You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasyf.c 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static doublereal c_b8 = -1.;
  488. static doublereal c_b9 = 1.;
  489. /* > \brief \b DLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diag
  490. onal pivoting method. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DLASYF + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) */
  509. /* CHARACTER UPLO */
  510. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  511. /* INTEGER IPIV( * ) */
  512. /* DOUBLE PRECISION A( LDA, * ), W( LDW, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > DLASYF computes a partial factorization of a real symmetric matrix A */
  519. /* > using the Bunch-Kaufman diagonal pivoting method. The partial */
  520. /* > factorization has the form: */
  521. /* > */
  522. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  523. /* > ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) */
  524. /* > */
  525. /* > A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' */
  526. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  527. /* > */
  528. /* > where the order of D is at most NB. The actual order is returned in */
  529. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  530. /* > */
  531. /* > DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code */
  532. /* > (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */
  533. /* > A22 (if UPLO = 'L'). */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > Specifies whether the upper or lower triangular part of the */
  541. /* > symmetric matrix A is stored: */
  542. /* > = 'U': Upper triangular */
  543. /* > = 'L': Lower triangular */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The order of the matrix A. N >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] NB */
  553. /* > \verbatim */
  554. /* > NB is INTEGER */
  555. /* > The maximum number of columns of the matrix A that should be */
  556. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  557. /* > blocks. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[out] KB */
  561. /* > \verbatim */
  562. /* > KB is INTEGER */
  563. /* > The number of columns of A that were actually factored. */
  564. /* > KB is either NB-1 or NB, or N if N <= NB. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] A */
  568. /* > \verbatim */
  569. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  570. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  571. /* > n-by-n upper triangular part of A contains the upper */
  572. /* > triangular part of the matrix A, and the strictly lower */
  573. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  574. /* > leading n-by-n lower triangular part of A contains the lower */
  575. /* > triangular part of the matrix A, and the strictly upper */
  576. /* > triangular part of A is not referenced. */
  577. /* > On exit, A contains details of the partial factorization. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDA */
  581. /* > \verbatim */
  582. /* > LDA is INTEGER */
  583. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] IPIV */
  587. /* > \verbatim */
  588. /* > IPIV is INTEGER array, dimension (N) */
  589. /* > Details of the interchanges and the block structure of D. */
  590. /* > */
  591. /* > If UPLO = 'U': */
  592. /* > Only the last KB elements of IPIV are set. */
  593. /* > */
  594. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  595. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  596. /* > */
  597. /* > If IPIV(k) = IPIV(k-1) < 0, then rows and columns */
  598. /* > k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  599. /* > is a 2-by-2 diagonal block. */
  600. /* > */
  601. /* > If UPLO = 'L': */
  602. /* > Only the first KB elements of IPIV are set. */
  603. /* > */
  604. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  605. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  606. /* > */
