|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
-
- /* > \brief \b CUNBDB */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CUNBDB + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunbdb.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunbdb.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunbdb.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, */
- /* X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, */
- /* TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO ) */
-
- /* CHARACTER SIGNS, TRANS */
- /* INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P, */
- /* $ Q */
- /* REAL PHI( * ), THETA( * ) */
- /* COMPLEX TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ), */
- /* $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ), */
- /* $ X21( LDX21, * ), X22( LDX22, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CUNBDB simultaneously bidiagonalizes the blocks of an M-by-M */
- /* > partitioned unitary matrix X: */
- /* > */
- /* > [ B11 | B12 0 0 ] */
- /* > [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**H */
- /* > X = [-----------] = [---------] [----------------] [---------] . */
- /* > [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ] */
- /* > [ 0 | 0 0 I ] */
- /* > */
- /* > X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is */
- /* > not the case, then X must be transposed and/or permuted. This can be */
- /* > done in constant time using the TRANS and SIGNS options. See CUNCSD */
- /* > for details.) */
- /* > */
- /* > The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by- */
- /* > (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are */
- /* > represented implicitly by Householder vectors. */
- /* > */
- /* > B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented */
- /* > implicitly by angles THETA, PHI. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER */
- /* > = 'T': X, U1, U2, V1T, and V2T are stored in row-major */
- /* > order; */
- /* > otherwise: X, U1, U2, V1T, and V2T are stored in column- */
- /* > major order. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SIGNS */
- /* > \verbatim */
- /* > SIGNS is CHARACTER */
- /* > = 'O': The lower-left block is made nonpositive (the */
- /* > "other" convention); */
- /* > otherwise: The upper-right block is made nonpositive (the */
- /* > "default" convention). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows and columns in X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] P */
- /* > \verbatim */
- /* > P is INTEGER */
- /* > The number of rows in X11 and X12. 0 <= P <= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Q */
- /* > \verbatim */
- /* > Q is INTEGER */
- /* > The number of columns in X11 and X21. 0 <= Q <= */
- /* > MIN(P,M-P,M-Q). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X11 */
- /* > \verbatim */
- /* > X11 is COMPLEX array, dimension (LDX11,Q) */
- /* > On entry, the top-left block of the unitary matrix to be */
- /* > reduced. On exit, the form depends on TRANS: */
- /* > If TRANS = 'N', then */
- /* > the columns of tril(X11) specify reflectors for P1, */
- /* > the rows of triu(X11,1) specify reflectors for Q1; */
- /* > else TRANS = 'T', and */
- /* > the rows of triu(X11) specify reflectors for P1, */
