You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slarrj.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief \b SLARRJ performs refinement of the initial estimates of the eigenvalues of the matrix T. */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download SLARRJ + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrj.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrj.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrj.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE SLARRJ( N, D, E2, IFIRST, ILAST, */
  504. /* RTOL, OFFSET, W, WERR, WORK, IWORK, */
  505. /* PIVMIN, SPDIAM, INFO ) */
  506. /* INTEGER IFIRST, ILAST, INFO, N, OFFSET */
  507. /* REAL PIVMIN, RTOL, SPDIAM */
  508. /* INTEGER IWORK( * ) */
  509. /* REAL D( * ), E2( * ), W( * ), */
  510. /* $ WERR( * ), WORK( * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > Given the initial eigenvalue approximations of T, SLARRJ */
  517. /* > does bisection to refine the eigenvalues of T, */
  518. /* > W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial */
  519. /* > guesses for these eigenvalues are input in W, the corresponding estimate */
  520. /* > of the error in these guesses in WERR. During bisection, intervals */
  521. /* > [left, right] are maintained by storing their mid-points and */
  522. /* > semi-widths in the arrays W and WERR respectively. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] N */
  527. /* > \verbatim */
  528. /* > N is INTEGER */
  529. /* > The order of the matrix. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] D */
  533. /* > \verbatim */
  534. /* > D is REAL array, dimension (N) */
  535. /* > The N diagonal elements of T. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] E2 */
  539. /* > \verbatim */
  540. /* > E2 is REAL array, dimension (N-1) */
  541. /* > The Squares of the (N-1) subdiagonal elements of T. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] IFIRST */
  545. /* > \verbatim */
  546. /* > IFIRST is INTEGER */
  547. /* > The index of the first eigenvalue to be computed. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] ILAST */
  551. /* > \verbatim */
  552. /* > ILAST is INTEGER */
  553. /* > The index of the last eigenvalue to be computed. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] RTOL */
  557. /* > \verbatim */
  558. /* > RTOL is REAL */
  559. /* > Tolerance for the convergence of the bisection intervals. */
  560. /* > An interval [LEFT,RIGHT] has converged if */
  561. /* > RIGHT-LEFT < RTOL*MAX(|LEFT|,|RIGHT|). */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] OFFSET */
  565. /* > \verbatim */
  566. /* > OFFSET is INTEGER */
  567. /* > Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET */
  568. /* > through ILAST-OFFSET elements of these arrays are to be used. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in,out] W */
  572. /* > \verbatim */
  573. /* > W is REAL array, dimension (N) */
  574. /* > On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are */
  575. /* > estimates of the eigenvalues of L D L^T indexed IFIRST through */
  576. /* > ILAST. */
  577. /* > On output, these estimates are refined. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in,out] WERR */
  581. /* > \verbatim */
  582. /* > WERR is REAL array, dimension (N) */
  583. /* > On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are */
  584. /* > the errors in the estimates of the corresponding elements in W. */
  585. /* > On output, these errors are refined. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[out] WORK */
  589. /* > \verbatim */
  590. /* > WORK is REAL array, dimension (2*N) */
  591. /* > Workspace. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[out] IWORK */
  595. /* > \verbatim */
