|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
-
- /* > \brief \b ZHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded
- Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm). */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZHETF2_RK + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2_
- rk.f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2_
- rk.f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2_
- rk.f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZHETF2_RK( UPLO, N, A, LDA, E, IPIV, INFO ) */
-
- /* CHARACTER UPLO */
- /* INTEGER INFO, LDA, N */
- /* INTEGER IPIV( * ) */
- /* COMPLEX*16 A( LDA, * ), E ( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > ZHETF2_RK computes the factorization of a complex Hermitian matrix A */
- /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
- /* > */
- /* > A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), */
- /* > */
- /* > where U (or L) is unit upper (or lower) triangular matrix, */
- /* > U**H (or L**H) is the conjugate of U (or L), P is a permutation */
- /* > matrix, P**T is the transpose of P, and D is Hermitian and block */
- /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
- /* > */
- /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
- /* > For more information see Further Details section. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > Specifies whether the upper or lower triangular part of the */
- /* > Hermitian matrix A is stored: */
- /* > = 'U': Upper triangular */
- /* > = 'L': Lower triangular */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,N) */
- /* > On entry, the Hermitian matrix A. */
- /* > If UPLO = 'U': the leading N-by-N upper triangular part */
- /* > of A contains the upper triangular part of the matrix A, */
- /* > and the strictly lower triangular part of A is not */
- /* > referenced. */
- /* > */
- /* > If UPLO = 'L': the leading N-by-N lower triangular part */
- /* > of A contains the lower triangular part of the matrix A, */
- /* > and the strictly upper triangular part of A is not */
- /* > referenced. */
- /* > */
- /* > On exit, contains: */
- /* > a) ONLY diagonal elements of the Hermitian block diagonal */
- /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
- /* > (superdiagonal (or subdiagonal) elements of D */
- /* > are stored on exit in array E), and */
- /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
- /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] E */
- /* > \verbatim */
- /* > E is COMPLEX*16 array, dimension (N) */
- /* > On exit, contains the superdiagonal (or subdiagonal) */
- /* > elements of the Hermitian block diagonal matrix D */
- /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
- /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
- /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
- /* > */
- /* > NOTE: For 1-by-1 diagonal block D(k), where */
- /* > 1 <= k <= N, the element E(k) is set to 0 in both */
- /* > UPLO = 'U' or UPLO = 'L' cases. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IPIV */
- /* > \verbatim */
- /* > IPIV is INTEGER array, dimension (N) */
- /* > IPIV describes the permutation matrix P in the factorization */
- /* > of matrix A as follows. The absolute value of IPIV(k) */
- /* > represents the index of row and column that were */
- /* > interchanged with the k-th row and column. The value of UPLO */
- /* > describes the order in which the interchanges were applied. */
- /* > Also, the sign of IPIV represents the block structure of */
- /* > the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 */
- /* > diagonal blocks which correspond to 1 or 2 interchanges */
- /* > at each factorization step. For more info see Further */
- /* > Details section. */
- /* > */
- /* > If UPLO = 'U', */
- /* > ( in factorization order, k decreases from N to 1 ): */
- /* > a) A single positive entry IPIV(k) > 0 means: */
- /* > D(k,k) is a 1-by-1 diagonal block. */
- /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
- /* > interchanged in the matrix A(1:N,1:N); */
- /* > If IPIV(k) = k, no interchange occurred. */
- /* > */
- /* > b) A pair of consecutive negative entries */
- /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
