|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {0.f,0.f};
- static complex c_b2 = {1.f,0.f};
- static integer c__1 = 1;
- static integer c__0 = 0;
-
- /* > \brief <b> CGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
- rices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGGEVX + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggevx.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggevx.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggevx.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB, */
- /* ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI, */
- /* LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, */
- /* WORK, LWORK, RWORK, IWORK, BWORK, INFO ) */
-
- /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
- /* INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
- /* REAL ABNRM, BBNRM */
- /* LOGICAL BWORK( * ) */
- /* INTEGER IWORK( * ) */
- /* REAL LSCALE( * ), RCONDE( * ), RCONDV( * ), */
- /* $ RSCALE( * ), RWORK( * ) */
- /* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), */
- /* $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ), */
- /* $ WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CGGEVX computes for a pair of N-by-N complex nonsymmetric matrices */
- /* > (A,B) the generalized eigenvalues, and optionally, the left and/or */
- /* > right generalized eigenvectors. */
- /* > */
- /* > Optionally, it also computes a balancing transformation to improve */
- /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
- /* > LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
- /* > the eigenvalues (RCONDE), and reciprocal condition numbers for the */
- /* > right eigenvectors (RCONDV). */
- /* > */
- /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
- /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
- /* > singular. It is usually represented as the pair (alpha,beta), as */
- /* > there is a reasonable interpretation for beta=0, and even for both */
- /* > being zero. */
- /* > */
- /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
- /* > of (A,B) satisfies */
- /* > A * v(j) = lambda(j) * B * v(j) . */
- /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
- /* > of (A,B) satisfies */
- /* > u(j)**H * A = lambda(j) * u(j)**H * B. */
- /* > where u(j)**H is the conjugate-transpose of u(j). */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] BALANC */
- /* > \verbatim */
- /* > BALANC is CHARACTER*1 */
- /* > Specifies the balance option to be performed: */
- /* > = 'N': do not diagonally scale or permute; */
- /* > = 'P': permute only; */
- /* > = 'S': scale only; */
- /* > = 'B': both permute and scale. */
- /* > Computed reciprocal condition numbers will be for the */
- /* > matrices after permuting and/or balancing. Permuting does */
- /* > not change condition numbers (in exact arithmetic), but */
- /* > balancing does. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVL */
- /* > \verbatim */
- /* > JOBVL is CHARACTER*1 */
- /* > = 'N': do not compute the left generalized eigenvectors; */
- /* > = 'V': compute the left generalized eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVR */
- /* > \verbatim */
- /* > JOBVR is CHARACTER*1 */
- /* > = 'N': do not compute the right generalized eigenvectors; */
- /* > = 'V': compute the right generalized eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SENSE */
- /* > \verbatim */
- /* > SENSE is CHARACTER*1 */
- /* > Determines which reciprocal condition numbers are computed. */
- /* > = 'N': none are computed; */
- /* > = 'E': computed for eigenvalues only; */
- /* > = 'V': computed for eigenvectors only; */
- /* > = 'B': computed for eigenvalues and eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A, B, VL, and VR. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA, N) */
- /* > On entry, the matrix A in the pair (A,B). */
- /* > On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
- /* > or both, then A contains the first part of the complex Schur */
