You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slalsd.c 32 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b6 = 0.f;
  488. static integer c__0 = 0;
  489. static real c_b11 = 1.f;
  490. /* > \brief \b SLALSD uses the singular value decomposition of A to solve the least squares problem. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SLALSD + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slalsd.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slalsd.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slalsd.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, */
  509. /* RANK, WORK, IWORK, INFO ) */
  510. /* CHARACTER UPLO */
  511. /* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ */
  512. /* REAL RCOND */
  513. /* INTEGER IWORK( * ) */
  514. /* REAL B( LDB, * ), D( * ), E( * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > SLALSD uses the singular value decomposition of A to solve the least */
  521. /* > squares problem of finding X to minimize the Euclidean norm of each */
  522. /* > column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
  523. /* > are N-by-NRHS. The solution X overwrites B. */
  524. /* > */
  525. /* > The singular values of A smaller than RCOND times the largest */
  526. /* > singular value are treated as zero in solving the least squares */
  527. /* > problem; in this case a minimum norm solution is returned. */
  528. /* > The actual singular values are returned in D in ascending order. */
  529. /* > */
  530. /* > This code makes very mild assumptions about floating point */
  531. /* > arithmetic. It will work on machines with a guard digit in */
  532. /* > add/subtract, or on those binary machines without guard digits */
  533. /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
  534. /* > It could conceivably fail on hexadecimal or decimal machines */
  535. /* > without guard digits, but we know of none. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] UPLO */
  540. /* > \verbatim */
  541. /* > UPLO is CHARACTER*1 */
  542. /* > = 'U': D and E define an upper bidiagonal matrix. */
  543. /* > = 'L': D and E define a lower bidiagonal matrix. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] SMLSIZ */
  547. /* > \verbatim */
  548. /* > SMLSIZ is INTEGER */
  549. /* > The maximum size of the subproblems at the bottom of the */
  550. /* > computation tree. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] N */
  554. /* > \verbatim */
  555. /* > N is INTEGER */
  556. /* > The dimension of the bidiagonal matrix. N >= 0. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] NRHS */
  560. /* > \verbatim */
  561. /* > NRHS is INTEGER */
  562. /* > The number of columns of B. NRHS must be at least 1. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] D */
  566. /* > \verbatim */
  567. /* > D is REAL array, dimension (N) */
  568. /* > On entry D contains the main diagonal of the bidiagonal */
  569. /* > matrix. On exit, if INFO = 0, D contains its singular values. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] E */
  573. /* > \verbatim */
  574. /* > E is REAL array, dimension (N-1) */
  575. /* > Contains the super-diagonal entries of the bidiagonal matrix. */
  576. /* > On exit, E has been destroyed. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in,out] B */
  580. /* > \verbatim */
  581. /* > B is REAL array, dimension (LDB,NRHS) */
  582. /* > On input, B contains the right hand sides of the least */
  583. /* > squares problem. On output, B contains the solution X. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] LDB */
  587. /* > \verbatim */
  588. /* > LDB is INTEGER */
  589. /* > The leading dimension of B in the calling subprogram. */