- /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
- /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
- /* > 1) If -IPIV(k) != k, rows and columns */
- /* > k and -IPIV(k) were interchanged */
- /* > in the matrix A(1:N,1:N). */
- /* > If -IPIV(k) = k, no interchange occurred. */
- /* > 2) If -IPIV(k-1) != k-1, rows and columns */
- /* > k-1 and -IPIV(k-1) were interchanged */
- /* > in the matrix A(1:N,1:N). */
- /* > If -IPIV(k-1) = k-1, no interchange occurred. */
- /* > */
- /* > c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
- /* > */
- /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
- /* > */
- /* > If UPLO = 'L', */
- /* > ( in factorization order, k increases from 1 to N ): */
- /* > a) A single positive entry IPIV(k) > 0 means: */
- /* > D(k,k) is a 1-by-1 diagonal block. */
- /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
- /* > interchanged in the matrix A(1:N,1:N). */
- /* > If IPIV(k) = k, no interchange occurred. */
- /* > */
- /* > b) A pair of consecutive negative entries */
- /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
- /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
- /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
- /* > 1) If -IPIV(k) != k, rows and columns */
- /* > k and -IPIV(k) were interchanged */
- /* > in the matrix A(1:N,1:N). */
- /* > If -IPIV(k) = k, no interchange occurred. */
- /* > 2) If -IPIV(k+1) != k+1, rows and columns */
- /* > k-1 and -IPIV(k-1) were interchanged */
- /* > in the matrix A(1:N,1:N). */
- /* > If -IPIV(k+1) = k+1, no interchange occurred. */
- /* > */
- /* > c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
- /* > */
- /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > */
- /* > < 0: If INFO = -k, the k-th argument had an illegal value */
- /* > */
- /* > > 0: If INFO = k, the matrix A is singular, because: */
- /* > If UPLO = 'U': column k in the upper */
- /* > triangular part of A contains all zeros. */
- /* > If UPLO = 'L': column k in the lower */
- /* > triangular part of A contains all zeros. */
- /* > */
- /* > Therefore D(k,k) is exactly zero, and superdiagonal */
- /* > elements of column k of U (or subdiagonal elements of */
- /* > column k of L ) are all zeros. The factorization has */
- /* > been completed, but the block diagonal matrix D is */
- /* > exactly singular, and division by zero will occur if */
- /* > it is used to solve a system of equations. */
- /* > */
- /* > NOTE: INFO only stores the first occurrence of */
- /* > a singularity, any subsequent occurrence of singularity */
- /* > is not stored in INFO even though the factorization */
- /* > always completes. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16HEcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > TODO: put further details */
- /* > \endverbatim */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > December 2016, Igor Kozachenko, */
- /* > Computer Science Division, */
- /* > University of California, Berkeley */
- /* > */
- /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
- /* > School of Mathematics, */
- /* > University of Manchester */
- /* > */
- /* > 01-01-96 - Based on modifications by */
- /* > J. Lewis, Boeing Computer Services Company */
- /* > A. Petitet, Computer Science Dept., */
- /* > Univ. of Tenn., Knoxville abd , USA */
- /* > \endverbatim */
-
- /* ===================================================================== */
- /* Subroutine */ void zhetf2_rk_(char *uplo, integer *n, doublecomplex *a,
- integer *lda, doublecomplex *e, integer *ipiv, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
- doublereal d__1, d__2;
- doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8;
-
- /* Local variables */
- logical done;
- integer imax, jmax;
- extern /* Subroutine */ void zher_(char *, integer *, doublereal *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- doublereal d__;
- integer i__, j, k, p;
- doublecomplex t;
- doublereal alpha;
- extern logical lsame_(char *, char *);
- doublereal dtemp, sfmin;
- integer itemp, kstep;
- logical upper;
- doublereal r1;
- extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- extern doublereal dlapy2_(doublereal *, doublereal *);
