You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgesdd.c 76 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c_n1 = -1;
  487. static integer c__0 = 0;
  488. static doublereal c_b63 = 0.;
  489. static integer c__1 = 1;
  490. static doublereal c_b84 = 1.;
  491. /* > \brief \b DGESDD */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download DGESDD + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesdd.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesdd.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesdd.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE DGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, */
  510. /* WORK, LWORK, IWORK, INFO ) */
  511. /* CHARACTER JOBZ */
  512. /* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N */
  513. /* INTEGER IWORK( * ) */
  514. /* DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), */
  515. /* $ VT( LDVT, * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > DGESDD computes the singular value decomposition (SVD) of a real */
  522. /* > M-by-N matrix A, optionally computing the left and right singular */
  523. /* > vectors. If singular vectors are desired, it uses a */
  524. /* > divide-and-conquer algorithm. */
  525. /* > */
  526. /* > The SVD is written */
  527. /* > */
  528. /* > A = U * SIGMA * transpose(V) */
  529. /* > */
  530. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  531. /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
  532. /* > V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */
  533. /* > are the singular values of A; they are real and non-negative, and */
  534. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  535. /* > U and V are the left and right singular vectors of A. */
  536. /* > */
  537. /* > Note that the routine returns VT = V**T, not V. */
  538. /* > */
  539. /* > The divide and conquer algorithm makes very mild assumptions about */
  540. /* > floating point arithmetic. It will work on machines with a guard */
  541. /* > digit in add/subtract, or on those binary machines without guard */
  542. /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
  543. /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
  544. /* > without guard digits, but we know of none. */
  545. /* > \endverbatim */
  546. /* Arguments: */
  547. /* ========== */
  548. /* > \param[in] JOBZ */
  549. /* > \verbatim */
  550. /* > JOBZ is CHARACTER*1 */
  551. /* > Specifies options for computing all or part of the matrix U: */
  552. /* > = 'A': all M columns of U and all N rows of V**T are */
  553. /* > returned in the arrays U and VT; */
  554. /* > = 'S': the first f2cmin(M,N) columns of U and the first */
  555. /* > f2cmin(M,N) rows of V**T are returned in the arrays U */
  556. /* > and VT; */
  557. /* > = 'O': If M >= N, the first N columns of U are overwritten */
  558. /* > on the array A and all rows of V**T are returned in */
  559. /* > the array VT; */
  560. /* > otherwise, all columns of U are returned in the */
  561. /* > array U and the first M rows of V**T are overwritten */
  562. /* > in the array A; */
  563. /* > = 'N': no columns of U or rows of V**T are computed. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] M */
  567. /* > \verbatim */
  568. /* > M is INTEGER */
  569. /* > The number of rows of the input matrix A. M >= 0. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] N */
  573. /* > \verbatim */
  574. /* > N is INTEGER */
  575. /* > The number of columns of the input matrix A. N >= 0. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in,out] A */
  579. /* > \verbatim */
  580. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  581. /* > On entry, the M-by-N matrix A. */
  582. /* > On exit, */
  583. /* > if JOBZ = 'O', A is overwritten with the first N columns */
  584. /* > of U (the left singular vectors, stored */
  585. /* > columnwise) if M >= N; */
  586. /* > A is overwritten with the first M rows */
  587. /* > of V**T (the right singular vectors, stored */