- /* > form of the "balanced" versions of the input A and B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX array, dimension (LDB, N) */
- /* > On entry, the matrix B in the pair (A,B). */
- /* > On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
- /* > or both, then B contains the second part of the complex */
- /* > Schur form of the "balanced" versions of the input A and B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHA */
- /* > \verbatim */
- /* > ALPHA is COMPLEX array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BETA */
- /* > \verbatim */
- /* > BETA is COMPLEX array, dimension (N) */
- /* > On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized */
- /* > eigenvalues. */
- /* > */
- /* > Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or */
- /* > underflow, and BETA(j) may even be zero. Thus, the user */
- /* > should avoid naively computing the ratio ALPHA/BETA. */
- /* > However, ALPHA will be always less than and usually */
- /* > comparable with norm(A) in magnitude, and BETA always less */
- /* > than and usually comparable with norm(B). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VL */
- /* > \verbatim */
- /* > VL is COMPLEX array, dimension (LDVL,N) */
- /* > If JOBVL = 'V', the left generalized eigenvectors u(j) are */
- /* > stored one after another in the columns of VL, in the same */
- /* > order as their eigenvalues. */
- /* > Each eigenvector will be scaled so the largest component */
- /* > will have abs(real part) + abs(imag. part) = 1. */
- /* > Not referenced if JOBVL = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of the matrix VL. LDVL >= 1, and */
- /* > if JOBVL = 'V', LDVL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VR */
- /* > \verbatim */
- /* > VR is COMPLEX array, dimension (LDVR,N) */
- /* > If JOBVR = 'V', the right generalized eigenvectors v(j) are */
- /* > stored one after another in the columns of VR, in the same */
- /* > order as their eigenvalues. */
- /* > Each eigenvector will be scaled so the largest component */
- /* > will have abs(real part) + abs(imag. part) = 1. */
- /* > Not referenced if JOBVR = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the matrix VR. LDVR >= 1, and */
- /* > if JOBVR = 'V', LDVR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > ILO and IHI are integer values such that on exit */
- /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
- /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
- /* > If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] LSCALE */
- /* > \verbatim */
- /* > LSCALE is REAL array, dimension (N) */
- /* > Details of the permutations and scaling factors applied */
- /* > to the left side of A and B. If PL(j) is the index of the */
- /* > row interchanged with row j, and DL(j) is the scaling */
- /* > factor applied to row j, then */
- /* > LSCALE(j) = PL(j) for j = 1,...,ILO-1 */
- /* > = DL(j) for j = ILO,...,IHI */
- /* > = PL(j) for j = IHI+1,...,N. */
- /* > The order in which the interchanges are made is N to IHI+1, */
- /* > then 1 to ILO-1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RSCALE */
- /* > \verbatim */
- /* > RSCALE is REAL array, dimension (N) */
- /* > Details of the permutations and scaling factors applied */
- /* > to the right side of A and B. If PR(j) is the index of the */
- /* > column interchanged with column j, and DR(j) is the scaling */
- /* > factor applied to column j, then */
- /* > RSCALE(j) = PR(j) for j = 1,...,ILO-1 */
- /* > = DR(j) for j = ILO,...,IHI */
- /* > = PR(j) for j = IHI+1,...,N */
- /* > The order in which the interchanges are made is N to IHI+1, */
- /* > then 1 to ILO-1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ABNRM */
- /* > \verbatim */
- /* > ABNRM is REAL */
- /* > The one-norm of the balanced matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BBNRM */
- /* > \verbatim */
- /* > BBNRM is REAL */
- /* > The one-norm of the balanced matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RCONDE */
- /* > \verbatim */
- /* > RCONDE is REAL array, dimension (N) */