- /* > the columns of tril(X11,-1) specify reflectors for Q1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX11 */
- /* > \verbatim */
- /* > LDX11 is INTEGER */
- /* > The leading dimension of X11. If TRANS = 'N', then LDX11 >= */
- /* > P; else LDX11 >= Q. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X12 */
- /* > \verbatim */
- /* > X12 is COMPLEX array, dimension (LDX12,M-Q) */
- /* > On entry, the top-right block of the unitary matrix to */
- /* > be reduced. On exit, the form depends on TRANS: */
- /* > If TRANS = 'N', then */
- /* > the rows of triu(X12) specify the first P reflectors for */
- /* > Q2; */
- /* > else TRANS = 'T', and */
- /* > the columns of tril(X12) specify the first P reflectors */
- /* > for Q2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX12 */
- /* > \verbatim */
- /* > LDX12 is INTEGER */
- /* > The leading dimension of X12. If TRANS = 'N', then LDX12 >= */
- /* > P; else LDX11 >= M-Q. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X21 */
- /* > \verbatim */
- /* > X21 is COMPLEX array, dimension (LDX21,Q) */
- /* > On entry, the bottom-left block of the unitary matrix to */
- /* > be reduced. On exit, the form depends on TRANS: */
- /* > If TRANS = 'N', then */
- /* > the columns of tril(X21) specify reflectors for P2; */
- /* > else TRANS = 'T', and */
- /* > the rows of triu(X21) specify reflectors for P2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX21 */
- /* > \verbatim */
- /* > LDX21 is INTEGER */
- /* > The leading dimension of X21. If TRANS = 'N', then LDX21 >= */
- /* > M-P; else LDX21 >= Q. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X22 */
- /* > \verbatim */
- /* > X22 is COMPLEX array, dimension (LDX22,M-Q) */
- /* > On entry, the bottom-right block of the unitary matrix to */
- /* > be reduced. On exit, the form depends on TRANS: */
- /* > If TRANS = 'N', then */
- /* > the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last */
- /* > M-P-Q reflectors for Q2, */
- /* > else TRANS = 'T', and */
- /* > the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last */
- /* > M-P-Q reflectors for P2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX22 */
- /* > \verbatim */
- /* > LDX22 is INTEGER */
- /* > The leading dimension of X22. If TRANS = 'N', then LDX22 >= */
- /* > M-P; else LDX22 >= M-Q. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] THETA */
- /* > \verbatim */
- /* > THETA is REAL array, dimension (Q) */
- /* > The entries of the bidiagonal blocks B11, B12, B21, B22 can */
- /* > be computed from the angles THETA and PHI. See Further */
- /* > Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] PHI */
- /* > \verbatim */
- /* > PHI is REAL array, dimension (Q-1) */
- /* > The entries of the bidiagonal blocks B11, B12, B21, B22 can */
- /* > be computed from the angles THETA and PHI. See Further */
- /* > Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUP1 */
- /* > \verbatim */
- /* > TAUP1 is COMPLEX array, dimension (P) */
- /* > The scalar factors of the elementary reflectors that define */
- /* > P1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUP2 */
- /* > \verbatim */
- /* > TAUP2 is COMPLEX array, dimension (M-P) */
- /* > The scalar factors of the elementary reflectors that define */