- doublereal d11;
- doublecomplex d12;
- doublereal d22;
- doublecomplex d21;
- integer ii, kk;
- extern doublereal dlamch_(char *);
- integer kp;
- doublereal absakk;
- doublecomplex wk;
- doublereal tt;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void zdscal_(
- integer *, doublereal *, doublecomplex *, integer *);
- doublereal colmax;
- extern integer izamax_(integer *, doublecomplex *, integer *);
- doublereal rowmax;
- doublecomplex wkm1, wkp1;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ====================================================================== */
-
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --e;
- --ipiv;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- if (! upper && ! lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZHETF2_RK", &i__1, (ftnlen)9);
- return;
- }
-
- /* Initialize ALPHA for use in choosing pivot block size. */
-
- alpha = (sqrt(17.) + 1.) / 8.;
-
- /* Compute machine safe minimum */
-
- sfmin = dlamch_("S");
-
- if (upper) {
-
- /* Factorize A as U*D*U**H using the upper triangle of A */
-
- /* Initialize the first entry of array E, where superdiagonal */
- /* elements of D are stored */
-
- e[1].r = 0., e[1].i = 0.;
-
- /* K is the main loop index, decreasing from N to 1 in steps of */
- /* 1 or 2 */
-
- k = *n;
- L10:
-
- /* If K < 1, exit from loop */
-
- if (k < 1) {
- goto L34;
- }
- kstep = 1;
- p = k;
-
- /* Determine rows and columns to be interchanged and whether */
- /* a 1-by-1 or 2-by-2 pivot block will be used */
-
- i__1 = k + k * a_dim1;
- absakk = (d__1 = a[i__1].r, abs(d__1));
-
- /* IMAX is the row-index of the largest off-diagonal element in */
- /* column K, and COLMAX is its absolute value. */
- /* Determine both COLMAX and IMAX. */
-
- if (k > 1) {
- i__1 = k - 1;
- imax = izamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
- i__1 = imax + k * a_dim1;
- colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
- k * a_dim1]), abs(d__2));
- } else {
- colmax = 0.;
- }
-
- if (f2cmax(absakk,colmax) == 0.) {
-
- /* Column K is zero or underflow: set INFO and continue */
-
- if (*info == 0) {
- *info = k;
- }
- kp = k;
- i__1 = k + k * a_dim1;
- i__2 = k + k * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
-
- /* Set E( K ) to zero */
-
- if (k > 1) {
- i__1 = k;
- e[i__1].r = 0., e[i__1].i = 0.;
- }
-
- } else {
-
- /* ============================================================ */
-
- /* BEGIN pivot search */
-
- /* Case(1) */
- /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
- /* (used to handle NaN and Inf) */
-
- if (! (absakk < alpha * colmax)) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
-
- } else {
-
- done = FALSE_;
-
- /* Loop until pivot found */
-
- L12:
-
- /* BEGIN pivot search loop body */
-
-
- /* JMAX is the column-index of the largest off-diagonal */
- /* element in row IMAX, and ROWMAX is its absolute value. */
- /* Determine both ROWMAX and JMAX. */
-
- if (imax != k) {
- i__1 = k - imax;
- jmax = imax + izamax_(&i__1, &a[imax + (imax + 1) *
- a_dim1], lda);
- i__1 = imax + jmax * a_dim1;
- rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
- a[imax + jmax * a_dim1]), abs(d__2));
- } else {
- rowmax = 0.;
- }
-
- if (imax > 1) {
- i__1 = imax - 1;
- itemp = izamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
- i__1 = itemp + imax * a_dim1;
- dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
- itemp + imax * a_dim1]), abs(d__2));
- if (dtemp > rowmax) {
- rowmax = dtemp;
- jmax = itemp;
- }
- }
-
- /* Case(2) */
- /* Equivalent to testing for */
- /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
- /* (used to handle NaN and Inf) */
-
- i__1 = imax + imax * a_dim1;
- if (! ((d__1 = a[i__1].r, abs(d__1)) < alpha * rowmax)) {
-
- /* interchange rows and columns K and IMAX, */
- /* use 1-by-1 pivot block */
-
- kp = imax;
- done = TRUE_;
-
- /* Case(3) */
- /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
- /* (used to handle NaN and Inf) */
-
- } else if (p == jmax || rowmax <= colmax) {
-
- /* interchange rows and columns K-1 and IMAX, */
- /* use 2-by-2 pivot block */
-
- kp = imax;
- kstep = 2;
- done = TRUE_;
-
- /* Case(4) */
- } else {
-