- /* > If SENSE = 'E' or 'B', the reciprocal condition numbers of */
- /* > the eigenvalues, stored in consecutive elements of the array. */
- /* > If SENSE = 'N' or 'V', RCONDE is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RCONDV */
- /* > \verbatim */
- /* > RCONDV is REAL array, dimension (N) */
- /* > If SENSE = 'V' or 'B', the estimated reciprocal condition */
- /* > numbers of the eigenvectors, stored in consecutive elements */
- /* > of the array. If the eigenvalues cannot be reordered to */
- /* > compute RCONDV(j), RCONDV(j) is set to 0; this can only occur */
- /* > when the true value would be very small anyway. */
- /* > If SENSE = 'N' or 'E', RCONDV is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
- /* > If SENSE = 'E', LWORK >= f2cmax(1,4*N). */
- /* > If SENSE = 'V' or 'B', LWORK >= f2cmax(1,2*N*N+2*N). */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is REAL array, dimension (lrwork) */
- /* > lrwork must be at least f2cmax(1,6*N) if BALANC = 'S' or 'B', */
- /* > and at least f2cmax(1,2*N) otherwise. */
- /* > Real workspace. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (N+2) */
- /* > If SENSE = 'E', IWORK is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BWORK */
- /* > \verbatim */
- /* > BWORK is LOGICAL array, dimension (N) */
- /* > If SENSE = 'N', BWORK is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > = 1,...,N: */
- /* > The QZ iteration failed. No eigenvectors have been */
- /* > calculated, but ALPHA(j) and BETA(j) should be correct */
- /* > for j=INFO+1,...,N. */
- /* > > N: =N+1: other than QZ iteration failed in CHGEQZ. */
- /* > =N+2: error return from CTGEVC. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date April 2012 */
-
- /* > \ingroup complexGEeigen */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Balancing a matrix pair (A,B) includes, first, permuting rows and */
- /* > columns to isolate eigenvalues, second, applying diagonal similarity */
- /* > transformation to the rows and columns to make the rows and columns */
- /* > as close in norm as possible. The computed reciprocal condition */
- /* > numbers correspond to the balanced matrix. Permuting rows and columns */
- /* > will not change the condition numbers (in exact arithmetic) but */
- /* > diagonal scaling will. For further explanation of balancing, see */
- /* > section 4.11.1.2 of LAPACK Users' Guide. */
- /* > */
- /* > An approximate error bound on the chordal distance between the i-th */
- /* > computed generalized eigenvalue w and the corresponding exact */
- /* > eigenvalue lambda is */
- /* > */
- /* > chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */
- /* > */
- /* > An approximate error bound for the angle between the i-th computed */
- /* > eigenvector VL(i) or VR(i) is given by */
- /* > */
- /* > EPS * norm(ABNRM, BBNRM) / DIF(i). */
- /* > */
- /* > For further explanation of the reciprocal condition numbers RCONDE */
- /* > and RCONDV, see section 4.11 of LAPACK User's Guide. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void cggevx_(char *balanc, char *jobvl, char *jobvr, char *
- sense, integer *n, complex *a, integer *lda, complex *b, integer *ldb,
- complex *alpha, complex *beta, complex *vl, integer *ldvl, complex *
- vr, integer *ldvr, integer *ilo, integer *ihi, real *lscale, real *
- rscale, real *abnrm, real *bbnrm, real *rconde, real *rcondv, complex
- *work, integer *lwork, real *rwork, integer *iwork, logical *bwork,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
- vr_offset, i__1, i__2, i__3, i__4;
- real r__1, r__2, r__3, r__4;
- complex q__1;
-
- /* Local variables */
- real anrm, bnrm;
- integer ierr, itau;
- real temp;
- logical ilvl, ilvr;
- integer iwrk, iwrk1, i__, j, m;
- extern logical lsame_(char *, char *);
- integer icols;
- logical noscl;
- integer irows, jc;
- extern /* Subroutine */ void cggbak_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, complex *, integer *,
- integer *), cggbal_(char *, integer *, complex *,
- integer *, complex *, integer *, integer *, integer *, real *,
