  742. q__3.r = sine.r * q__4.r - sine.i * q__4.i, q__3.i = sine.r *
  743. q__4.i + sine.i * q__4.r;
  744. r_cnjg(&q__6, &cosine);
  745. q__5.r = cosine.r * q__6.r - cosine.i * q__6.i, q__5.i = cosine.r
  746. * q__6.i + cosine.i * q__6.r;
  747. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  748. c_sqrt(&q__1, &q__2);
  749. tmp = q__1.r;
  750. q__1.r = sine.r / tmp, q__1.i = sine.i / tmp;
  751. s->r = q__1.r, s->i = q__1.i;
  752. q__1.r = cosine.r / tmp, q__1.i = cosine.i / tmp;
  753. c__->r = q__1.r, c__->i = q__1.i;
  754. *sestpr = sqrt(t + 1.f) * absest;
  755. return;
  756. }
  757. } else if (*job == 2) {
  758. /* Estimating smallest singular value */
  759. /* special cases */
  760. if (*sest == 0.f) {
  761. *sestpr = 0.f;
  762. if (f2cmax(absgam,absalp) == 0.f) {
  763. sine.r = 1.f, sine.i = 0.f;
  764. cosine.r = 0.f, cosine.i = 0.f;
  765. } else {
  766. r_cnjg(&q__2, gamma);
  767. q__1.r = -q__2.r, q__1.i = -q__2.i;
  768. sine.r = q__1.r, sine.i = q__1.i;
  769. r_cnjg(&q__1, &alpha);
  770. cosine.r = q__1.r, cosine.i = q__1.i;
  771. }
  772. /* Computing MAX */
  773. r__1 = c_abs(&sine), r__2 = c_abs(&cosine);
  774. s1 = f2cmax(r__1,r__2);
  775. q__1.r = sine.r / s1, q__1.i = sine.i / s1;
  776. s->r = q__1.r, s->i = q__1.i;
  777. q__1.r = cosine.r / s1, q__1.i = cosine.i / s1;
  778. c__->r = q__1.r, c__->i = q__1.i;
  779. r_cnjg(&q__4, s);
  780. q__3.r = s->r * q__4.r - s->i * q__4.i, q__3.i = s->r * q__4.i +
  781. s->i * q__4.r;
  782. r_cnjg(&q__6, c__);
  783. q__5.r = c__->r * q__6.r - c__->i * q__6.i, q__5.i = c__->r *
  784. q__6.i + c__->i * q__6.r;
  785. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  786. c_sqrt(&q__1, &q__2);
  787. tmp = q__1.r;
  788. q__1.r = s->r / tmp, q__1.i = s->i / tmp;
  789. s->r = q__1.r, s->i = q__1.i;
  790. q__1.r = c__->r / tmp, q__1.i = c__->i / tmp;
  791. c__->r = q__1.r, c__->i = q__1.i;
  792. return;
  793. } else if (absgam <= eps * absest) {
  794. s->r = 0.f, s->i = 0.f;
  795. c__->r = 1.f, c__->i = 0.f;
  796. *sestpr = absgam;
  797. return;
  798. } else if (absalp <= eps * absest) {
  799. s1 = absgam;
  800. s2 = absest;
  801. if (s1 <= s2) {
  802. s->r = 0.f, s->i = 0.f;
  803. c__->r = 1.f, c__->i = 0.f;
  804. *sestpr = s1;
  805. } else {
  806. s->r = 1.f, s->i = 0.f;
  807. c__->r = 0.f, c__->i = 0.f;
  808. *sestpr = s2;
  809. }
  810. return;
  811. } else if (absest <= eps * absalp || absest <= eps * absgam) {
  812. s1 = absgam;
  813. s2 = absalp;
  814. if (s1 <= s2) {
  815. tmp = s1 / s2;
  816. scl = sqrt(tmp * tmp + 1.f);
  817. *sestpr = absest * (tmp / scl);
  818. r_cnjg(&q__4, gamma);
  819. q__3.r = q__4.r / s2, q__3.i = q__4.i / s2;
  820. q__2.r = -q__3.r, q__2.i = -q__3.i;
  821. q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
  822. s->r = q__1.r, s->i = q__1.i;
  823. r_cnjg(&q__3, &alpha);
  824. q__2.r = q__3.r / s2, q__2.i = q__3.i / s2;
  825. q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
  826. c__->r = q__1.r, c__->i = q__1.i;
  827. } else {
  828. tmp = s2 / s1;
  829. scl = sqrt(tmp * tmp + 1.f);
  830. *sestpr = absest / scl;
  831. r_cnjg(&q__4, gamma);
  832. q__3.r = q__4.r / s1, q__3.i = q__4.i / s1;
  833. q__2.r = -q__3.r, q__2.i = -q__3.i;