- /* Pivot not found: set params and repeat */
-
- p = imax;
- colmax = rowmax;
- imax = jmax;
- }
-
- /* END pivot search loop body */
-
- if (! done) {
- goto L12;
- }
-
- }
-
- /* END pivot search */
-
- /* ============================================================ */
-
- /* KK is the column of A where pivoting step stopped */
-
- kk = k - kstep + 1;
-
- /* For only a 2x2 pivot, interchange rows and columns K and P */
- /* in the leading submatrix A(1:k,1:k) */
-
- if (kstep == 2 && p != k) {
- /* (1) Swap columnar parts */
- if (p > 1) {
- i__1 = p - 1;
- zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
- 1], &c__1);
- }
- /* (2) Swap and conjugate middle parts */
- i__1 = k - 1;
- for (j = p + 1; j <= i__1; ++j) {
- d_cnjg(&z__1, &a[j + k * a_dim1]);
- t.r = z__1.r, t.i = z__1.i;
- i__2 = j + k * a_dim1;
- d_cnjg(&z__1, &a[p + j * a_dim1]);
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = p + j * a_dim1;
- a[i__2].r = t.r, a[i__2].i = t.i;
- /* L14: */
- }
- /* (3) Swap and conjugate corner elements at row-col interserction */
- i__1 = p + k * a_dim1;
- d_cnjg(&z__1, &a[p + k * a_dim1]);
- a[i__1].r = z__1.r, a[i__1].i = z__1.i;
- /* (4) Swap diagonal elements at row-col intersection */
- i__1 = k + k * a_dim1;
- r1 = a[i__1].r;
- i__1 = k + k * a_dim1;
- i__2 = p + p * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- i__1 = p + p * a_dim1;
- a[i__1].r = r1, a[i__1].i = 0.;
-
- /* Convert upper triangle of A into U form by applying */
- /* the interchanges in columns k+1:N. */
-
- if (k < *n) {
- i__1 = *n - k;
- zswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
- 1) * a_dim1], lda);
- }
-
- }
-
- /* For both 1x1 and 2x2 pivots, interchange rows and */
- /* columns KK and KP in the leading submatrix A(1:k,1:k) */
-
- if (kp != kk) {
- /* (1) Swap columnar parts */
- if (kp > 1) {
- i__1 = kp - 1;
- zswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
- + 1], &c__1);
- }
- /* (2) Swap and conjugate middle parts */
- i__1 = kk - 1;
- for (j = kp + 1; j <= i__1; ++j) {
- d_cnjg(&z__1, &a[j + kk * a_dim1]);
- t.r = z__1.r, t.i = z__1.i;
- i__2 = j + kk * a_dim1;
- d_cnjg(&z__1, &a[kp + j * a_dim1]);
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = kp + j * a_dim1;
- a[i__2].r = t.r, a[i__2].i = t.i;
- /* L15: */
- }
- /* (3) Swap and conjugate corner elements at row-col interserction */
- i__1 = kp + kk * a_dim1;
- d_cnjg(&z__1, &a[kp + kk * a_dim1]);
- a[i__1].r = z__1.r, a[i__1].i = z__1.i;
- /* (4) Swap diagonal elements at row-col intersection */
- i__1 = kk + kk * a_dim1;
- r1 = a[i__1].r;
- i__1 = kk + kk * a_dim1;
- i__2 = kp + kp * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- i__1 = kp + kp * a_dim1;
- a[i__1].r = r1, a[i__1].i = 0.;
-
- if (kstep == 2) {
- /* (*) Make sure that diagonal element of pivot is real */
- i__1 = k + k * a_dim1;
- i__2 = k + k * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- /* (5) Swap row elements */
- i__1 = k - 1 + k * a_dim1;
- t.r = a[i__1].r, t.i = a[i__1].i;
- i__1 = k - 1 + k * a_dim1;
- i__2 = kp + k * a_dim1;
- a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
- i__1 = kp + k * a_dim1;
- a[i__1].r = t.r, a[i__1].i = t.i;
- }
-
- /* Convert upper triangle of A into U form by applying */
- /* the interchanges in columns k+1:N. */
-
- if (k < *n) {
- i__1 = *n - k;
- zswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
- + 1) * a_dim1], lda);
- }
-
- } else {
- /* (*) Make sure that diagonal element of pivot is real */
- i__1 = k + k * a_dim1;
- i__2 = k + k * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- if (kstep == 2) {
- i__1 = k - 1 + (k - 1) * a_dim1;
- i__2 = k - 1 + (k - 1) * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- }
- }
-
- /* Update the leading submatrix */
-
- if (kstep == 1) {
-
- /* 1-by-1 pivot block D(k): column k now holds */
-
- /* W(k) = U(k)*D(k) */
-
- /* where U(k) is the k-th column of U */
-
- if (k > 1) {
-
- /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
- /* store U(k) in column k */
-
- i__1 = k + k * a_dim1;
- if ((d__1 = a[i__1].r, abs(d__1)) >= sfmin) {
-
- /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
- /* A := A - U(k)*D(k)*U(k)**T */
- /* = A - W(k)*1/D(k)*W(k)**T */