  590. /* > LDB must be at least f2cmax(1,N). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] RCOND */
  594. /* > \verbatim */
  595. /* > RCOND is REAL */
  596. /* > The singular values of A less than or equal to RCOND times */
  597. /* > the largest singular value are treated as zero in solving */
  598. /* > the least squares problem. If RCOND is negative, */
  599. /* > machine precision is used instead. */
  600. /* > For example, if diag(S)*X=B were the least squares problem, */
  601. /* > where diag(S) is a diagonal matrix of singular values, the */
  602. /* > solution would be X(i) = B(i) / S(i) if S(i) is greater than */
  603. /* > RCOND*f2cmax(S), and X(i) = 0 if S(i) is less than or equal to */
  604. /* > RCOND*f2cmax(S). */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] RANK */
  608. /* > \verbatim */
  609. /* > RANK is INTEGER */
  610. /* > The number of singular values of A greater than RCOND times */
  611. /* > the largest singular value. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] WORK */
  615. /* > \verbatim */
  616. /* > WORK is REAL array, dimension at least */
  617. /* > (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), */
  618. /* > where NLVL = f2cmax(0, INT(log_2 (N/(SMLSIZ+1))) + 1). */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] IWORK */
  622. /* > \verbatim */
  623. /* > IWORK is INTEGER array, dimension at least */
  624. /* > (3*N*NLVL + 11*N) */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] INFO */
  628. /* > \verbatim */
  629. /* > INFO is INTEGER */
  630. /* > = 0: successful exit. */
  631. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  632. /* > > 0: The algorithm failed to compute a singular value while */
  633. /* > working on the submatrix lying in rows and columns */
  634. /* > INFO/(N+1) through MOD(INFO,N+1). */
  635. /* > \endverbatim */
  636. /* Authors: */
  637. /* ======== */
  638. /* > \author Univ. of Tennessee */
  639. /* > \author Univ. of California Berkeley */
  640. /* > \author Univ. of Colorado Denver */
  641. /* > \author NAG Ltd. */
  642. /* > \date December 2016 */
  643. /* > \ingroup realOTHERcomputational */
  644. /* > \par Contributors: */
  645. /* ================== */
  646. /* > */
  647. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  648. /* > California at Berkeley, USA \n */
  649. /* > Osni Marques, LBNL/NERSC, USA \n */
  650. /* ===================================================================== */
  651. /* Subroutine */ int slalsd_(char *uplo, integer *smlsiz, integer *n, integer
  652. *nrhs, real *d__, real *e, real *b, integer *ldb, real *rcond,
  653. integer *rank, real *work, integer *iwork, integer *info)
  654. {
  655. /* System generated locals */
  656. integer b_dim1, b_offset, i__1, i__2;
  657. real r__1;
  658. /* Local variables */
  659. integer difl, difr;
  660. real rcnd;
  661. integer perm, nsub, nlvl, sqre, bxst;
  662. extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
  663. integer *, real *, real *);
  664. integer c__, i__, j, k;
  665. real r__;
  666. integer s, u, z__;
  667. extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
  668. integer *, real *, real *, integer *, real *, integer *, real *,
  669. real *, integer *);
  670. integer poles, sizei, nsize;
  671. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  672. integer *);
  673. integer nwork, icmpq1, icmpq2;
  674. real cs;
  675. integer bx;
  676. real sn;
  677. integer st;
  678. extern real slamch_(char *);
  679. extern /* Subroutine */ int slasda_(integer *, integer *, integer *,
  680. integer *, real *, real *, real *, integer *, real *, integer *,