- /* > P2. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUQ1 */
- /* > \verbatim */
- /* > TAUQ1 is COMPLEX array, dimension (Q) */
- /* > The scalar factors of the elementary reflectors that define */
- /* > Q1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUQ2 */
- /* > \verbatim */
- /* > TAUQ2 is COMPLEX array, dimension (M-Q) */
- /* > The scalar factors of the elementary reflectors that define */
- /* > Q2. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (LWORK) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= M-Q. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The bidiagonal blocks B11, B12, B21, and B22 are represented */
- /* > implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ..., */
- /* > PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are */
- /* > lower bidiagonal. Every entry in each bidiagonal band is a product */
- /* > of a sine or cosine of a THETA with a sine or cosine of a PHI. See */
- /* > [1] or CUNCSD for details. */
- /* > */
- /* > P1, P2, Q1, and Q2 are represented as products of elementary */
- /* > reflectors. See CUNCSD for details on generating P1, P2, Q1, and Q2 */
- /* > using CUNGQR and CUNGLQ. */
- /* > \endverbatim */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
- /* > Algorithms, 50(1):33-65, 2009. */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void cunbdb_(char *trans, char *signs, integer *m, integer *p,
- integer *q, complex *x11, integer *ldx11, complex *x12, integer *
- ldx12, complex *x21, integer *ldx21, complex *x22, integer *ldx22,
- real *theta, real *phi, complex *taup1, complex *taup2, complex *
- tauq1, complex *tauq2, complex *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer x11_dim1, x11_offset, x12_dim1, x12_offset, x21_dim1, x21_offset,
- x22_dim1, x22_offset, i__1, i__2, i__3;
- real r__1;
- complex q__1;
-
- /* Local variables */
- logical colmajor;
- integer lworkmin, lworkopt, i__;
- extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
- integer *), clarf_(char *, integer *, integer *, complex *,
- integer *, complex *, complex *, integer *, complex *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void caxpy_(integer *, complex *, complex *,
- integer *, complex *, integer *);
- real z1, z2, z3, z4;
- extern real scnrm2_(integer *, complex *, integer *);
- extern /* Subroutine */ void clacgv_(integer *, complex *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- logical lquery;
- extern /* Subroutine */ void clarfgp_(integer *, complex *, complex *,
- integer *, complex *);
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ==================================================================== */
-
-
-
- /* Test input arguments */
-
- /* Parameter adjustments */
- x11_dim1 = *ldx11;
- x11_offset = 1 + x11_dim1 * 1;
- x11 -= x11_offset;
- x12_dim1 = *ldx12;
- x12_offset = 1 + x12_dim1 * 1;
- x12 -= x12_offset;
- x21_dim1 = *ldx21;
- x21_offset = 1 + x21_dim1 * 1;
- x21 -= x21_offset;
- x22_dim1 = *ldx22;
- x22_offset = 1 + x22_dim1 * 1;
- x22 -= x22_offset;
- --theta;
- --phi;
- --taup1;
- --taup2;
- --tauq1;
- --tauq2;
- --work;
-
- /* Function Body */
- *info = 0;
- colmajor = ! lsame_(trans, "T");
- if (! lsame_(signs, "O")) {
- z1 = 1.f;
- z2 = 1.f;
- z3 = 1.f;
- z4 = 1.f;
- } else {