-
- i__1 = k + k * a_dim1;
- d11 = 1. / a[i__1].r;
- i__1 = k - 1;
- d__1 = -d11;
- zher_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &
- a[a_offset], lda);
-
- /* Store U(k) in column k */
-
- i__1 = k - 1;
- zdscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
- } else {
-
- /* Store L(k) in column K */
-
- i__1 = k + k * a_dim1;
- d11 = a[i__1].r;
- i__1 = k - 1;
- for (ii = 1; ii <= i__1; ++ii) {
- i__2 = ii + k * a_dim1;
- i__3 = ii + k * a_dim1;
- z__1.r = a[i__3].r / d11, z__1.i = a[i__3].i /
- d11;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- /* L16: */
- }
-
- /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
- /* A := A - U(k)*D(k)*U(k)**T */
- /* = A - W(k)*(1/D(k))*W(k)**T */
- /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
-
- i__1 = k - 1;
- d__1 = -d11;
- zher_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &
- a[a_offset], lda);
- }
-
- /* Store the superdiagonal element of D in array E */
-
- i__1 = k;
- e[i__1].r = 0., e[i__1].i = 0.;
-
- }
-
- } else {
-
- /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
-
- /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
-
- /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
- /* of U */
-
- /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
-
- /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
- /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
-
- /* and store L(k) and L(k+1) in columns k and k+1 */
-
- if (k > 2) {
- /* D = |A12| */
- i__1 = k - 1 + k * a_dim1;
- d__1 = a[i__1].r;
- d__2 = d_imag(&a[k - 1 + k * a_dim1]);
- d__ = dlapy2_(&d__1, &d__2);
- i__1 = k + k * a_dim1;
- z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
- d11 = z__1.r;
- i__1 = k - 1 + (k - 1) * a_dim1;
- z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
- d22 = z__1.r;
- i__1 = k - 1 + k * a_dim1;
- z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
- d12.r = z__1.r, d12.i = z__1.i;
- tt = 1. / (d11 * d22 - 1.);
-
- for (j = k - 2; j >= 1; --j) {
-
- /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
-
- i__1 = j + (k - 1) * a_dim1;
- z__3.r = d11 * a[i__1].r, z__3.i = d11 * a[i__1].i;
- d_cnjg(&z__5, &d12);
- i__2 = j + k * a_dim1;
- z__4.r = z__5.r * a[i__2].r - z__5.i * a[i__2].i,
- z__4.i = z__5.r * a[i__2].i + z__5.i * a[i__2]
- .r;
- z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
- z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
- wkm1.r = z__1.r, wkm1.i = z__1.i;
- i__1 = j + k * a_dim1;
- z__3.r = d22 * a[i__1].r, z__3.i = d22 * a[i__1].i;
- i__2 = j + (k - 1) * a_dim1;
- z__4.r = d12.r * a[i__2].r - d12.i * a[i__2].i,
- z__4.i = d12.r * a[i__2].i + d12.i * a[i__2]
- .r;
- z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
- z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
- wk.r = z__1.r, wk.i = z__1.i;
-
- /* Perform a rank-2 update of A(1:k-2,1:k-2) */
-
- for (i__ = j; i__ >= 1; --i__) {
- i__1 = i__ + j * a_dim1;
- i__2 = i__ + j * a_dim1;
- i__3 = i__ + k * a_dim1;
- z__4.r = a[i__3].r / d__, z__4.i = a[i__3].i /
- d__;
- d_cnjg(&z__5, &wk);
- z__3.r = z__4.r * z__5.r - z__4.i * z__5.i,
- z__3.i = z__4.r * z__5.i + z__4.i *
- z__5.r;
- z__2.r = a[i__2].r - z__3.r, z__2.i = a[i__2].i -
- z__3.i;
- i__4 = i__ + (k - 1) * a_dim1;
- z__7.r = a[i__4].r / d__, z__7.i = a[i__4].i /
- d__;
- d_cnjg(&z__8, &wkm1);
- z__6.r = z__7.r * z__8.r - z__7.i * z__8.i,
- z__6.i = z__7.r * z__8.i + z__7.i *
- z__8.r;
- z__1.r = z__2.r - z__6.r, z__1.i = z__2.i -
- z__6.i;
- a[i__1].r = z__1.r, a[i__1].i = z__1.i;
- /* L20: */
- }
-
- /* Store U(k) and U(k-1) in cols k and k-1 for row J */
-
- i__1 = j + k * a_dim1;
- z__1.r = wk.r / d__, z__1.i = wk.i / d__;
- a[i__1].r = z__1.r, a[i__1].i = z__1.i;
- i__1 = j + (k - 1) * a_dim1;
- z__1.r = wkm1.r / d__, z__1.i = wkm1.i / d__;
- a[i__1].r = z__1.r, a[i__1].i = z__1.i;
- /* (*) Make sure that diagonal element of pivot is real */
- i__1 = j + j * a_dim1;
- i__2 = j + j * a_dim1;
- d__1 = a[i__2].r;
- z__1.r = d__1, z__1.i = 0.;
- a[i__1].r = z__1.r, a[i__1].i = z__1.i;
-
- /* L30: */
- }
-
- }
-
- /* Copy superdiagonal elements of D(K) to E(K) and */
- /* ZERO out superdiagonal entry of A */
-
- i__1 = k;
- i__2 = k - 1 + k * a_dim1;