  834. q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
  835. s->r = q__1.r, s->i = q__1.i;
  836. r_cnjg(&q__3, &alpha);
  837. q__2.r = q__3.r / s1, q__2.i = q__3.i / s1;
  838. q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
  839. c__->r = q__1.r, c__->i = q__1.i;
  840. }
  841. return;
  842. } else {
  843. /* normal case */
  844. zeta1 = absalp / absest;
  845. zeta2 = absgam / absest;
  846. /* Computing MAX */
  847. r__1 = zeta1 * zeta1 + 1.f + zeta1 * zeta2, r__2 = zeta1 * zeta2
  848. + zeta2 * zeta2;
  849. norma = f2cmax(r__1,r__2);
  850. /* See if root is closer to zero or to ONE */
  851. test = (zeta1 - zeta2) * 2.f * (zeta1 + zeta2) + 1.f;
  852. if (test >= 0.f) {
  853. /* root is close to zero, compute directly */
  854. b = (zeta1 * zeta1 + zeta2 * zeta2 + 1.f) * .5f;
  855. r__1 = zeta2 * zeta2;
  856. c__->r = r__1, c__->i = 0.f;
  857. r__2 = b * b;
  858. q__2.r = r__2 - c__->r, q__2.i = -c__->i;
  859. r__1 = b + sqrt(c_abs(&q__2));
  860. q__1.r = c__->r / r__1, q__1.i = c__->i / r__1;
  861. t = q__1.r;
  862. q__2.r = alpha.r / absest, q__2.i = alpha.i / absest;
  863. r__1 = 1.f - t;
  864. q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
  865. sine.r = q__1.r, sine.i = q__1.i;
  866. q__3.r = gamma->r / absest, q__3.i = gamma->i / absest;
  867. q__2.r = -q__3.r, q__2.i = -q__3.i;
  868. q__1.r = q__2.r / t, q__1.i = q__2.i / t;
  869. cosine.r = q__1.r, cosine.i = q__1.i;
  870. *sestpr = sqrt(t + eps * 4.f * eps * norma) * absest;
  871. } else {
  872. /* root is closer to ONE, shift by that amount */
  873. b = (zeta2 * zeta2 + zeta1 * zeta1 - 1.f) * .5f;
  874. r__1 = zeta1 * zeta1;
  875. c__->r = r__1, c__->i = 0.f;
  876. if (b >= 0.f) {
  877. q__2.r = -c__->r, q__2.i = -c__->i;
  878. r__1 = b * b;
  879. q__5.r = r__1 + c__->r, q__5.i = c__->i;
  880. c_sqrt(&q__4, &q__5);
  881. q__3.r = b + q__4.r, q__3.i = q__4.i;
  882. c_div(&q__1, &q__2, &q__3);
  883. t = q__1.r;
  884. } else {
  885. r__1 = b * b;
  886. q__3.r = r__1 + c__->r, q__3.i = c__->i;
  887. c_sqrt(&q__2, &q__3);
  888. q__1.r = b - q__2.r, q__1.i = -q__2.i;
  889. t = q__1.r;
  890. }
  891. q__3.r = alpha.r / absest, q__3.i = alpha.i / absest;
  892. q__2.r = -q__3.r, q__2.i = -q__3.i;
  893. q__1.r = q__2.r / t, q__1.i = q__2.i / t;
  894. sine.r = q__1.r, sine.i = q__1.i;
  895. q__3.r = gamma->r / absest, q__3.i = gamma->i / absest;
  896. q__2.r = -q__3.r, q__2.i = -q__3.i;
  897. r__1 = t + 1.f;
  898. q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
  899. cosine.r = q__1.r, cosine.i = q__1.i;
  900. *sestpr = sqrt(t + 1.f + eps * 4.f * eps * norma) * absest;
  901. }
  902. r_cnjg(&q__4, &sine);
  903. q__3.r = sine.r * q__4.r - sine.i * q__4.i, q__3.i = sine.r *
  904. q__4.i + sine.i * q__4.r;
  905. r_cnjg(&q__6, &cosine);
  906. q__5.r = cosine.r * q__6.r - cosine.i * q__6.i, q__5.i = cosine.r
  907. * q__6.i + cosine.i * q__6.r;
  908. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  909. c_sqrt(&q__1, &q__2);
  910. tmp = q__1.r;
  911. q__1.r = sine.r / tmp, q__1.i = sine.i / tmp;
  912. s->r = q__1.r, s->i = q__1.i;
  913. q__1.r = cosine.r / tmp, q__1.i = cosine.i / tmp;
  914. c__->r = q__1.r, c__->i = q__1.i;
  915. return;
  916. }
  917. }
  918. return;
  919. /* End of CLAIC1 */
  920. } /* claic1_ */