  607. /* > If IPIV(k) = IPIV(k+1) < 0, then rows and columns */
  608. /* > k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) */
  609. /* > is a 2-by-2 diagonal block. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] W */
  613. /* > \verbatim */
  614. /* > W is DOUBLE PRECISION array, dimension (LDW,NB) */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDW */
  618. /* > \verbatim */
  619. /* > LDW is INTEGER */
  620. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] INFO */
  624. /* > \verbatim */
  625. /* > INFO is INTEGER */
  626. /* > = 0: successful exit */
  627. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  628. /* > has been completed, but the block diagonal matrix D is */
  629. /* > exactly singular. */
  630. /* > \endverbatim */
  631. /* Authors: */
  632. /* ======== */
  633. /* > \author Univ. of Tennessee */
  634. /* > \author Univ. of California Berkeley */
  635. /* > \author Univ. of Colorado Denver */
  636. /* > \author NAG Ltd. */
  637. /* > \date November 2013 */
  638. /* > \ingroup doubleSYcomputational */
  639. /* > \par Contributors: */
  640. /* ================== */
  641. /* > */
  642. /* > \verbatim */
  643. /* > */
  644. /* > November 2013, Igor Kozachenko, */
  645. /* > Computer Science Division, */
  646. /* > University of California, Berkeley */
  647. /* > \endverbatim */
  648. /* ===================================================================== */
  649. /* Subroutine */ int dlasyf_(char *uplo, integer *n, integer *nb, integer *kb,
  650. doublereal *a, integer *lda, integer *ipiv, doublereal *w, integer *
  651. ldw, integer *info)
  652. {
  653. /* System generated locals */
  654. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  655. doublereal d__1, d__2, d__3;
  656. /* Local variables */
  657. integer imax, jmax, j, k;
  658. doublereal t, alpha;
  659. extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
  660. integer *), dgemm_(char *, char *, integer *, integer *, integer *
  661. , doublereal *, doublereal *, integer *, doublereal *, integer *,
  662. doublereal *, doublereal *, integer *);
  663. extern logical lsame_(char *, char *);
  664. extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
  665. doublereal *, doublereal *, integer *, doublereal *, integer *,
  666. doublereal *, doublereal *, integer *), dcopy_(integer *,
  667. doublereal *, integer *, doublereal *, integer *), dswap_(integer
  668. *, doublereal *, integer *, doublereal *, integer *);
  669. integer kstep;
  670. doublereal r1, d11, d21, d22;
  671. integer jb, jj, kk, jp, kp;
  672. doublereal absakk;
  673. integer kw;
  674. extern integer idamax_(integer *, doublereal *, integer *);
  675. doublereal colmax, rowmax;
  676. integer kkw;
  677. /* -- LAPACK computational routine (version 3.5.0) -- */
  678. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  679. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  680. /* November 2013 */
  681. /* ===================================================================== */
  682. /* Parameter adjustments */
  683. a_dim1 = *lda;
  684. a_offset = 1 + a_dim1 * 1;
  685. a -= a_offset;
  686. --ipiv;
  687. w_dim1 = *ldw;
  688. w_offset = 1 + w_dim1 * 1;
  689. w -= w_offset;
  690. /* Function Body */
  691. *info = 0;
  692. /* Initialize ALPHA for use in choosing pivot block size. */
  693. alpha = (sqrt(17.) + 1.) / 8.;
  694. if (lsame_(uplo, "U")) {
  695. /* Factorize the trailing columns of A using the upper triangle */
  696. /* of A and working backwards, and compute the matrix W = U12*D */
  697. /* for use in updating A11 */
  698. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  699. /* KW is the column of W which corresponds to column K of A */
  700. k = *n;
  701. L10:
  702. kw = *nb + k - *n;
  703. /* Exit from loop */