- e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
- i__1 = k - 1;
- e[i__1].r = 0., e[i__1].i = 0.;
- i__1 = k - 1 + k * a_dim1;
- a[i__1].r = 0., a[i__1].i = 0.;
-
- }
-
- /* End column K is nonsingular */
-
- }
-
- /* Store details of the interchanges in IPIV */
-
- if (kstep == 1) {
- ipiv[k] = kp;
- } else {
- ipiv[k] = -p;
- ipiv[k - 1] = -kp;
- }
-
- /* Decrease K and return to the start of the main loop */
-
- k -= kstep;
- goto L10;
-
- L34:
-
- ;
- } else {
-
- /* Factorize A as L*D*L**H using the lower triangle of A */
-
- /* Initialize the unused last entry of the subdiagonal array E. */
-
- i__1 = *n;
- e[i__1].r = 0., e[i__1].i = 0.;
-
- /* K is the main loop index, increasing from 1 to N in steps of */
- /* 1 or 2 */
-
- k = 1;
- L40:
-
- /* If K > N, exit from loop */
-
- if (k > *n) {
- goto L64;
- }
- kstep = 1;
- p = k;
-
- /* Determine rows and columns to be interchanged and whether */
- /* a 1-by-1 or 2-by-2 pivot block will be used */
-
- i__1 = k + k * a_dim1;
- absakk = (d__1 = a[i__1].r, abs(d__1));
-
- /* IMAX is the row-index of the largest off-diagonal element in */
- /* column K, and COLMAX is its absolute value. */
- /* Determine both COLMAX and IMAX. */
-
- if (k < *n) {
- i__1 = *n - k;
- imax = k + izamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
- i__1 = imax + k * a_dim1;
- colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
- k * a_dim1]), abs(d__2));
- } else {
- colmax = 0.;
- }
-
- if (f2cmax(absakk,colmax) == 0.) {
-
- /* Column K is zero or underflow: set INFO and continue */
-
- if (*info == 0) {
- *info = k;
- }
- kp = k;
- i__1 = k + k * a_dim1;
- i__2 = k + k * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
-
- /* Set E( K ) to zero */
-
- if (k < *n) {
- i__1 = k;
- e[i__1].r = 0., e[i__1].i = 0.;
- }
-
- } else {
-
- /* ============================================================ */
-
- /* BEGIN pivot search */
-
- /* Case(1) */
- /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
- /* (used to handle NaN and Inf) */
-
- if (! (absakk < alpha * colmax)) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
-
- } else {
-
- done = FALSE_;
-
- /* Loop until pivot found */
-
- L42:
-
- /* BEGIN pivot search loop body */
-
-
- /* JMAX is the column-index of the largest off-diagonal */
- /* element in row IMAX, and ROWMAX is its absolute value. */
- /* Determine both ROWMAX and JMAX. */
-
- if (imax != k) {
- i__1 = imax - k;
- jmax = k - 1 + izamax_(&i__1, &a[imax + k * a_dim1], lda);
- i__1 = imax + jmax * a_dim1;
- rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
- a[imax + jmax * a_dim1]), abs(d__2));
- } else {
- rowmax = 0.;
- }
-
- if (imax < *n) {
- i__1 = *n - imax;
- itemp = imax + izamax_(&i__1, &a[imax + 1 + imax * a_dim1]
- , &c__1);
- i__1 = itemp + imax * a_dim1;
- dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
- itemp + imax * a_dim1]), abs(d__2));
- if (dtemp > rowmax) {
- rowmax = dtemp;
- jmax = itemp;
- }
- }
-
- /* Case(2) */
- /* Equivalent to testing for */
- /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
- /* (used to handle NaN and Inf) */
-
- i__1 = imax + imax * a_dim1;
- if (! ((d__1 = a[i__1].r, abs(d__1)) < alpha * rowmax)) {
-
- /* interchange rows and columns K and IMAX, */
- /* use 1-by-1 pivot block */
-
- kp = imax;
- done = TRUE_;
-
- /* Case(3) */
- /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
- /* (used to handle NaN and Inf) */
-
- } else if (p == jmax || rowmax <= colmax) {
-
- /* interchange rows and columns K+1 and IMAX, */
- /* use 2-by-2 pivot block */
-
- kp = imax;
- kstep = 2;
- done = TRUE_;
-
- /* Case(4) */
- } else {
-
- /* Pivot not found: set params and repeat */
-
- p = imax;
- colmax = rowmax;
- imax = jmax;
- }
-
-
- /* END pivot search loop body */
-
- if (! done) {
- goto L42;
- }
-
- }
-
- /* END pivot search */
-
- /* ============================================================ */
-
- /* KK is the column of A where pivoting step stopped */
-
- kk = k + kstep - 1;
-
- /* For only a 2x2 pivot, interchange rows and columns K and P */
- /* in the trailing submatrix A(k:n,k:n) */
-
- if (kstep == 2 && p != k) {
- /* (1) Swap columnar parts */
- if (p < *n) {
- i__1 = *n - p;
- zswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
- * a_dim1], &c__1);
- }
- /* (2) Swap and conjugate middle parts */
- i__1 = p - 1;
- for (j = k + 1; j <= i__1; ++j) {
- d_cnjg(&z__1, &a[j + k * a_dim1]);
- t.r = z__1.r, t.i = z__1.i;
- i__2 = j + k * a_dim1;
- d_cnjg(&z__1, &a[p + j * a_dim1]);
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = p + j * a_dim1;
- a[i__2].r = t.r, a[i__2].i = t.i;
- /* L44: */
- }
- /* (3) Swap and conjugate corner elements at row-col interserction */
- i__1 = p + k * a_dim1;
- d_cnjg(&z__1, &a[p + k * a_dim1]);
- a[i__1].r = z__1.r, a[i__1].i = z__1.i;
- /* (4) Swap diagonal elements at row-col intersection */
- i__1 = k + k * a_dim1;
- r1 = a[i__1].r;
- i__1 = k + k * a_dim1;
- i__2 = p + p * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- i__1 = p + p * a_dim1;
- a[i__1].r = r1, a[i__1].i = 0.;
-
- /* Convert lower triangle of A into L form by applying */
- /* the interchanges in columns 1:k-1. */
-
- if (k > 1) {
- i__1 = k - 1;
- zswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
- }
-
- }
-
- /* For both 1x1 and 2x2 pivots, interchange rows and */
- /* columns KK and KP in the trailing submatrix A(k:n,k:n) */
-
- if (kp != kk) {
- /* (1) Swap columnar parts */
- if (kp < *n) {
- i__1 = *n - kp;
- zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
- + kp * a_dim1], &c__1);
- }
- /* (2) Swap and conjugate middle parts */
- i__1 = kp - 1;
- for (j = kk + 1; j <= i__1; ++j) {
- d_cnjg(&z__1, &a[j + kk * a_dim1]);
- t.r = z__1.r, t.i = z__1.i;
- i__2 = j + kk * a_dim1;
- d_cnjg(&z__1, &a[kp + j * a_dim1]);
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = kp + j * a_dim1;
- a[i__2].r = t.r, a[i__2].i = t.i;
- /* L45: */
- }
- /* (3) Swap and conjugate corner elements at row-col interserction */
- i__1 = kp + kk * a_dim1;
- d_cnjg(&z__1, &a[kp + kk * a_dim1]);
- a[i__1].r = z__1.r, a[i__1].i = z__1.i;
- /* (4) Swap diagonal elements at row-col intersection */
- i__1 = kk + kk * a_dim1;
- r1 = a[i__1].r;
- i__1 = kk + kk * a_dim1;
- i__2 = kp + kp * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- i__1 = kp + kp * a_dim1;
- a[i__1].r = r1, a[i__1].i = 0.;
-
- if (kstep == 2) {
- /* (*) Make sure that diagonal element of pivot is real */
- i__1 = k + k * a_dim1;
- i__2 = k + k * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- /* (5) Swap row elements */
- i__1 = k + 1 + k * a_dim1;
- t.r = a[i__1].r, t.i = a[i__1].i;
- i__1 = k + 1 + k * a_dim1;
- i__2 = kp + k * a_dim1;
- a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
- i__1 = kp + k * a_dim1;
- a[i__1].r = t.r, a[i__1].i = t.i;
- }
-
- /* Convert lower triangle of A into L form by applying */
- /* the interchanges in columns 1:k-1. */
-
- if (k > 1) {
- i__1 = k - 1;
- zswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
- }
-
- } else {
- /* (*) Make sure that diagonal element of pivot is real */
- i__1 = k + k * a_dim1;
- i__2 = k + k * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- if (kstep == 2) {
- i__1 = k + 1 + (k + 1) * a_dim1;
- i__2 = k + 1 + (k + 1) * a_dim1;
- d__1 = a[i__2].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
- }
- }
-
- /* Update the trailing submatrix */
-
- if (kstep == 1) {
-
- /* 1-by-1 pivot block D(k): column k of A now holds */
-
- /* W(k) = L(k)*D(k), */
-
- /* where L(k) is the k-th column of L */
-
- if (k < *n) {
-
- /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
- /* store L(k) in column k */
-
- /* Handle division by a small number */
-
- i__1 = k + k * a_dim1;
- if ((d__1 = a[i__1].r, abs(d__1)) >= sfmin) {
-
- /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
- /* A := A - L(k)*D(k)*L(k)**T */
- /* = A - W(k)*(1/D(k))*W(k)**T */
-
- i__1 = k + k * a_dim1;
- d11 = 1. / a[i__1].r;
- i__1 = *n - k;
- d__1 = -d11;
- zher_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &
- c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
-
- /* Store L(k) in column k */
-
- i__1 = *n - k;
- zdscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
- } else {
-
- /* Store L(k) in column k */
-
- i__1 = k + k * a_dim1;
- d11 = a[i__1].r;
- i__1 = *n;
- for (ii = k + 1; ii <= i__1; ++ii) {
- i__2 = ii + k * a_dim1;
- i__3 = ii + k * a_dim1;