  588. /* > rowwise) otherwise. */
  589. /* > if JOBZ .ne. 'O', the contents of A are destroyed. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDA */
  593. /* > \verbatim */
  594. /* > LDA is INTEGER */
  595. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[out] S */
  599. /* > \verbatim */
  600. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  601. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] U */
  605. /* > \verbatim */
  606. /* > U is DOUBLE PRECISION array, dimension (LDU,UCOL) */
  607. /* > UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; */
  608. /* > UCOL = f2cmin(M,N) if JOBZ = 'S'. */
  609. /* > If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M */
  610. /* > orthogonal matrix U; */
  611. /* > if JOBZ = 'S', U contains the first f2cmin(M,N) columns of U */
  612. /* > (the left singular vectors, stored columnwise); */
  613. /* > if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] LDU */
  617. /* > \verbatim */
  618. /* > LDU is INTEGER */
  619. /* > The leading dimension of the array U. LDU >= 1; if */
  620. /* > JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] VT */
  624. /* > \verbatim */
  625. /* > VT is DOUBLE PRECISION array, dimension (LDVT,N) */
  626. /* > If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the */
  627. /* > N-by-N orthogonal matrix V**T; */
  628. /* > if JOBZ = 'S', VT contains the first f2cmin(M,N) rows of */
  629. /* > V**T (the right singular vectors, stored rowwise); */
  630. /* > if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] LDVT */
  634. /* > \verbatim */
  635. /* > LDVT is INTEGER */
  636. /* > The leading dimension of the array VT. LDVT >= 1; */
  637. /* > if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; */
  638. /* > if JOBZ = 'S', LDVT >= f2cmin(M,N). */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] WORK */
  642. /* > \verbatim */
  643. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  644. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] LWORK */
  648. /* > \verbatim */
  649. /* > LWORK is INTEGER */
  650. /* > The dimension of the array WORK. LWORK >= 1. */
  651. /* > If LWORK = -1, a workspace query is assumed. The optimal */
  652. /* > size for the WORK array is calculated and stored in WORK(1), */
  653. /* > and no other work except argument checking is performed. */
  654. /* > */
  655. /* > Let mx = f2cmax(M,N) and mn = f2cmin(M,N). */
  656. /* > If JOBZ = 'N', LWORK >= 3*mn + f2cmax( mx, 7*mn ). */
  657. /* > If JOBZ = 'O', LWORK >= 3*mn + f2cmax( mx, 5*mn*mn + 4*mn ). */
  658. /* > If JOBZ = 'S', LWORK >= 4*mn*mn + 7*mn. */
  659. /* > If JOBZ = 'A', LWORK >= 4*mn*mn + 6*mn + mx. */
  660. /* > These are not tight minimums in all cases; see comments inside code. */
  661. /* > For good performance, LWORK should generally be larger; */
  662. /* > a query is recommended. */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[out] IWORK */
  666. /* > \verbatim */
  667. /* > IWORK is INTEGER array, dimension (8*f2cmin(M,N)) */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[out] INFO */
  671. /* > \verbatim */
  672. /* > INFO is INTEGER */
  673. /* > = 0: successful exit. */
  674. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  675. /* > > 0: DBDSDC did not converge, updating process failed. */
  676. /* > \endverbatim */
  677. /* Authors: */
  678. /* ======== */
  679. /* > \author Univ. of Tennessee */
  680. /* > \author Univ. of California Berkeley */
  681. /* > \author Univ. of Colorado Denver */
  682. /* > \author NAG Ltd. */
  683. /* > \date June 2016 */
  684. /* > \ingroup doubleGEsing */
  685. /* > \par Contributors: */
  686. /* ================== */
  687. /* > */
  688. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  689. /* > California at Berkeley, USA */
  690. /* > */
  691. /* ===================================================================== */
  692. /* Subroutine */ int dgesdd_(char *jobz, integer *m, integer *n, doublereal *