- real *, real *, integer *), slabad_(real *, real *);
- integer in;
- extern real clange_(char *, integer *, integer *, complex *, integer *,
- real *);
- integer jr;
- extern /* Subroutine */ void cgghrd_(char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, integer *, complex *,
- integer *, complex *, integer *, integer *),
- clascl_(char *, integer *, integer *, real *, real *, integer *,
- integer *, complex *, integer *, integer *);
- logical ilascl, ilbscl;
- extern /* Subroutine */ void cgeqrf_(integer *, integer *, complex *,
- integer *, complex *, complex *, integer *, integer *), clacpy_(
- char *, integer *, integer *, complex *, integer *, complex *,
- integer *), claset_(char *, integer *, integer *, complex
- *, complex *, complex *, integer *);
- logical ldumma[1];
- char chtemp[1];
- real bignum;
- extern /* Subroutine */ void chgeqz_(char *, char *, char *, integer *,
- integer *, integer *, complex *, integer *, complex *, integer *,
- complex *, complex *, complex *, integer *, complex *, integer *,
- complex *, integer *, real *, integer *),
- ctgevc_(char *, char *, logical *, integer *, complex *, integer *
- , complex *, integer *, complex *, integer *, complex *, integer *
- , integer *, integer *, complex *, real *, integer *);
- integer ijobvl;
- extern /* Subroutine */ void ctgsna_(char *, char *, logical *, integer *,
- complex *, integer *, complex *, integer *, complex *, integer *,
- complex *, integer *, real *, real *, integer *, integer *,
- complex *, integer *, integer *, integer *),
- slascl_(char *, integer *, integer *, real *, real *, integer *,
- integer *, real *, integer *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern real slamch_(char *);
- integer ijobvr;
- logical wantsb;
- extern /* Subroutine */ void cungqr_(integer *, integer *, integer *,
- complex *, integer *, complex *, complex *, integer *, integer *);
- real anrmto;
- logical wantse;
- real bnrmto;
- extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, complex *, integer *,
- complex *, integer *, integer *);
- integer minwrk, maxwrk;
- logical wantsn;
- real smlnum;
- logical lquery, wantsv;
- real eps;
- logical ilv;
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* April 2012 */
-
-
- /* ===================================================================== */
-
-
- /* Decode the input arguments */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --alpha;
- --beta;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --lscale;
- --rscale;
- --rconde;
- --rcondv;
- --work;
- --rwork;
- --iwork;
- --bwork;
-
- /* Function Body */
- if (lsame_(jobvl, "N")) {
- ijobvl = 1;
- ilvl = FALSE_;
- } else if (lsame_(jobvl, "V")) {
- ijobvl = 2;
- ilvl = TRUE_;
- } else {
- ijobvl = -1;
- ilvl = FALSE_;
- }
-
- if (lsame_(jobvr, "N")) {
- ijobvr = 1;
- ilvr = FALSE_;
- } else if (lsame_(jobvr, "V")) {
- ijobvr = 2;
- ilvr = TRUE_;
- } else {
- ijobvr = -1;
- ilvr = FALSE_;
- }
- ilv = ilvl || ilvr;
-
- noscl = lsame_(balanc, "N") || lsame_(balanc, "P");
- wantsn = lsame_(sense, "N");
- wantse = lsame_(sense, "E");
- wantsv = lsame_(sense, "V");
- wantsb = lsame_(sense, "B");
-
- /* Test the input arguments */
-
- *info = 0;
- lquery = *lwork == -1;
- if (! (noscl || lsame_(balanc, "S") || lsame_(
- balanc, "B"))) {
- *info = -1;
- } else if (ijobvl <= 0) {
- *info = -2;
- } else if (ijobvr <= 0) {
- *info = -3;
- } else if (! (wantsn || wantse || wantsb || wantsv)) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -9;
- } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
- *info = -13;
- } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
- *info = -15;
- }
-
- /* Compute workspace */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* NB refers to the optimal block size for the immediately */
- /* following subroutine, as returned by ILAENV. The workspace is */
- /* computed assuming ILO = 1 and IHI = N, the worst case.) */
-
- if (*info == 0) {
- if (*n == 0) {
- minwrk = 1;
- maxwrk = 1;
- } else {
- minwrk = *n << 1;
- if (wantse) {