- z1 = 1.f;
- z2 = -1.f;
- z3 = 1.f;
- z4 = -1.f;
- }
- lquery = *lwork == -1;
-
- if (*m < 0) {
- *info = -3;
- } else if (*p < 0 || *p > *m) {
- *info = -4;
- } else if (*q < 0 || *q > *p || *q > *m - *p || *q > *m - *q) {
- *info = -5;
- } else if (colmajor && *ldx11 < f2cmax(1,*p)) {
- *info = -7;
- } else if (! colmajor && *ldx11 < f2cmax(1,*q)) {
- *info = -7;
- } else if (colmajor && *ldx12 < f2cmax(1,*p)) {
- *info = -9;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *q;
- if (! colmajor && *ldx12 < f2cmax(i__1,i__2)) {
- *info = -9;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *p;
- if (colmajor && *ldx21 < f2cmax(i__1,i__2)) {
- *info = -11;
- } else if (! colmajor && *ldx21 < f2cmax(1,*q)) {
- *info = -11;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *p;
- if (colmajor && *ldx22 < f2cmax(i__1,i__2)) {
- *info = -13;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *q;
- if (! colmajor && *ldx22 < f2cmax(i__1,i__2)) {
- *info = -13;
- }
- }
- }
- }
- }
-
- /* Compute workspace */
-
- if (*info == 0) {
- lworkopt = *m - *q;
- lworkmin = *m - *q;
- work[1].r = (real) lworkopt, work[1].i = 0.f;
- if (*lwork < lworkmin && ! lquery) {
- *info = -21;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("xORBDB", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Handle column-major and row-major separately */
-
- if (colmajor) {
-
- /* Reduce columns 1, ..., Q of X11, X12, X21, and X22 */
-
- i__1 = *q;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- if (i__ == 1) {
- i__2 = *p - i__ + 1;
- q__1.r = z1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x11[i__ + i__ * x11_dim1], &c__1);
- } else {
- i__2 = *p - i__ + 1;
- r__1 = z1 * cos(phi[i__ - 1]);
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x11[i__ + i__ * x11_dim1], &c__1);
- i__2 = *p - i__ + 1;
- r__1 = -z1 * z3 * z4 * sin(phi[i__ - 1]);
- q__1.r = r__1, q__1.i = 0.f;
- caxpy_(&i__2, &q__1, &x12[i__ + (i__ - 1) * x12_dim1], &c__1,
- &x11[i__ + i__ * x11_dim1], &c__1);
- }
- if (i__ == 1) {
- i__2 = *m - *p - i__ + 1;
- q__1.r = z2, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x21[i__ + i__ * x21_dim1], &c__1);
- } else {
- i__2 = *m - *p - i__ + 1;
- r__1 = z2 * cos(phi[i__ - 1]);
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x21[i__ + i__ * x21_dim1], &c__1);
- i__2 = *m - *p - i__ + 1;
- r__1 = -z2 * z3 * z4 * sin(phi[i__ - 1]);
- q__1.r = r__1, q__1.i = 0.f;
- caxpy_(&i__2, &q__1, &x22[i__ + (i__ - 1) * x22_dim1], &c__1,
- &x21[i__ + i__ * x21_dim1], &c__1);
- }
-
- i__2 = *m - *p - i__ + 1;
- i__3 = *p - i__ + 1;
- theta[i__] = atan2(scnrm2_(&i__2, &x21[i__ + i__ * x21_dim1], &
- c__1), scnrm2_(&i__3, &x11[i__ + i__ * x11_dim1], &c__1));
-
- if (*p > i__) {
- i__2 = *p - i__ + 1;
- clarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + 1 +
- i__ * x11_dim1], &c__1, &taup1[i__]);
- } else if (*p == i__) {
- i__2 = *p - i__ + 1;
- clarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + i__ *
- x11_dim1], &c__1, &taup1[i__]);
- }
- i__2 = i__ + i__ * x11_dim1;
- x11[i__2].r = 1.f, x11[i__2].i = 0.f;
- if (*m - *p > i__) {
- i__2 = *m - *p - i__ + 1;
- clarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + 1 +
- i__ * x21_dim1], &c__1, &taup2[i__]);
- } else if (*m - *p == i__) {