- z__1.r = a[i__3].r / d11, z__1.i = a[i__3].i /
- d11;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- /* L46: */
- }
-
- /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
- /* A := A - L(k)*D(k)*L(k)**T */
- /* = A - W(k)*(1/D(k))*W(k)**T */
- /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
-
- i__1 = *n - k;
- d__1 = -d11;
- zher_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &
- c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
- }
-
- /* Store the subdiagonal element of D in array E */
-
- i__1 = k;
- e[i__1].r = 0., e[i__1].i = 0.;
-
- }
-
- } else {
-
- /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
-
- /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
-
- /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
- /* of L */
-
-
- /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
-
- /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
- /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
-
- /* and store L(k) and L(k+1) in columns k and k+1 */
-
- if (k < *n - 1) {
- /* D = |A21| */
- i__1 = k + 1 + k * a_dim1;
- d__1 = a[i__1].r;
- d__2 = d_imag(&a[k + 1 + k * a_dim1]);
- d__ = dlapy2_(&d__1, &d__2);
- i__1 = k + 1 + (k + 1) * a_dim1;
- d11 = a[i__1].r / d__;
- i__1 = k + k * a_dim1;
- d22 = a[i__1].r / d__;
- i__1 = k + 1 + k * a_dim1;
- z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
- d21.r = z__1.r, d21.i = z__1.i;
- tt = 1. / (d11 * d22 - 1.);
-
- i__1 = *n;
- for (j = k + 2; j <= i__1; ++j) {
-
- /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
-
- i__2 = j + k * a_dim1;
- z__3.r = d11 * a[i__2].r, z__3.i = d11 * a[i__2].i;
- i__3 = j + (k + 1) * a_dim1;
- z__4.r = d21.r * a[i__3].r - d21.i * a[i__3].i,
- z__4.i = d21.r * a[i__3].i + d21.i * a[i__3]
- .r;
- z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
- z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
- wk.r = z__1.r, wk.i = z__1.i;
- i__2 = j + (k + 1) * a_dim1;
- z__3.r = d22 * a[i__2].r, z__3.i = d22 * a[i__2].i;
- d_cnjg(&z__5, &d21);
- i__3 = j + k * a_dim1;
- z__4.r = z__5.r * a[i__3].r - z__5.i * a[i__3].i,
- z__4.i = z__5.r * a[i__3].i + z__5.i * a[i__3]
- .r;
- z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
- z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
- wkp1.r = z__1.r, wkp1.i = z__1.i;
-
- /* Perform a rank-2 update of A(k+2:n,k+2:n) */
-
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = i__ + k * a_dim1;
- z__4.r = a[i__5].r / d__, z__4.i = a[i__5].i /
- d__;
- d_cnjg(&z__5, &wk);
- z__3.r = z__4.r * z__5.r - z__4.i * z__5.i,
- z__3.i = z__4.r * z__5.i + z__4.i *
- z__5.r;
- z__2.r = a[i__4].r - z__3.r, z__2.i = a[i__4].i -
- z__3.i;
- i__6 = i__ + (k + 1) * a_dim1;
- z__7.r = a[i__6].r / d__, z__7.i = a[i__6].i /
- d__;
- d_cnjg(&z__8, &wkp1);
- z__6.r = z__7.r * z__8.r - z__7.i * z__8.i,
- z__6.i = z__7.r * z__8.i + z__7.i *
- z__8.r;
- z__1.r = z__2.r - z__6.r, z__1.i = z__2.i -
- z__6.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L50: */
- }
-
- /* Store L(k) and L(k+1) in cols k and k+1 for row J */
-
- i__2 = j + k * a_dim1;
- z__1.r = wk.r / d__, z__1.i = wk.i / d__;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = j + (k + 1) * a_dim1;
- z__1.r = wkp1.r / d__, z__1.i = wkp1.i / d__;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- /* (*) Make sure that diagonal element of pivot is real */
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- d__1 = a[i__3].r;
- z__1.r = d__1, z__1.i = 0.;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
-
- /* L60: */
- }
-
- }
-
- /* Copy subdiagonal elements of D(K) to E(K) and */
- /* ZERO out subdiagonal entry of A */
-
- i__1 = k;
- i__2 = k + 1 + k * a_dim1;
- e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
- i__1 = k + 1;
- e[i__1].r = 0., e[i__1].i = 0.;
- i__1 = k + 1 + k * a_dim1;
- a[i__1].r = 0., a[i__1].i = 0.;
-
- }
-
- /* End column K is nonsingular */
-
- }
-
- /* Store details of the interchanges in IPIV */
-
- if (kstep == 1) {
- ipiv[k] = kp;
- } else {
- ipiv[k] = -p;
- ipiv[k + 1] = -kp;
- }
-
- /* Increase K and return to the start of the main loop */
-
- k += kstep;
- goto L40;
-
- L64:
-
- ;
- }
-
- return;
-
- /* End of ZHETF2_RK */
-
- } /* zhetf2_rk__ */
-
|