  704. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  705. goto L30;
  706. }
  707. /* Copy column K of A to column KW of W and update it */
  708. dcopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
  709. if (k < *n) {
  710. i__1 = *n - k;
  711. dgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) * a_dim1 + 1],
  712. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b9, &w[kw *
  713. w_dim1 + 1], &c__1);
  714. }
  715. kstep = 1;
  716. /* Determine rows and columns to be interchanged and whether */
  717. /* a 1-by-1 or 2-by-2 pivot block will be used */
  718. absakk = (d__1 = w[k + kw * w_dim1], abs(d__1));
  719. /* IMAX is the row-index of the largest off-diagonal element in */
  720. /* column K, and COLMAX is its absolute value. */
  721. /* Determine both COLMAX and IMAX. */
  722. if (k > 1) {
  723. i__1 = k - 1;
  724. imax = idamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  725. colmax = (d__1 = w[imax + kw * w_dim1], abs(d__1));
  726. } else {
  727. colmax = 0.;
  728. }
  729. if (f2cmax(absakk,colmax) == 0.) {
  730. /* Column K is zero or underflow: set INFO and continue */
  731. if (*info == 0) {
  732. *info = k;
  733. }
  734. kp = k;
  735. } else {
  736. if (absakk >= alpha * colmax) {
  737. /* no interchange, use 1-by-1 pivot block */
  738. kp = k;
  739. } else {
  740. /* Copy column IMAX to column KW-1 of W and update it */
  741. dcopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  742. w_dim1 + 1], &c__1);
  743. i__1 = k - imax;
  744. dcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  745. 1 + (kw - 1) * w_dim1], &c__1);
  746. if (k < *n) {
  747. i__1 = *n - k;
  748. dgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) *
  749. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  750. ldw, &c_b9, &w[(kw - 1) * w_dim1 + 1], &c__1);
  751. }
  752. /* JMAX is the column-index of the largest off-diagonal */
  753. /* element in row IMAX, and ROWMAX is its absolute value */
  754. i__1 = k - imax;
  755. jmax = imax + idamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1],
  756. &c__1);
  757. rowmax = (d__1 = w[jmax + (kw - 1) * w_dim1], abs(d__1));
  758. if (imax > 1) {
  759. i__1 = imax - 1;
  760. jmax = idamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  761. /* Computing MAX */
  762. d__2 = rowmax, d__3 = (d__1 = w[jmax + (kw - 1) * w_dim1],
  763. abs(d__1));
  764. rowmax = f2cmax(d__2,d__3);
  765. }
  766. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  767. /* no interchange, use 1-by-1 pivot block */
  768. kp = k;
  769. } else if ((d__1 = w[imax + (kw - 1) * w_dim1], abs(d__1)) >=
  770. alpha * rowmax) {
  771. /* interchange rows and columns K and IMAX, use 1-by-1 */
  772. /* pivot block */
  773. kp = imax;
  774. /* copy column KW-1 of W to column KW of W */
  775. dcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  776. w_dim1 + 1], &c__1);
  777. } else {
  778. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  779. /* pivot block */
  780. kp = imax;
  781. kstep = 2;
  782. }
  783. }
  784. /* ============================================================ */
  785. /* KK is the column of A where pivoting step stopped */
  786. kk = k - kstep + 1;
  787. /* KKW is the column of W which corresponds to column KK of A */
  788. kkw = *nb + kk - *n;
  789. /* Interchange rows and columns KP and KK. */
  790. /* Updated column KP is already stored in column KKW of W. */
  791. if (kp != kk) {
  792. /* Copy non-updated column KK to column KP of submatrix A */
  793. /* at step K. No need to copy element into column K */
  794. /* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
  795. /* will be later overwritten. */
  796. a[kp + kp * a_dim1] = a[kk + kk * a_dim1];
  797. i__1 = kk - 1 - kp;
  798. dcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  799. 1) * a_dim1], lda);
  800. if (kp > 1) {
  801. i__1 = kp - 1;