- i__2 = *m - *p - i__ + 1;
- clarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + i__ *
- x21_dim1], &c__1, &taup2[i__]);
- }
- i__2 = i__ + i__ * x21_dim1;
- x21[i__2].r = 1.f, x21[i__2].i = 0.f;
-
- if (*q > i__) {
- i__2 = *p - i__ + 1;
- i__3 = *q - i__;
- r_cnjg(&q__1, &taup1[i__]);
- clarf_("L", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], &c__1, &
- q__1, &x11[i__ + (i__ + 1) * x11_dim1], ldx11, &work[
- 1]);
- i__2 = *m - *p - i__ + 1;
- i__3 = *q - i__;
- r_cnjg(&q__1, &taup2[i__]);
- clarf_("L", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], &c__1, &
- q__1, &x21[i__ + (i__ + 1) * x21_dim1], ldx21, &work[
- 1]);
- }
- if (*m - *q + 1 > i__) {
- i__2 = *p - i__ + 1;
- i__3 = *m - *q - i__ + 1;
- r_cnjg(&q__1, &taup1[i__]);
- clarf_("L", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], &c__1, &
- q__1, &x12[i__ + i__ * x12_dim1], ldx12, &work[1]);
- i__2 = *m - *p - i__ + 1;
- i__3 = *m - *q - i__ + 1;
- r_cnjg(&q__1, &taup2[i__]);
- clarf_("L", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], &c__1, &
- q__1, &x22[i__ + i__ * x22_dim1], ldx22, &work[1]);
- }
-
- if (i__ < *q) {
- i__2 = *q - i__;
- r__1 = -z1 * z3 * sin(theta[i__]);
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x11[i__ + (i__ + 1) * x11_dim1], ldx11);
- i__2 = *q - i__;
- r__1 = z2 * z3 * cos(theta[i__]);
- q__1.r = r__1, q__1.i = 0.f;
- caxpy_(&i__2, &q__1, &x21[i__ + (i__ + 1) * x21_dim1], ldx21,
- &x11[i__ + (i__ + 1) * x11_dim1], ldx11);
- }
- i__2 = *m - *q - i__ + 1;
- r__1 = -z1 * z4 * sin(theta[i__]);
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x12[i__ + i__ * x12_dim1], ldx12);
- i__2 = *m - *q - i__ + 1;
- r__1 = z2 * z4 * cos(theta[i__]);
- q__1.r = r__1, q__1.i = 0.f;
- caxpy_(&i__2, &q__1, &x22[i__ + i__ * x22_dim1], ldx22, &x12[i__
- + i__ * x12_dim1], ldx12);
-
- if (i__ < *q) {
- i__2 = *q - i__;
- i__3 = *m - *q - i__ + 1;
- phi[i__] = atan2(scnrm2_(&i__2, &x11[i__ + (i__ + 1) *
- x11_dim1], ldx11), scnrm2_(&i__3, &x12[i__ + i__ *
- x12_dim1], ldx12));
- }
-
- if (i__ < *q) {
- i__2 = *q - i__;
- clacgv_(&i__2, &x11[i__ + (i__ + 1) * x11_dim1], ldx11);
- if (i__ == *q - 1) {
- i__2 = *q - i__;
- clarfgp_(&i__2, &x11[i__ + (i__ + 1) * x11_dim1], &x11[
- i__ + (i__ + 1) * x11_dim1], ldx11, &tauq1[i__]);
- } else {
- i__2 = *q - i__;
- clarfgp_(&i__2, &x11[i__ + (i__ + 1) * x11_dim1], &x11[
- i__ + (i__ + 2) * x11_dim1], ldx11, &tauq1[i__]);
- }
- i__2 = i__ + (i__ + 1) * x11_dim1;
- x11[i__2].r = 1.f, x11[i__2].i = 0.f;
- }
- if (*m - *q + 1 > i__) {
- i__2 = *m - *q - i__ + 1;
- clacgv_(&i__2, &x12[i__ + i__ * x12_dim1], ldx12);
- if (*m - *q == i__) {
- i__2 = *m - *q - i__ + 1;
- clarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ +
- i__ * x12_dim1], ldx12, &tauq2[i__]);
- } else {
- i__2 = *m - *q - i__ + 1;
- clarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + (
- i__ + 1) * x12_dim1], ldx12, &tauq2[i__]);
- }
- }
- i__2 = i__ + i__ * x12_dim1;
- x12[i__2].r = 1.f, x12[i__2].i = 0.f;
-
- if (i__ < *q) {
- i__2 = *p - i__;
- i__3 = *q - i__;
- clarf_("R", &i__2, &i__3, &x11[i__ + (i__ + 1) * x11_dim1],
- ldx11, &tauq1[i__], &x11[i__ + 1 + (i__ + 1) *
- x11_dim1], ldx11, &work[1]);
- i__2 = *m - *p - i__;
- i__3 = *q - i__;
- clarf_("R", &i__2, &i__3, &x11[i__ + (i__ + 1) * x11_dim1],