  596. /* > IWORK is INTEGER array, dimension (2*N) */
  597. /* > Workspace. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] PIVMIN */
  601. /* > \verbatim */
  602. /* > PIVMIN is REAL */
  603. /* > The minimum pivot in the Sturm sequence for T. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] SPDIAM */
  607. /* > \verbatim */
  608. /* > SPDIAM is REAL */
  609. /* > The spectral diameter of T. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] INFO */
  613. /* > \verbatim */
  614. /* > INFO is INTEGER */
  615. /* > Error flag. */
  616. /* > \endverbatim */
  617. /* Authors: */
  618. /* ======== */
  619. /* > \author Univ. of Tennessee */
  620. /* > \author Univ. of California Berkeley */
  621. /* > \author Univ. of Colorado Denver */
  622. /* > \author NAG Ltd. */
  623. /* > \date June 2017 */
  624. /* > \ingroup OTHERauxiliary */
  625. /* > \par Contributors: */
  626. /* ================== */
  627. /* > */
  628. /* > Beresford Parlett, University of California, Berkeley, USA \n */
  629. /* > Jim Demmel, University of California, Berkeley, USA \n */
  630. /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
  631. /* > Osni Marques, LBNL/NERSC, USA \n */
  632. /* > Christof Voemel, University of California, Berkeley, USA */
  633. /* ===================================================================== */
  634. /* Subroutine */ int slarrj_(integer *n, real *d__, real *e2, integer *ifirst,
  635. integer *ilast, real *rtol, integer *offset, real *w, real *werr,
  636. real *work, integer *iwork, real *pivmin, real *spdiam, integer *info)
  637. {
  638. /* System generated locals */
  639. integer i__1, i__2;
  640. real r__1, r__2;
  641. /* Local variables */
  642. real left;
  643. integer iter, nint, prev, next, savi1, i__, j, k, p;
  644. real s, right, width, dplus;
  645. integer i1, i2, ii, olnint, maxitr;
  646. real fac, mid;
  647. integer cnt;
  648. real tmp;
  649. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  650. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  651. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  652. /* June 2017 */
  653. /* ===================================================================== */
  654. /* Parameter adjustments */
  655. --iwork;
  656. --work;
  657. --werr;
  658. --w;
  659. --e2;
  660. --d__;
  661. /* Function Body */
  662. *info = 0;
  663. /* Quick return if possible */
  664. if (*n <= 0) {
  665. return 0;
  666. }
  667. maxitr = (integer) ((log(*spdiam + *pivmin) - log(*pivmin)) / log(2.f)) +
  668. 2;
  669. /* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. */
  670. /* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while */
  671. /* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) */
  672. /* for an unconverged interval is set to the index of the next unconverged */
  673. /* interval, and is -1 or 0 for a converged interval. Thus a linked */
  674. /* list of unconverged intervals is set up. */
  675. i1 = *ifirst;
  676. i2 = *ilast;
  677. /* The number of unconverged intervals */
  678. nint = 0;
  679. /* The last unconverged interval found */
  680. prev = 0;
  681. i__1 = i2;
  682. for (i__ = i1; i__ <= i__1; ++i__) {
  683. k = i__ << 1;
  684. ii = i__ - *offset;
  685. left = w[ii] - werr[ii];
  686. mid = w[ii];
  687. right = w[ii] + werr[ii];
  688. width = right - mid;
  689. /* Computing MAX */
  690. r__1 = abs(left), r__2 = abs(right);
  691. tmp = f2cmax(r__1,r__2);
  692. /* The following test prevents the test of converged intervals */
  693. if (width < *rtol * tmp) {
  694. /* This interval has already converged and does not need refinement. */
  695. /* (Note that the gaps might change through refining the */
  696. /* eigenvalues, however, they can only get bigger.) */