  802. dcopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  803. + 1], &c__1);
  804. }
  805. /* Interchange rows KK and KP in last K+1 to N columns of A */
  806. /* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
  807. /* later overwritten). Interchange rows KK and KP */
  808. /* in last KKW to NB columns of W. */
  809. if (k < *n) {
  810. i__1 = *n - k;
  811. dswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  812. + 1) * a_dim1], lda);
  813. }
  814. i__1 = *n - kk + 1;
  815. dswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  816. w_dim1], ldw);
  817. }
  818. if (kstep == 1) {
  819. /* 1-by-1 pivot block D(k): column kw of W now holds */
  820. /* W(kw) = U(k)*D(k), */
  821. /* where U(k) is the k-th column of U */
  822. /* Store subdiag. elements of column U(k) */
  823. /* and 1-by-1 block D(k) in column k of A. */
  824. /* NOTE: Diagonal element U(k,k) is a UNIT element */
  825. /* and not stored. */
  826. /* A(k,k) := D(k,k) = W(k,kw) */
  827. /* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
  828. dcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  829. c__1);
  830. r1 = 1. / a[k + k * a_dim1];
  831. i__1 = k - 1;
  832. dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  833. } else {
  834. /* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
  835. /* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
  836. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  837. /* of U */
  838. /* Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
  839. /* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
  840. /* NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
  841. /* block and not stored. */
  842. /* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
  843. /* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
  844. /* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
  845. if (k > 2) {
  846. /* Compose the columns of the inverse of 2-by-2 pivot */
  847. /* block D in the following way to reduce the number */
  848. /* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by */
  849. /* this inverse */
  850. /* D**(-1) = ( d11 d21 )**(-1) = */
  851. /* ( d21 d22 ) */
  852. /* = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = */
  853. /* ( (-d21 ) ( d11 ) ) */
  854. /* = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * */
  855. /* * ( ( d22/d21 ) ( -1 ) ) = */
  856. /* ( ( -1 ) ( d11/d21 ) ) */
  857. /* = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = */
  858. /* ( ( -1 ) ( D22 ) ) */
  859. /* = 1/d21 * T * ( ( D11 ) ( -1 ) ) */
  860. /* ( ( -1 ) ( D22 ) ) */
  861. /* = D21 * ( ( D11 ) ( -1 ) ) */
  862. /* ( ( -1 ) ( D22 ) ) */
  863. d21 = w[k - 1 + kw * w_dim1];
  864. d11 = w[k + kw * w_dim1] / d21;
  865. d22 = w[k - 1 + (kw - 1) * w_dim1] / d21;
  866. t = 1. / (d11 * d22 - 1.);
  867. d21 = t / d21;
  868. /* Update elements in columns A(k-1) and A(k) as */
  869. /* dot products of rows of ( W(kw-1) W(kw) ) and columns */
  870. /* of D**(-1) */
  871. i__1 = k - 2;
  872. for (j = 1; j <= i__1; ++j) {
  873. a[j + (k - 1) * a_dim1] = d21 * (d11 * w[j + (kw - 1)
  874. * w_dim1] - w[j + kw * w_dim1]);
  875. a[j + k * a_dim1] = d21 * (d22 * w[j + kw * w_dim1] -
  876. w[j + (kw - 1) * w_dim1]);
  877. /* L20: */
  878. }
  879. }
  880. /* Copy D(k) to A */
  881. a[k - 1 + (k - 1) * a_dim1] = w[k - 1 + (kw - 1) * w_dim1];
  882. a[k - 1 + k * a_dim1] = w[k - 1 + kw * w_dim1];
  883. a[k + k * a_dim1] = w[k + kw * w_dim1];
  884. }
  885. }
  886. /* Store details of the interchanges in IPIV */
  887. if (kstep == 1) {
  888. ipiv[k] = kp;
  889. } else {
  890. ipiv[k] = -kp;
  891. ipiv[k - 1] = -kp;
  892. }
  893. /* Decrease K and return to the start of the main loop */
  894. k -= kstep;
  895. goto L10;
  896. L30:
  897. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  898. /* A11 := A11 - U12*D*U12**T = A11 - U12*W**T */
  899. /* computing blocks of NB columns at a time */