- ldx11, &tauq1[i__], &x21[i__ + 1 + (i__ + 1) *
- x21_dim1], ldx21, &work[1]);
- }
- if (*p > i__) {
- i__2 = *p - i__;
- i__3 = *m - *q - i__ + 1;
- clarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
- tauq2[i__], &x12[i__ + 1 + i__ * x12_dim1], ldx12, &
- work[1]);
- }
- if (*m - *p > i__) {
- i__2 = *m - *p - i__;
- i__3 = *m - *q - i__ + 1;
- clarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
- tauq2[i__], &x22[i__ + 1 + i__ * x22_dim1], ldx22, &
- work[1]);
- }
-
- if (i__ < *q) {
- i__2 = *q - i__;
- clacgv_(&i__2, &x11[i__ + (i__ + 1) * x11_dim1], ldx11);
- }
- i__2 = *m - *q - i__ + 1;
- clacgv_(&i__2, &x12[i__ + i__ * x12_dim1], ldx12);
-
- }
-
- /* Reduce columns Q + 1, ..., P of X12, X22 */
-
- i__1 = *p;
- for (i__ = *q + 1; i__ <= i__1; ++i__) {
-
- i__2 = *m - *q - i__ + 1;
- r__1 = -z1 * z4;
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x12[i__ + i__ * x12_dim1], ldx12);
- i__2 = *m - *q - i__ + 1;
- clacgv_(&i__2, &x12[i__ + i__ * x12_dim1], ldx12);
- if (i__ >= *m - *q) {
- i__2 = *m - *q - i__ + 1;
- clarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + i__ *
- x12_dim1], ldx12, &tauq2[i__]);
- } else {
- i__2 = *m - *q - i__ + 1;
- clarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + (i__ +
- 1) * x12_dim1], ldx12, &tauq2[i__]);
- }
- i__2 = i__ + i__ * x12_dim1;
- x12[i__2].r = 1.f, x12[i__2].i = 0.f;
-
- if (*p > i__) {
- i__2 = *p - i__;
- i__3 = *m - *q - i__ + 1;
- clarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
- tauq2[i__], &x12[i__ + 1 + i__ * x12_dim1], ldx12, &
- work[1]);
- }
- if (*m - *p - *q >= 1) {
- i__2 = *m - *p - *q;
- i__3 = *m - *q - i__ + 1;
- clarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
- tauq2[i__], &x22[*q + 1 + i__ * x22_dim1], ldx22, &
- work[1]);
- }
-
- i__2 = *m - *q - i__ + 1;
- clacgv_(&i__2, &x12[i__ + i__ * x12_dim1], ldx12);
-
- }
-
- /* Reduce columns P + 1, ..., M - Q of X12, X22 */
-
- i__1 = *m - *p - *q;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- i__2 = *m - *p - *q - i__ + 1;
- r__1 = z2 * z4;
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x22[*q + i__ + (*p + i__) * x22_dim1],
- ldx22);
- i__2 = *m - *p - *q - i__ + 1;
- clacgv_(&i__2, &x22[*q + i__ + (*p + i__) * x22_dim1], ldx22);
- i__2 = *m - *p - *q - i__ + 1;
- clarfgp_(&i__2, &x22[*q + i__ + (*p + i__) * x22_dim1], &x22[*q +
- i__ + (*p + i__ + 1) * x22_dim1], ldx22, &tauq2[*p + i__])
- ;
- i__2 = *q + i__ + (*p + i__) * x22_dim1;
- x22[i__2].r = 1.f, x22[i__2].i = 0.f;
- i__2 = *m - *p - *q - i__;
- i__3 = *m - *p - *q - i__ + 1;
- clarf_("R", &i__2, &i__3, &x22[*q + i__ + (*p + i__) * x22_dim1],
- ldx22, &tauq2[*p + i__], &x22[*q + i__ + 1 + (*p + i__) *
- x22_dim1], ldx22, &work[1]);
-
- i__2 = *m - *p - *q - i__ + 1;
- clacgv_(&i__2, &x22[*q + i__ + (*p + i__) * x22_dim1], ldx22);
-
- }
-
- } else {
-
- /* Reduce columns 1, ..., Q of X11, X12, X21, X22 */
-
- i__1 = *q;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- if (i__ == 1) {
- i__2 = *p - i__ + 1;
- q__1.r = z1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x11[i__ + i__ * x11_dim1], ldx11);
- } else {
- i__2 = *p - i__ + 1;
- r__1 = z1 * cos(phi[i__ - 1]);
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x11[i__ + i__ * x11_dim1], ldx11);