  693. a, integer *lda, doublereal *s, doublereal *u, integer *ldu,
  694. doublereal *vt, integer *ldvt, doublereal *work, integer *lwork,
  695. integer *iwork, integer *info)
  696. {
  697. /* System generated locals */
  698. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
  699. i__2, i__3;
  700. /* Local variables */
  701. integer lwork_dorglq_mn__, lwork_dorglq_nn__, lwork_dorgqr_mm__,
  702. lwork_dorgqr_mn__, iscl;
  703. doublereal anrm;
  704. integer idum[1], ierr, itau, lwork_dormbr_qln_mm__, lwork_dormbr_qln_mn__,
  705. lwork_dormbr_qln_nn__, lwork_dormbr_prt_mm__,
  706. lwork_dormbr_prt_mn__, lwork_dormbr_prt_nn__, i__;
  707. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  708. integer *, doublereal *, doublereal *, integer *, doublereal *,
  709. integer *, doublereal *, doublereal *, integer *);
  710. extern logical lsame_(char *, char *);
  711. integer chunk, minmn, wrkbl, itaup, itauq, mnthr;
  712. logical wntqa;
  713. integer nwork;
  714. logical wntqn, wntqo, wntqs;
  715. integer ie, lwork_dorgbr_p_mm__;
  716. extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal
  717. *, doublereal *, doublereal *, integer *, doublereal *, integer *,
  718. doublereal *, integer *, doublereal *, integer *, integer *);
  719. integer il, lwork_dorgbr_q_nn__;
  720. extern /* Subroutine */ int dgebrd_(integer *, integer *, doublereal *,
  721. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  722. doublereal *, integer *, integer *);
  723. extern doublereal dlamch_(char *);
  724. integer ir, bdspac;
  725. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  726. integer *, doublereal *);
  727. integer iu;
  728. extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *,
  729. integer *, doublereal *, doublereal *, integer *, integer *),
  730. dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
  731. integer *, integer *, doublereal *, integer *, integer *),
  732. dgeqrf_(integer *, integer *, doublereal *, integer *,
  733. doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
  734. integer *, integer *, doublereal *, integer *, doublereal *,
  735. integer *), dlaset_(char *, integer *, integer *,
  736. doublereal *, doublereal *, doublereal *, integer *),
  737. xerbla_(char *, integer *, ftnlen), dorgbr_(char *, integer *,
  738. integer *, integer *, doublereal *, integer *, doublereal *,
  739. doublereal *, integer *, integer *);
  740. extern logical disnan_(doublereal *);
  741. doublereal bignum;
  742. extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *,
  743. integer *, integer *, doublereal *, integer *, doublereal *,
  744. doublereal *, integer *, doublereal *, integer *, integer *), dorglq_(integer *, integer *, integer *,
  745. doublereal *, integer *, doublereal *, doublereal *, integer *,
  746. integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
  747. integer *, doublereal *, doublereal *, integer *, integer *);
  748. integer ldwrkl, ldwrkr, minwrk, ldwrku, maxwrk, ldwkvt;
  749. doublereal smlnum;
  750. logical wntqas, lquery;
  751. integer blk;
  752. doublereal dum[1], eps;
  753. integer ivt, lwork_dgebrd_mm__, lwork_dgebrd_mn__, lwork_dgebrd_nn__,
  754. lwork_dgelqf_mn__, lwork_dgeqrf_mn__;
  755. /* -- LAPACK driver routine (version 3.7.0) -- */
  756. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  757. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  758. /* June 2016 */
  759. /* ===================================================================== */
  760. /* Test the input arguments */
  761. /* Parameter adjustments */
  762. a_dim1 = *lda;
  763. a_offset = 1 + a_dim1 * 1;
  764. a -= a_offset;
  765. --s;
  766. u_dim1 = *ldu;
  767. u_offset = 1 + u_dim1 * 1;
  768. u -= u_offset;
  769. vt_dim1 = *ldvt;
  770. vt_offset = 1 + vt_dim1 * 1;
  771. vt -= vt_offset;
  772. --work;
  773. --iwork;
  774. /* Function Body */
  775. *info = 0;
  776. minmn = f2cmin(*m,*n);
  777. wntqa = lsame_(jobz, "A");