  900. i__1 = -(*nb);
  901. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  902. i__1) {
  903. /* Computing MIN */
  904. i__2 = *nb, i__3 = k - j + 1;
  905. jb = f2cmin(i__2,i__3);
  906. /* Update the upper triangle of the diagonal block */
  907. i__2 = j + jb - 1;
  908. for (jj = j; jj <= i__2; ++jj) {
  909. i__3 = jj - j + 1;
  910. i__4 = *n - k;
  911. dgemv_("No transpose", &i__3, &i__4, &c_b8, &a[j + (k + 1) *
  912. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b9,
  913. &a[j + jj * a_dim1], &c__1);
  914. /* L40: */
  915. }
  916. /* Update the rectangular superdiagonal block */
  917. i__2 = j - 1;
  918. i__3 = *n - k;
  919. dgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &c_b8, &a[(
  920. k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw,
  921. &c_b9, &a[j * a_dim1 + 1], lda);
  922. /* L50: */
  923. }
  924. /* Put U12 in standard form by partially undoing the interchanges */
  925. /* in columns k+1:n looping backwards from k+1 to n */
  926. j = k + 1;
  927. L60:
  928. /* Undo the interchanges (if any) of rows JJ and JP at each */
  929. /* step J */
  930. /* (Here, J is a diagonal index) */
  931. jj = j;
  932. jp = ipiv[j];
  933. if (jp < 0) {
  934. jp = -jp;
  935. /* (Here, J is a diagonal index) */
  936. ++j;
  937. }
  938. /* (NOTE: Here, J is used to determine row length. Length N-J+1 */
  939. /* of the rows to swap back doesn't include diagonal element) */
  940. ++j;
  941. if (jp != jj && j <= *n) {
  942. i__1 = *n - j + 1;
  943. dswap_(&i__1, &a[jp + j * a_dim1], lda, &a[jj + j * a_dim1], lda);
  944. }
  945. if (j < *n) {
  946. goto L60;
  947. }
  948. /* Set KB to the number of columns factorized */
  949. *kb = *n - k;
  950. } else {
  951. /* Factorize the leading columns of A using the lower triangle */
  952. /* of A and working forwards, and compute the matrix W = L21*D */
  953. /* for use in updating A22 */
  954. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  955. k = 1;
  956. L70:
  957. /* Exit from loop */
  958. if (k >= *nb && *nb < *n || k > *n) {
  959. goto L90;
  960. }
  961. /* Copy column K of A to column K of W and update it */
  962. i__1 = *n - k + 1;
  963. dcopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
  964. i__1 = *n - k + 1;
  965. i__2 = k - 1;
  966. dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1], lda, &w[k
  967. + w_dim1], ldw, &c_b9, &w[k + k * w_dim1], &c__1);
  968. kstep = 1;
  969. /* Determine rows and columns to be interchanged and whether */
  970. /* a 1-by-1 or 2-by-2 pivot block will be used */
  971. absakk = (d__1 = w[k + k * w_dim1], abs(d__1));
  972. /* IMAX is the row-index of the largest off-diagonal element in */
  973. /* column K, and COLMAX is its absolute value. */
  974. /* Determine both COLMAX and IMAX. */
  975. if (k < *n) {
  976. i__1 = *n - k;
  977. imax = k + idamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  978. colmax = (d__1 = w[imax + k * w_dim1], abs(d__1));
  979. } else {
  980. colmax = 0.;
  981. }
  982. if (f2cmax(absakk,colmax) == 0.) {
  983. /* Column K is zero or underflow: set INFO and continue */
  984. if (*info == 0) {
  985. *info = k;
  986. }
  987. kp = k;
  988. } else {
  989. if (absakk >= alpha * colmax) {
  990. /* no interchange, use 1-by-1 pivot block */
  991. kp = k;
  992. } else {
  993. /* Copy column IMAX to column K+1 of W and update it */
  994. i__1 = imax - k;
  995. dcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  996. w_dim1], &c__1);
  997. i__1 = *n - imax + 1;
  998. dcopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k +
  999. 1) * w_dim1], &c__1);
  1000. i__1 = *n - k + 1;
  1001. i__2 = k - 1;
  1002. dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1],
  1003. lda, &w[imax + w_dim1], ldw, &c_b9, &w[k + (k + 1) *
  1004. w_dim1], &c__1);
  1005. /* JMAX is the column-index of the largest off-diagonal */