- minwrk = *n << 2;
- } else if (wantsv || wantsb) {
- minwrk = (*n << 1) * (*n + 1);
- }
- maxwrk = minwrk;
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", n, &
- c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CUNMQR", " ", n, &
- c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- if (ilvl) {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CUNGQR",
- " ", n, &c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- }
- }
- work[1].r = (real) maxwrk, work[1].i = 0.f;
-
- if (*lwork < minwrk && ! lquery) {
- *info = -25;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CGGEVX", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* Get machine constants */
-
- eps = slamch_("P");
- smlnum = slamch_("S");
- bignum = 1.f / smlnum;
- slabad_(&smlnum, &bignum);
- smlnum = sqrt(smlnum) / eps;
- bignum = 1.f / smlnum;
-
- /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
- ilascl = FALSE_;
- if (anrm > 0.f && anrm < smlnum) {
- anrmto = smlnum;
- ilascl = TRUE_;
- } else if (anrm > bignum) {
- anrmto = bignum;
- ilascl = TRUE_;
- }
- if (ilascl) {
- clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
- ierr);
- }
-
- /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
- ilbscl = FALSE_;
- if (bnrm > 0.f && bnrm < smlnum) {
- bnrmto = smlnum;
- ilbscl = TRUE_;
- } else if (bnrm > bignum) {
- bnrmto = bignum;
- ilbscl = TRUE_;
- }
- if (ilbscl) {
- clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
- ierr);
- }
-
- /* Permute and/or balance the matrix pair (A,B) */
- /* (Real Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */
-
- cggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
- lscale[1], &rscale[1], &rwork[1], &ierr);
-
- /* Compute ABNRM and BBNRM */
-
- *abnrm = clange_("1", n, n, &a[a_offset], lda, &rwork[1]);
- if (ilascl) {
- rwork[1] = *abnrm;
- slascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &rwork[1], &
- c__1, &ierr);
- *abnrm = rwork[1];
- }
-
- *bbnrm = clange_("1", n, n, &b[b_offset], ldb, &rwork[1]);
- if (ilbscl) {
- rwork[1] = *bbnrm;
- slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &rwork[1], &
- c__1, &ierr);
- *bbnrm = rwork[1];
- }
-
- /* Reduce B to triangular form (QR decomposition of B) */
- /* (Complex Workspace: need N, prefer N*NB ) */
-
- irows = *ihi + 1 - *ilo;
- if (ilv || ! wantsn) {
- icols = *n + 1 - *ilo;
- } else {
- icols = irows;
- }
- itau = 1;
- iwrk = itau + irows;
- i__1 = *lwork + 1 - iwrk;
- cgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
- iwrk], &i__1, &ierr);
-
- /* Apply the unitary transformation to A */
- /* (Complex Workspace: need N, prefer N*NB) */
-
- i__1 = *lwork + 1 - iwrk;
- cunmqr_("L", "C", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
- work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
- ierr);
-
- /* Initialize VL and/or VR */
- /* (Workspace: need N, prefer N*NB) */
-
- if (ilvl) {
- claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl);
- if (irows > 1) {
- i__1 = irows - 1;
- i__2 = irows - 1;
- clacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
- *ilo + 1 + *ilo * vl_dim1], ldvl);
- }
- i__1 = *lwork + 1 - iwrk;
- cungqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
- work[itau], &work[iwrk], &i__1, &ierr);
- }
-
- if (ilvr) {
- claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr);
- }
-
- /* Reduce to generalized Hessenberg form */
- /* (Workspace: none needed) */
-
- if (ilv || ! wantsn) {
-
- /* Eigenvectors requested -- work on whole matrix. */
-
- cgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset],
- ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
- } else {
- cgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1],
- lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
- vr_offset], ldvr, &ierr);
- }
-
- /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
- /* Schur forms and Schur vectors) */
- /* (Complex Workspace: need N) */
- /* (Real Workspace: need N) */
-
- iwrk = itau;
- if (ilv || ! wantsn) {
- *(unsigned char *)chtemp = 'S';
- } else {
- *(unsigned char *)chtemp = 'E';