  681. real *, real *, real *, real *, integer *, integer *, integer *,
  682. integer *, real *, real *, real *, real *, integer *, integer *);
  683. integer vt;
  684. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slalsa_(
  685. integer *, integer *, integer *, integer *, real *, integer *,
  686. real *, integer *, real *, integer *, real *, integer *, real *,
  687. real *, real *, real *, integer *, integer *, integer *, integer *
  688. , real *, real *, real *, real *, integer *, integer *), slascl_(
  689. char *, integer *, integer *, real *, real *, integer *, integer *
  690. , real *, integer *, integer *);
  691. integer givcol;
  692. extern integer isamax_(integer *, real *, integer *);
  693. extern /* Subroutine */ int slasdq_(char *, integer *, integer *, integer
  694. *, integer *, integer *, real *, real *, real *, integer *, real *
  695. , integer *, real *, integer *, real *, integer *),
  696. slacpy_(char *, integer *, integer *, real *, integer *, real *,
  697. integer *), slartg_(real *, real *, real *, real *, real *
  698. ), slaset_(char *, integer *, integer *, real *, real *, real *,
  699. integer *);
  700. real orgnrm;
  701. integer givnum;
  702. extern real slanst_(char *, integer *, real *, real *);
  703. extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *);
  704. integer givptr, nm1, smlszp, st1;
  705. real eps;
  706. integer iwk;
  707. real tol;
  708. /* -- LAPACK computational routine (version 3.7.0) -- */
  709. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  710. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  711. /* December 2016 */
  712. /* ===================================================================== */
  713. /* Test the input parameters. */
  714. /* Parameter adjustments */
  715. --d__;
  716. --e;
  717. b_dim1 = *ldb;
  718. b_offset = 1 + b_dim1 * 1;
  719. b -= b_offset;
  720. --work;
  721. --iwork;
  722. /* Function Body */
  723. *info = 0;
  724. if (*n < 0) {
  725. *info = -3;
  726. } else if (*nrhs < 1) {
  727. *info = -4;
  728. } else if (*ldb < 1 || *ldb < *n) {
  729. *info = -8;
  730. }
  731. if (*info != 0) {
  732. i__1 = -(*info);
  733. xerbla_("SLALSD", &i__1, (ftnlen)6);
  734. return 0;
  735. }
  736. eps = slamch_("Epsilon");
  737. /* Set up the tolerance. */
  738. if (*rcond <= 0.f || *rcond >= 1.f) {
  739. rcnd = eps;
  740. } else {
  741. rcnd = *rcond;
  742. }
  743. *rank = 0;
  744. /* Quick return if possible. */
  745. if (*n == 0) {
  746. return 0;
  747. } else if (*n == 1) {
  748. if (d__[1] == 0.f) {
  749. slaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
  750. } else {
  751. *rank = 1;
  752. slascl_("G", &c__0, &c__0, &d__[1], &c_b11, &c__1, nrhs, &b[
  753. b_offset], ldb, info);
  754. d__[1] = abs(d__[1]);
  755. }
  756. return 0;
  757. }
  758. /* Rotate the matrix if it is lower bidiagonal. */
  759. if (*(unsigned char *)uplo == 'L') {
  760. i__1 = *n - 1;
  761. for (i__ = 1; i__ <= i__1; ++i__) {
  762. slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  763. d__[i__] = r__;
  764. e[i__] = sn * d__[i__ + 1];
  765. d__[i__ + 1] = cs * d__[i__ + 1];
  766. if (*nrhs == 1) {
  767. srot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
  768. c__1, &cs, &sn);
  769. } else {
  770. work[(i__ << 1) - 1] = cs;
  771. work[i__ * 2] = sn;
  772. }
  773. /* L10: */
  774. }
  775. if (*nrhs > 1) {
  776. i__1 = *nrhs;
  777. for (i__ = 1; i__ <= i__1; ++i__) {
  778. i__2 = *n - 1;
  779. for (j = 1; j <= i__2; ++j) {
  780. cs = work[(j << 1) - 1];
  781. sn = work[j * 2];
  782. srot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *
  783. b_dim1], &c__1, &cs, &sn);
  784. /* L20: */