  1006. /* element in row IMAX, and ROWMAX is its absolute value */
  1007. i__1 = imax - k;
  1008. jmax = k - 1 + idamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)
  1009. ;
  1010. rowmax = (d__1 = w[jmax + (k + 1) * w_dim1], abs(d__1));
  1011. if (imax < *n) {
  1012. i__1 = *n - imax;
  1013. jmax = imax + idamax_(&i__1, &w[imax + 1 + (k + 1) *
  1014. w_dim1], &c__1);
  1015. /* Computing MAX */
  1016. d__2 = rowmax, d__3 = (d__1 = w[jmax + (k + 1) * w_dim1],
  1017. abs(d__1));
  1018. rowmax = f2cmax(d__2,d__3);
  1019. }
  1020. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  1021. /* no interchange, use 1-by-1 pivot block */
  1022. kp = k;
  1023. } else if ((d__1 = w[imax + (k + 1) * w_dim1], abs(d__1)) >=
  1024. alpha * rowmax) {
  1025. /* interchange rows and columns K and IMAX, use 1-by-1 */
  1026. /* pivot block */
  1027. kp = imax;
  1028. /* copy column K+1 of W to column K of W */
  1029. i__1 = *n - k + 1;
  1030. dcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1031. w_dim1], &c__1);
  1032. } else {
  1033. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  1034. /* pivot block */
  1035. kp = imax;
  1036. kstep = 2;
  1037. }
  1038. }
  1039. /* ============================================================ */
  1040. /* KK is the column of A where pivoting step stopped */
  1041. kk = k + kstep - 1;
  1042. /* Interchange rows and columns KP and KK. */
  1043. /* Updated column KP is already stored in column KK of W. */
  1044. if (kp != kk) {
  1045. /* Copy non-updated column KK to column KP of submatrix A */
  1046. /* at step K. No need to copy element into column K */
  1047. /* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
  1048. /* will be later overwritten. */
  1049. a[kp + kp * a_dim1] = a[kk + kk * a_dim1];
  1050. i__1 = kp - kk - 1;
  1051. dcopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
  1052. 1) * a_dim1], lda);
  1053. if (kp < *n) {
  1054. i__1 = *n - kp;
  1055. dcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1056. + kp * a_dim1], &c__1);
  1057. }
  1058. /* Interchange rows KK and KP in first K-1 columns of A */
  1059. /* (columns K (or K and K+1 for 2-by-2 pivot) of A will be */
  1060. /* later overwritten). Interchange rows KK and KP */
  1061. /* in first KK columns of W. */
  1062. if (k > 1) {
  1063. i__1 = k - 1;
  1064. dswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1065. }
  1066. dswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1067. }
  1068. if (kstep == 1) {
  1069. /* 1-by-1 pivot block D(k): column k of W now holds */
  1070. /* W(k) = L(k)*D(k), */
  1071. /* where L(k) is the k-th column of L */
  1072. /* Store subdiag. elements of column L(k) */
  1073. /* and 1-by-1 block D(k) in column k of A. */
  1074. /* (NOTE: Diagonal element L(k,k) is a UNIT element */
  1075. /* and not stored) */
  1076. /* A(k,k) := D(k,k) = W(k,k) */
  1077. /* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
  1078. i__1 = *n - k + 1;
  1079. dcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1080. c__1);
  1081. if (k < *n) {
  1082. r1 = 1. / a[k + k * a_dim1];
  1083. i__1 = *n - k;
  1084. dscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1085. }
  1086. } else {
  1087. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1088. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1089. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1090. /* of L */
  1091. /* Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
  1092. /* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
  1093. /* (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
  1094. /* block and not stored) */
  1095. /* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
  1096. /* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
  1097. /* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
  1098. if (k < *n - 1) {