- i__2 = *p - i__ + 1;
- r__1 = -z1 * z3 * z4 * sin(phi[i__ - 1]);
- q__1.r = r__1, q__1.i = 0.f;
- caxpy_(&i__2, &q__1, &x12[i__ - 1 + i__ * x12_dim1], ldx12, &
- x11[i__ + i__ * x11_dim1], ldx11);
- }
- if (i__ == 1) {
- i__2 = *m - *p - i__ + 1;
- q__1.r = z2, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x21[i__ + i__ * x21_dim1], ldx21);
- } else {
- i__2 = *m - *p - i__ + 1;
- r__1 = z2 * cos(phi[i__ - 1]);
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x21[i__ + i__ * x21_dim1], ldx21);
- i__2 = *m - *p - i__ + 1;
- r__1 = -z2 * z3 * z4 * sin(phi[i__ - 1]);
- q__1.r = r__1, q__1.i = 0.f;
- caxpy_(&i__2, &q__1, &x22[i__ - 1 + i__ * x22_dim1], ldx22, &
- x21[i__ + i__ * x21_dim1], ldx21);
- }
-
- i__2 = *m - *p - i__ + 1;
- i__3 = *p - i__ + 1;
- theta[i__] = atan2(scnrm2_(&i__2, &x21[i__ + i__ * x21_dim1],
- ldx21), scnrm2_(&i__3, &x11[i__ + i__ * x11_dim1], ldx11))
- ;
-
- i__2 = *p - i__ + 1;
- clacgv_(&i__2, &x11[i__ + i__ * x11_dim1], ldx11);
- i__2 = *m - *p - i__ + 1;
- clacgv_(&i__2, &x21[i__ + i__ * x21_dim1], ldx21);
-
- i__2 = *p - i__ + 1;
- clarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + (i__ + 1) *
- x11_dim1], ldx11, &taup1[i__]);
- i__2 = i__ + i__ * x11_dim1;
- x11[i__2].r = 1.f, x11[i__2].i = 0.f;
- if (i__ == *m - *p) {
- i__2 = *m - *p - i__ + 1;
- clarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + i__ *
- x21_dim1], ldx21, &taup2[i__]);
- } else {
- i__2 = *m - *p - i__ + 1;
- clarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + (i__ +
- 1) * x21_dim1], ldx21, &taup2[i__]);
- }
- i__2 = i__ + i__ * x21_dim1;
- x21[i__2].r = 1.f, x21[i__2].i = 0.f;
-
- i__2 = *q - i__;
- i__3 = *p - i__ + 1;
- clarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &
- taup1[i__], &x11[i__ + 1 + i__ * x11_dim1], ldx11, &work[
- 1]);
- i__2 = *m - *q - i__ + 1;
- i__3 = *p - i__ + 1;
- clarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &
- taup1[i__], &x12[i__ + i__ * x12_dim1], ldx12, &work[1]);
- i__2 = *q - i__;
- i__3 = *m - *p - i__ + 1;
- clarf_("R", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], ldx21, &
- taup2[i__], &x21[i__ + 1 + i__ * x21_dim1], ldx21, &work[
- 1]);
- i__2 = *m - *q - i__ + 1;
- i__3 = *m - *p - i__ + 1;
- clarf_("R", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], ldx21, &
- taup2[i__], &x22[i__ + i__ * x22_dim1], ldx22, &work[1]);
-
- i__2 = *p - i__ + 1;
- clacgv_(&i__2, &x11[i__ + i__ * x11_dim1], ldx11);
- i__2 = *m - *p - i__ + 1;
- clacgv_(&i__2, &x21[i__ + i__ * x21_dim1], ldx21);
-
- if (i__ < *q) {
- i__2 = *q - i__;
- r__1 = -z1 * z3 * sin(theta[i__]);
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x11[i__ + 1 + i__ * x11_dim1], &c__1);
- i__2 = *q - i__;
- r__1 = z2 * z3 * cos(theta[i__]);
- q__1.r = r__1, q__1.i = 0.f;
- caxpy_(&i__2, &q__1, &x21[i__ + 1 + i__ * x21_dim1], &c__1, &
- x11[i__ + 1 + i__ * x11_dim1], &c__1);
- }
- i__2 = *m - *q - i__ + 1;
- r__1 = -z1 * z4 * sin(theta[i__]);
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x12[i__ + i__ * x12_dim1], &c__1);
- i__2 = *m - *q - i__ + 1;
- r__1 = z2 * z4 * cos(theta[i__]);
- q__1.r = r__1, q__1.i = 0.f;
- caxpy_(&i__2, &q__1, &x22[i__ + i__ * x22_dim1], &c__1, &x12[i__
- + i__ * x12_dim1], &c__1);
-
- if (i__ < *q) {