  785. }
  786. /* L30: */
  787. }
  788. }
  789. }
  790. /* Scale. */
  791. nm1 = *n - 1;
  792. orgnrm = slanst_("M", n, &d__[1], &e[1]);
  793. if (orgnrm == 0.f) {
  794. slaset_("A", n, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
  795. return 0;
  796. }
  797. slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, &c__1, &d__[1], n, info);
  798. slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, &nm1, &c__1, &e[1], &nm1,
  799. info);
  800. /* If N is smaller than the minimum divide size SMLSIZ, then solve */
  801. /* the problem with another solver. */
  802. if (*n <= *smlsiz) {
  803. nwork = *n * *n + 1;
  804. slaset_("A", n, n, &c_b6, &c_b11, &work[1], n);
  805. slasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &
  806. work[1], n, &b[b_offset], ldb, &work[nwork], info);
  807. if (*info != 0) {
  808. return 0;
  809. }
  810. tol = rcnd * (r__1 = d__[isamax_(n, &d__[1], &c__1)], abs(r__1));
  811. i__1 = *n;
  812. for (i__ = 1; i__ <= i__1; ++i__) {
  813. if (d__[i__] <= tol) {
  814. slaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[i__ + b_dim1], ldb);
  815. } else {
  816. slascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &b[
  817. i__ + b_dim1], ldb, info);
  818. ++(*rank);
  819. }
  820. /* L40: */
  821. }
  822. sgemm_("T", "N", n, nrhs, n, &c_b11, &work[1], n, &b[b_offset], ldb, &
  823. c_b6, &work[nwork], n);
  824. slacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb);
  825. /* Unscale. */
  826. slascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n,
  827. info);
  828. slasrt_("D", n, &d__[1], info);
  829. slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset],
  830. ldb, info);
  831. return 0;
  832. }
  833. /* Book-keeping and setting up some constants. */
  834. nlvl = (integer) (log((real) (*n) / (real) (*smlsiz + 1)) / log(2.f)) + 1;
  835. smlszp = *smlsiz + 1;
  836. u = 1;
  837. vt = *smlsiz * *n + 1;
  838. difl = vt + smlszp * *n;
  839. difr = difl + nlvl * *n;
  840. z__ = difr + (nlvl * *n << 1);
  841. c__ = z__ + nlvl * *n;
  842. s = c__ + *n;
  843. poles = s + *n;
  844. givnum = poles + (nlvl << 1) * *n;
  845. bx = givnum + (nlvl << 1) * *n;
  846. nwork = bx + *n * *nrhs;
  847. sizei = *n + 1;
  848. k = sizei + *n;
  849. givptr = k + *n;
  850. perm = givptr + *n;
  851. givcol = perm + nlvl * *n;
  852. iwk = givcol + (nlvl * *n << 1);
  853. st = 1;
  854. sqre = 0;
  855. icmpq1 = 1;
  856. icmpq2 = 0;
  857. nsub = 0;
  858. i__1 = *n;
  859. for (i__ = 1; i__ <= i__1; ++i__) {
  860. if ((r__1 = d__[i__], abs(r__1)) < eps) {
  861. d__[i__] = r_sign(&eps, &d__[i__]);
  862. }
  863. /* L50: */
  864. }
  865. i__1 = nm1;
  866. for (i__ = 1; i__ <= i__1; ++i__) {
  867. if ((r__1 = e[i__], abs(r__1)) < eps || i__ == nm1) {
  868. ++nsub;
  869. iwork[nsub] = st;
  870. /* Subproblem found. First determine its size and then */
  871. /* apply divide and conquer on it. */
  872. if (i__ < nm1) {
  873. /* A subproblem with E(I) small for I < NM1. */
  874. nsize = i__ - st + 1;
  875. iwork[sizei + nsub - 1] = nsize;
  876. } else if ((r__1 = e[i__], abs(r__1)) >= eps) {
  877. /* A subproblem with E(NM1) not too small but I = NM1. */
  878. nsize = *n - st + 1;
  879. iwork[sizei + nsub - 1] = nsize;
  880. } else {
  881. /* A subproblem with E(NM1) small. This implies an */
  882. /* 1-by-1 subproblem at D(N), which is not solved */
  883. /* explicitly. */
  884. nsize = i__ - st + 1;
  885. iwork[sizei + nsub - 1] = nsize;
  886. ++nsub;
  887. iwork[nsub] = *n;
  888. iwork[sizei + nsub - 1] = 1;
  889. scopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
  890. }
  891. st1 = st - 1;
  892. if (nsize == 1) {