  697. /* Remove it from the list. */
  698. iwork[k - 1] = -1;
  699. /* Make sure that I1 always points to the first unconverged interval */
  700. if (i__ == i1 && i__ < i2) {
  701. i1 = i__ + 1;
  702. }
  703. if (prev >= i1 && i__ <= i2) {
  704. iwork[(prev << 1) - 1] = i__ + 1;
  705. }
  706. } else {
  707. /* unconverged interval found */
  708. prev = i__;
  709. /* Make sure that [LEFT,RIGHT] contains the desired eigenvalue */
  710. /* Do while( CNT(LEFT).GT.I-1 ) */
  711. fac = 1.f;
  712. L20:
  713. cnt = 0;
  714. s = left;
  715. dplus = d__[1] - s;
  716. if (dplus < 0.f) {
  717. ++cnt;
  718. }
  719. i__2 = *n;
  720. for (j = 2; j <= i__2; ++j) {
  721. dplus = d__[j] - s - e2[j - 1] / dplus;
  722. if (dplus < 0.f) {
  723. ++cnt;
  724. }
  725. /* L30: */
  726. }
  727. if (cnt > i__ - 1) {
  728. left -= werr[ii] * fac;
  729. fac *= 2.f;
  730. goto L20;
  731. }
  732. /* Do while( CNT(RIGHT).LT.I ) */
  733. fac = 1.f;
  734. L50:
  735. cnt = 0;
  736. s = right;
  737. dplus = d__[1] - s;
  738. if (dplus < 0.f) {
  739. ++cnt;
  740. }
  741. i__2 = *n;
  742. for (j = 2; j <= i__2; ++j) {
  743. dplus = d__[j] - s - e2[j - 1] / dplus;
  744. if (dplus < 0.f) {
  745. ++cnt;
  746. }
  747. /* L60: */
  748. }
  749. if (cnt < i__) {
  750. right += werr[ii] * fac;
  751. fac *= 2.f;
  752. goto L50;
  753. }
  754. ++nint;
  755. iwork[k - 1] = i__ + 1;
  756. iwork[k] = cnt;
  757. }
  758. work[k - 1] = left;
  759. work[k] = right;
  760. /* L75: */
  761. }
  762. savi1 = i1;
  763. /* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals */
  764. /* and while (ITER.LT.MAXITR) */
  765. iter = 0;
  766. L80:
  767. prev = i1 - 1;
  768. i__ = i1;
  769. olnint = nint;
  770. i__1 = olnint;
  771. for (p = 1; p <= i__1; ++p) {
  772. k = i__ << 1;
  773. ii = i__ - *offset;
  774. next = iwork[k - 1];
  775. left = work[k - 1];
  776. right = work[k];
  777. mid = (left + right) * .5f;
  778. /* semiwidth of interval */
  779. width = right - mid;
  780. /* Computing MAX */
  781. r__1 = abs(left), r__2 = abs(right);
  782. tmp = f2cmax(r__1,r__2);
  783. if (width < *rtol * tmp || iter == maxitr) {
  784. /* reduce number of unconverged intervals */
  785. --nint;
  786. /* Mark interval as converged. */
  787. iwork[k - 1] = 0;
  788. if (i1 == i__) {
  789. i1 = next;
  790. } else {
  791. /* Prev holds the last unconverged interval previously examined */
  792. if (prev >= i1) {
  793. iwork[(prev << 1) - 1] = next;
  794. }
  795. }
  796. i__ = next;
  797. goto L100;
  798. }
  799. prev = i__;
  800. /* Perform one bisection step */
  801. cnt = 0;
  802. s = mid;
  803. dplus = d__[1] - s;
  804. if (dplus < 0.f) {
  805. ++cnt;
  806. }
  807. i__2 = *n;
  808. for (j = 2; j <= i__2; ++j) {
  809. dplus = d__[j] - s - e2[j - 1] / dplus;
  810. if (dplus < 0.f) {
  811. ++cnt;
  812. }
  813. /* L90: */
  814. }
  815. if (cnt <= i__ - 1) {
  816. work[k - 1] = mid;
  817. } else {
  818. work[k] = mid;
  819. }
  820. i__ = next;
  821. L100:
  822. ;
  823. }
  824. ++iter;
  825. /* do another loop if there are still unconverged intervals */
  826. /* However, in the last iteration, all intervals are accepted */
  827. /* since this is the best we can do. */
  828. if (nint > 0 && iter <= maxitr) {
  829. goto L80;
  830. }
  831. /* At this point, all the intervals have converged */
  832. i__1 = *ilast;
  833. for (i__ = savi1; i__ <= i__1; ++i__) {
  834. k = i__ << 1;
  835. ii = i__ - *offset;
  836. /* All intervals marked by '0' have been refined. */
  837. if (iwork[k - 1] == 0) {
  838. w[ii] = (work[k - 1] + work[k]) * .5f;
  839. werr[ii] = work[k] - w[ii];
  840. }
  841. /* L110: */
  842. }
  843. return 0;
  844. /* End of SLARRJ */
  845. } /* slarrj_ */