- i__2 = *q - i__;
- i__3 = *m - *q - i__ + 1;
- phi[i__] = atan2(scnrm2_(&i__2, &x11[i__ + 1 + i__ * x11_dim1]
- , &c__1), scnrm2_(&i__3, &x12[i__ + i__ * x12_dim1], &
- c__1));
- }
-
- if (i__ < *q) {
- i__2 = *q - i__;
- clarfgp_(&i__2, &x11[i__ + 1 + i__ * x11_dim1], &x11[i__ + 2
- + i__ * x11_dim1], &c__1, &tauq1[i__]);
- i__2 = i__ + 1 + i__ * x11_dim1;
- x11[i__2].r = 1.f, x11[i__2].i = 0.f;
- }
- i__2 = *m - *q - i__ + 1;
- clarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + 1 + i__ *
- x12_dim1], &c__1, &tauq2[i__]);
- i__2 = i__ + i__ * x12_dim1;
- x12[i__2].r = 1.f, x12[i__2].i = 0.f;
-
- if (i__ < *q) {
- i__2 = *q - i__;
- i__3 = *p - i__;
- r_cnjg(&q__1, &tauq1[i__]);
- clarf_("L", &i__2, &i__3, &x11[i__ + 1 + i__ * x11_dim1], &
- c__1, &q__1, &x11[i__ + 1 + (i__ + 1) * x11_dim1],
- ldx11, &work[1]);
- i__2 = *q - i__;
- i__3 = *m - *p - i__;
- r_cnjg(&q__1, &tauq1[i__]);
- clarf_("L", &i__2, &i__3, &x11[i__ + 1 + i__ * x11_dim1], &
- c__1, &q__1, &x21[i__ + 1 + (i__ + 1) * x21_dim1],
- ldx21, &work[1]);
- }
- i__2 = *m - *q - i__ + 1;
- i__3 = *p - i__;
- r_cnjg(&q__1, &tauq2[i__]);
- clarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
- q__1, &x12[i__ + (i__ + 1) * x12_dim1], ldx12, &work[1]);
- if (*m - *p > i__) {
- i__2 = *m - *q - i__ + 1;
- i__3 = *m - *p - i__;
- r_cnjg(&q__1, &tauq2[i__]);
- clarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
- q__1, &x22[i__ + (i__ + 1) * x22_dim1], ldx22, &work[
- 1]);
- }
- }
-
- /* Reduce columns Q + 1, ..., P of X12, X22 */
-
- i__1 = *p;
- for (i__ = *q + 1; i__ <= i__1; ++i__) {
-
- i__2 = *m - *q - i__ + 1;
- r__1 = -z1 * z4;
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x12[i__ + i__ * x12_dim1], &c__1);
- i__2 = *m - *q - i__ + 1;
- clarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + 1 + i__ *
- x12_dim1], &c__1, &tauq2[i__]);
- i__2 = i__ + i__ * x12_dim1;
- x12[i__2].r = 1.f, x12[i__2].i = 0.f;
-
- if (*p > i__) {
- i__2 = *m - *q - i__ + 1;
- i__3 = *p - i__;
- r_cnjg(&q__1, &tauq2[i__]);
- clarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
- q__1, &x12[i__ + (i__ + 1) * x12_dim1], ldx12, &work[
- 1]);
- }
- if (*m - *p - *q >= 1) {
- i__2 = *m - *q - i__ + 1;
- i__3 = *m - *p - *q;
- r_cnjg(&q__1, &tauq2[i__]);
- clarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
- q__1, &x22[i__ + (*q + 1) * x22_dim1], ldx22, &work[1]
- );
- }
-
- }
-
- /* Reduce columns P + 1, ..., M - Q of X12, X22 */
-
- i__1 = *m - *p - *q;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- i__2 = *m - *p - *q - i__ + 1;
- r__1 = z2 * z4;
- q__1.r = r__1, q__1.i = 0.f;
- cscal_(&i__2, &q__1, &x22[*p + i__ + (*q + i__) * x22_dim1], &
- c__1);
- i__2 = *m - *p - *q - i__ + 1;
- clarfgp_(&i__2, &x22[*p + i__ + (*q + i__) * x22_dim1], &x22[*p +
- i__ + 1 + (*q + i__) * x22_dim1], &c__1, &tauq2[*p + i__])
- ;
- i__2 = *p + i__ + (*q + i__) * x22_dim1;
- x22[i__2].r = 1.f, x22[i__2].i = 0.f;
- if (*m - *p - *q != i__) {
- i__2 = *m - *p - *q - i__ + 1;
- i__3 = *m - *p - *q - i__;
- r_cnjg(&q__1, &tauq2[*p + i__]);
- clarf_("L", &i__2, &i__3, &x22[*p + i__ + (*q + i__) *
- x22_dim1], &c__1, &q__1, &x22[*p + i__ + (*q + i__ +
- 1) * x22_dim1], ldx22, &work[1]);
- }
- }
-
- }
-
- return;
-
- /* End of CUNBDB */
-
- } /* cunbdb_ */
-
|