- }
-
- i__1 = *lwork + 1 - iwrk;
- chgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
- , ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[vr_offset],
- ldvr, &work[iwrk], &i__1, &rwork[1], &ierr);
- if (ierr != 0) {
- if (ierr > 0 && ierr <= *n) {
- *info = ierr;
- } else if (ierr > *n && ierr <= *n << 1) {
- *info = ierr - *n;
- } else {
- *info = *n + 1;
- }
- goto L90;
- }
-
- /* Compute Eigenvectors and estimate condition numbers if desired */
- /* CTGEVC: (Complex Workspace: need 2*N ) */
- /* (Real Workspace: need 2*N ) */
- /* CTGSNA: (Complex Workspace: need 2*N*N if SENSE='V' or 'B') */
- /* (Integer Workspace: need N+2 ) */
-
- if (ilv || ! wantsn) {
- if (ilv) {
- if (ilvl) {
- if (ilvr) {
- *(unsigned char *)chtemp = 'B';
- } else {
- *(unsigned char *)chtemp = 'L';
- }
- } else {
- *(unsigned char *)chtemp = 'R';
- }
-
- ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset],
- ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
- work[iwrk], &rwork[1], &ierr);
- if (ierr != 0) {
- *info = *n + 2;
- goto L90;
- }
- }
-
- if (! wantsn) {
-
- /* compute eigenvectors (STGEVC) and estimate condition */
- /* numbers (STGSNA). Note that the definition of the condition */
- /* number is not invariant under transformation (u,v) to */
- /* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
- /* Schur form (S,T), Q and Z are orthogonal matrices. In order */
- /* to avoid using extra 2*N*N workspace, we have to */
- /* re-calculate eigenvectors and estimate the condition numbers */
- /* one at a time. */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- bwork[j] = FALSE_;
- /* L10: */
- }
- bwork[i__] = TRUE_;
-
- iwrk = *n + 1;
- iwrk1 = iwrk + *n;
-
- if (wantse || wantsb) {
- ctgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
- b_offset], ldb, &work[1], n, &work[iwrk], n, &
- c__1, &m, &work[iwrk1], &rwork[1], &ierr);
- if (ierr != 0) {
- *info = *n + 2;
- goto L90;
- }
- }
-
- i__2 = *lwork - iwrk1 + 1;
- ctgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
- b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
- i__], &rcondv[i__], &c__1, &m, &work[iwrk1], &i__2, &
- iwork[1], &ierr);
-
- /* L20: */
- }
- }
- }
-
- /* Undo balancing on VL and VR and normalization */
- /* (Workspace: none needed) */
-
- if (ilvl) {
- cggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
- vl_offset], ldvl, &ierr);
-
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- temp = 0.f;
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- i__3 = jr + jc * vl_dim1;
- r__3 = temp, r__4 = (r__1 = vl[i__3].r, abs(r__1)) + (r__2 =
- r_imag(&vl[jr + jc * vl_dim1]), abs(r__2));
- temp = f2cmax(r__3,r__4);
- /* L30: */
- }
- if (temp < smlnum) {
- goto L50;
- }
- temp = 1.f / temp;
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- i__3 = jr + jc * vl_dim1;
- i__4 = jr + jc * vl_dim1;
- q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i;
- vl[i__3].r = q__1.r, vl[i__3].i = q__1.i;
- /* L40: */
- }
- L50:
- ;
- }
- }
-
- if (ilvr) {
- cggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
- vr_offset], ldvr, &ierr);
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- temp = 0.f;
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- i__3 = jr + jc * vr_dim1;
- r__3 = temp, r__4 = (r__1 = vr[i__3].r, abs(r__1)) + (r__2 =
- r_imag(&vr[jr + jc * vr_dim1]), abs(r__2));
- temp = f2cmax(r__3,r__4);
- /* L60: */
- }
- if (temp < smlnum) {
- goto L80;
- }
- temp = 1.f / temp;
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- i__3 = jr + jc * vr_dim1;
- i__4 = jr + jc * vr_dim1;
- q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i;
- vr[i__3].r = q__1.r, vr[i__3].i = q__1.i;
- /* L70: */
- }
- L80:
- ;
- }
- }
-
- /* Undo scaling if necessary */
-
- L90:
-
- if (ilascl) {
- clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
- ierr);
- }
-
- if (ilbscl) {
- clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
- ierr);
- }
-
- work[1].r = (real) maxwrk, work[1].i = 0.f;
- return;
-
- /* End of CGGEVX */
-
- } /* cggevx_ */
-
|