  893. /* This is a 1-by-1 subproblem and is not solved */
  894. /* explicitly. */
  895. scopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
  896. } else if (nsize <= *smlsiz) {
  897. /* This is a small subproblem and is solved by SLASDQ. */
  898. slaset_("A", &nsize, &nsize, &c_b6, &c_b11, &work[vt + st1],
  899. n);
  900. slasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[
  901. st], &work[vt + st1], n, &work[nwork], n, &b[st +
  902. b_dim1], ldb, &work[nwork], info);
  903. if (*info != 0) {
  904. return 0;
  905. }
  906. slacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
  907. st1], n);
  908. } else {
  909. /* A large problem. Solve it using divide and conquer. */
  910. slasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
  911. work[u + st1], n, &work[vt + st1], &iwork[k + st1], &
  912. work[difl + st1], &work[difr + st1], &work[z__ + st1],
  913. &work[poles + st1], &iwork[givptr + st1], &iwork[
  914. givcol + st1], n, &iwork[perm + st1], &work[givnum +
  915. st1], &work[c__ + st1], &work[s + st1], &work[nwork],
  916. &iwork[iwk], info);
  917. if (*info != 0) {
  918. return 0;
  919. }
  920. bxst = bx + st1;
  921. slalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
  922. work[bxst], n, &work[u + st1], n, &work[vt + st1], &
  923. iwork[k + st1], &work[difl + st1], &work[difr + st1],
  924. &work[z__ + st1], &work[poles + st1], &iwork[givptr +
  925. st1], &iwork[givcol + st1], n, &iwork[perm + st1], &
  926. work[givnum + st1], &work[c__ + st1], &work[s + st1],
  927. &work[nwork], &iwork[iwk], info);
  928. if (*info != 0) {
  929. return 0;
  930. }
  931. }
  932. st = i__ + 1;
  933. }
  934. /* L60: */
  935. }
  936. /* Apply the singular values and treat the tiny ones as zero. */
  937. tol = rcnd * (r__1 = d__[isamax_(n, &d__[1], &c__1)], abs(r__1));
  938. i__1 = *n;
  939. for (i__ = 1; i__ <= i__1; ++i__) {
  940. /* Some of the elements in D can be negative because 1-by-1 */
  941. /* subproblems were not solved explicitly. */
  942. if ((r__1 = d__[i__], abs(r__1)) <= tol) {
  943. slaset_("A", &c__1, nrhs, &c_b6, &c_b6, &work[bx + i__ - 1], n);
  944. } else {
  945. ++(*rank);
  946. slascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &work[
  947. bx + i__ - 1], n, info);
  948. }
  949. d__[i__] = (r__1 = d__[i__], abs(r__1));
  950. /* L70: */
  951. }
  952. /* Now apply back the right singular vectors. */
  953. icmpq2 = 1;
  954. i__1 = nsub;
  955. for (i__ = 1; i__ <= i__1; ++i__) {
  956. st = iwork[i__];
  957. st1 = st - 1;
  958. nsize = iwork[sizei + i__ - 1];
  959. bxst = bx + st1;
  960. if (nsize == 1) {
  961. scopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
  962. } else if (nsize <= *smlsiz) {
  963. sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b11, &work[vt + st1], n,
  964. &work[bxst], n, &c_b6, &b[st + b_dim1], ldb);
  965. } else {
  966. slalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
  967. b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[
  968. k + st1], &work[difl + st1], &work[difr + st1], &work[z__
  969. + st1], &work[poles + st1], &iwork[givptr + st1], &iwork[
  970. givcol + st1], n, &iwork[perm + st1], &work[givnum + st1],
  971. &work[c__ + st1], &work[s + st1], &work[nwork], &iwork[
  972. iwk], info);
  973. if (*info != 0) {
  974. return 0;
  975. }
  976. }
  977. /* L80: */
  978. }
  979. /* Unscale and sort the singular values. */
  980. slascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, info);
  981. slasrt_("D", n, &d__[1], info);
  982. slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], ldb,
  983. info);
  984. return 0;
  985. /* End of SLALSD */
  986. } /* slalsd_ */