  778. wntqs = lsame_(jobz, "S");
  779. wntqas = wntqa || wntqs;
  780. wntqo = lsame_(jobz, "O");
  781. wntqn = lsame_(jobz, "N");
  782. lquery = *lwork == -1;
  783. if (! (wntqa || wntqs || wntqo || wntqn)) {
  784. *info = -1;
  785. } else if (*m < 0) {
  786. *info = -2;
  787. } else if (*n < 0) {
  788. *info = -3;
  789. } else if (*lda < f2cmax(1,*m)) {
  790. *info = -5;
  791. } else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < *
  792. m) {
  793. *info = -8;
  794. } else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn ||
  795. wntqo && *m >= *n && *ldvt < *n) {
  796. *info = -10;
  797. }
  798. /* Compute workspace */
  799. /* Note: Comments in the code beginning "Workspace:" describe the */
  800. /* minimal amount of workspace allocated at that point in the code, */
  801. /* as well as the preferred amount for good performance. */
  802. /* NB refers to the optimal block size for the immediately */
  803. /* following subroutine, as returned by ILAENV. */
  804. if (*info == 0) {
  805. minwrk = 1;
  806. maxwrk = 1;
  807. bdspac = 0;
  808. mnthr = (integer) (minmn * 11. / 6.);
  809. if (*m >= *n && minmn > 0) {
  810. /* Compute space needed for DBDSDC */
  811. if (wntqn) {
  812. /* dbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6) */
  813. /* keep 7*N for backwards compatibility. */
  814. bdspac = *n * 7;
  815. } else {
  816. bdspac = *n * 3 * *n + (*n << 2);
  817. }
  818. /* Compute space preferred for each routine */
  819. dgebrd_(m, n, dum, m, dum, dum, dum, dum, dum, &c_n1, &ierr);
  820. lwork_dgebrd_mn__ = (integer) dum[0];
  821. dgebrd_(n, n, dum, n, dum, dum, dum, dum, dum, &c_n1, &ierr);
  822. lwork_dgebrd_nn__ = (integer) dum[0];
  823. dgeqrf_(m, n, dum, m, dum, dum, &c_n1, &ierr);
  824. lwork_dgeqrf_mn__ = (integer) dum[0];
  825. dorgbr_("Q", n, n, n, dum, n, dum, dum, &c_n1, &ierr);
  826. lwork_dorgbr_q_nn__ = (integer) dum[0];
  827. dorgqr_(m, m, n, dum, m, dum, dum, &c_n1, &ierr);
  828. lwork_dorgqr_mm__ = (integer) dum[0];
  829. dorgqr_(m, n, n, dum, m, dum, dum, &c_n1, &ierr);
  830. lwork_dorgqr_mn__ = (integer) dum[0];
  831. dormbr_("P", "R", "T", n, n, n, dum, n, dum, dum, n, dum, &c_n1, &
  832. ierr);
  833. lwork_dormbr_prt_nn__ = (integer) dum[0];
  834. dormbr_("Q", "L", "N", n, n, n, dum, n, dum, dum, n, dum, &c_n1, &
  835. ierr);
  836. lwork_dormbr_qln_nn__ = (integer) dum[0];
  837. dormbr_("Q", "L", "N", m, n, n, dum, m, dum, dum, m, dum, &c_n1, &
  838. ierr);
  839. lwork_dormbr_qln_mn__ = (integer) dum[0];
  840. dormbr_("Q", "L", "N", m, m, n, dum, m, dum, dum, m, dum, &c_n1, &
  841. ierr);
  842. lwork_dormbr_qln_mm__ = (integer) dum[0];
  843. if (*m >= mnthr) {
  844. if (wntqn) {
  845. /* Path 1 (M >> N, JOBZ='N') */
  846. wrkbl = *n + lwork_dgeqrf_mn__;
  847. /* Computing MAX */
  848. i__1 = wrkbl, i__2 = *n * 3 + lwork_dgebrd_nn__;
  849. wrkbl = f2cmax(i__1,i__2);
  850. /* Computing MAX */
  851. i__1 = wrkbl, i__2 = bdspac + *n;
  852. maxwrk = f2cmax(i__1,i__2);
  853. minwrk = bdspac + *n;
  854. } else if (wntqo) {
  855. /* Path 2 (M >> N, JOBZ='O') */
  856. wrkbl = *n + lwork_dgeqrf_mn__;
  857. /* Computing MAX */
  858. i__1 = wrkbl, i__2 = *n + lwork_dorgqr_mn__;
  859. wrkbl = f2cmax(i__1,i__2);
  860. /* Computing MAX */
  861. i__1 = wrkbl, i__2 = *n * 3 + lwork_dgebrd_nn__;
  862. wrkbl = f2cmax(i__1,i__2);
  863. /* Computing MAX */
  864. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_nn__;
  865. wrkbl = f2cmax(i__1,i__2);
  866. /* Computing MAX */
  867. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  868. wrkbl = f2cmax(i__1,i__2);
  869. /* Computing MAX */
  870. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  871. wrkbl = f2cmax(i__1,i__2);
  872. maxwrk = wrkbl + (*n << 1) * *n;
  873. minwrk = bdspac + (*n << 1) * *n + *n * 3;
  874. } else if (wntqs) {
  875. /* Path 3 (M >> N, JOBZ='S') */
  876. wrkbl = *n + lwork_dgeqrf_mn__;
  877. /* Computing MAX */