  1099. /* Compose the columns of the inverse of 2-by-2 pivot */
  1100. /* block D in the following way to reduce the number */
  1101. /* of FLOPS when we myltiply panel ( W(k) W(k+1) ) by */
  1102. /* this inverse */
  1103. /* D**(-1) = ( d11 d21 )**(-1) = */
  1104. /* ( d21 d22 ) */
  1105. /* = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = */
  1106. /* ( (-d21 ) ( d11 ) ) */
  1107. /* = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * */
  1108. /* * ( ( d22/d21 ) ( -1 ) ) = */
  1109. /* ( ( -1 ) ( d11/d21 ) ) */
  1110. /* = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = */
  1111. /* ( ( -1 ) ( D22 ) ) */
  1112. /* = 1/d21 * T * ( ( D11 ) ( -1 ) ) */
  1113. /* ( ( -1 ) ( D22 ) ) */
  1114. /* = D21 * ( ( D11 ) ( -1 ) ) */
  1115. /* ( ( -1 ) ( D22 ) ) */
  1116. d21 = w[k + 1 + k * w_dim1];
  1117. d11 = w[k + 1 + (k + 1) * w_dim1] / d21;
  1118. d22 = w[k + k * w_dim1] / d21;
  1119. t = 1. / (d11 * d22 - 1.);
  1120. d21 = t / d21;
  1121. /* Update elements in columns A(k) and A(k+1) as */
  1122. /* dot products of rows of ( W(k) W(k+1) ) and columns */
  1123. /* of D**(-1) */
  1124. i__1 = *n;
  1125. for (j = k + 2; j <= i__1; ++j) {
  1126. a[j + k * a_dim1] = d21 * (d11 * w[j + k * w_dim1] -
  1127. w[j + (k + 1) * w_dim1]);
  1128. a[j + (k + 1) * a_dim1] = d21 * (d22 * w[j + (k + 1) *
  1129. w_dim1] - w[j + k * w_dim1]);
  1130. /* L80: */
  1131. }
  1132. }
  1133. /* Copy D(k) to A */
  1134. a[k + k * a_dim1] = w[k + k * w_dim1];
  1135. a[k + 1 + k * a_dim1] = w[k + 1 + k * w_dim1];
  1136. a[k + 1 + (k + 1) * a_dim1] = w[k + 1 + (k + 1) * w_dim1];
  1137. }
  1138. }
  1139. /* Store details of the interchanges in IPIV */
  1140. if (kstep == 1) {
  1141. ipiv[k] = kp;
  1142. } else {
  1143. ipiv[k] = -kp;
  1144. ipiv[k + 1] = -kp;
  1145. }
  1146. /* Increase K and return to the start of the main loop */
  1147. k += kstep;
  1148. goto L70;
  1149. L90:
  1150. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1151. /* A22 := A22 - L21*D*L21**T = A22 - L21*W**T */
  1152. /* computing blocks of NB columns at a time */
  1153. i__1 = *n;
  1154. i__2 = *nb;
  1155. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1156. /* Computing MIN */
  1157. i__3 = *nb, i__4 = *n - j + 1;
  1158. jb = f2cmin(i__3,i__4);
  1159. /* Update the lower triangle of the diagonal block */
  1160. i__3 = j + jb - 1;
  1161. for (jj = j; jj <= i__3; ++jj) {
  1162. i__4 = j + jb - jj;
  1163. i__5 = k - 1;
  1164. dgemv_("No transpose", &i__4, &i__5, &c_b8, &a[jj + a_dim1],
  1165. lda, &w[jj + w_dim1], ldw, &c_b9, &a[jj + jj * a_dim1]
  1166. , &c__1);
  1167. /* L100: */
  1168. }
  1169. /* Update the rectangular subdiagonal block */
  1170. if (j + jb <= *n) {
  1171. i__3 = *n - j - jb + 1;
  1172. i__4 = k - 1;
  1173. dgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &c_b8,
  1174. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b9,
  1175. &a[j + jb + j * a_dim1], lda);
  1176. }
  1177. /* L110: */
  1178. }
  1179. /* Put L21 in standard form by partially undoing the interchanges */
  1180. /* of rows in columns 1:k-1 looping backwards from k-1 to 1 */
  1181. j = k - 1;
  1182. L120:
  1183. /* Undo the interchanges (if any) of rows JJ and JP at each */
  1184. /* step J */
  1185. /* (Here, J is a diagonal index) */
  1186. jj = j;
  1187. jp = ipiv[j];
  1188. if (jp < 0) {
  1189. jp = -jp;
  1190. /* (Here, J is a diagonal index) */
  1191. --j;
  1192. }
  1193. /* (NOTE: Here, J is used to determine row length. Length J */
  1194. /* of the rows to swap back doesn't include diagonal element) */
  1195. --j;
  1196. if (jp != jj && j >= 1) {
  1197. dswap_(&j, &a[jp + a_dim1], lda, &a[jj + a_dim1], lda);
  1198. }
  1199. if (j > 1) {
  1200. goto L120;
  1201. }
  1202. /* Set KB to the number of columns factorized */
  1203. *kb = k - 1;
  1204. }
  1205. return 0;
  1206. /* End of DLASYF */
  1207. } /* dlasyf_ */