  878. i__1 = wrkbl, i__2 = *n + lwork_dorgqr_mn__;
  879. wrkbl = f2cmax(i__1,i__2);
  880. /* Computing MAX */
  881. i__1 = wrkbl, i__2 = *n * 3 + lwork_dgebrd_nn__;
  882. wrkbl = f2cmax(i__1,i__2);
  883. /* Computing MAX */
  884. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_nn__;
  885. wrkbl = f2cmax(i__1,i__2);
  886. /* Computing MAX */
  887. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  888. wrkbl = f2cmax(i__1,i__2);
  889. /* Computing MAX */
  890. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  891. wrkbl = f2cmax(i__1,i__2);
  892. maxwrk = wrkbl + *n * *n;
  893. minwrk = bdspac + *n * *n + *n * 3;
  894. } else if (wntqa) {
  895. /* Path 4 (M >> N, JOBZ='A') */
  896. wrkbl = *n + lwork_dgeqrf_mn__;
  897. /* Computing MAX */
  898. i__1 = wrkbl, i__2 = *n + lwork_dorgqr_mm__;
  899. wrkbl = f2cmax(i__1,i__2);
  900. /* Computing MAX */
  901. i__1 = wrkbl, i__2 = *n * 3 + lwork_dgebrd_nn__;
  902. wrkbl = f2cmax(i__1,i__2);
  903. /* Computing MAX */
  904. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_nn__;
  905. wrkbl = f2cmax(i__1,i__2);
  906. /* Computing MAX */
  907. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  908. wrkbl = f2cmax(i__1,i__2);
  909. /* Computing MAX */
  910. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  911. wrkbl = f2cmax(i__1,i__2);
  912. maxwrk = wrkbl + *n * *n;
  913. /* Computing MAX */
  914. i__1 = *n * 3 + bdspac, i__2 = *n + *m;
  915. minwrk = *n * *n + f2cmax(i__1,i__2);
  916. }
  917. } else {
  918. /* Path 5 (M >= N, but not much larger) */
  919. wrkbl = *n * 3 + lwork_dgebrd_mn__;
  920. if (wntqn) {
  921. /* Path 5n (M >= N, jobz='N') */
  922. /* Computing MAX */
  923. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  924. maxwrk = f2cmax(i__1,i__2);
  925. minwrk = *n * 3 + f2cmax(*m,bdspac);
  926. } else if (wntqo) {
  927. /* Path 5o (M >= N, jobz='O') */
  928. /* Computing MAX */
  929. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  930. wrkbl = f2cmax(i__1,i__2);
  931. /* Computing MAX */
  932. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_mn__;
  933. wrkbl = f2cmax(i__1,i__2);
  934. /* Computing MAX */
  935. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  936. wrkbl = f2cmax(i__1,i__2);
  937. maxwrk = wrkbl + *m * *n;
  938. /* Computing MAX */
  939. i__1 = *m, i__2 = *n * *n + bdspac;
  940. minwrk = *n * 3 + f2cmax(i__1,i__2);
  941. } else if (wntqs) {
  942. /* Path 5s (M >= N, jobz='S') */
  943. /* Computing MAX */
  944. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_mn__;
  945. wrkbl = f2cmax(i__1,i__2);
  946. /* Computing MAX */
  947. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  948. wrkbl = f2cmax(i__1,i__2);
  949. /* Computing MAX */
  950. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  951. maxwrk = f2cmax(i__1,i__2);
  952. minwrk = *n * 3 + f2cmax(*m,bdspac);
  953. } else if (wntqa) {
  954. /* Path 5a (M >= N, jobz='A') */
  955. /* Computing MAX */
  956. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_qln_mm__;
  957. wrkbl = f2cmax(i__1,i__2);
  958. /* Computing MAX */
  959. i__1 = wrkbl, i__2 = *n * 3 + lwork_dormbr_prt_nn__;
  960. wrkbl = f2cmax(i__1,i__2);
  961. /* Computing MAX */
  962. i__1 = wrkbl, i__2 = *n * 3 + bdspac;
  963. maxwrk = f2cmax(i__1,i__2);
  964. minwrk = *n * 3 + f2cmax(*m,bdspac);
  965. }
  966. }
  967. } else if (minmn > 0) {
  968. /* Compute space needed for DBDSDC */
  969. if (wntqn) {
  970. /* dbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6) */
  971. /* keep 7*N for backwards compatibility. */
  972. bdspac = *m * 7;
  973. } else {
  974. bdspac = *m * 3 * *m + (*m << 2);
  975. }
  976. /* Compute space preferred for each routine */
  977. dgebrd_(m, n, dum, m, dum, dum, dum, dum, dum, &c_n1, &ierr);
  978. lwork_dgebrd_mn__ = (integer) dum[0];
  979. dgebrd_(m, m, &a[a_offset], m, &s[1], dum, dum, dum, dum, &c_n1, &
  980. ierr);
  981. lwork_dgebrd_mm__ = (integer) dum[0];
  982. dgelqf_(m, n, &a[a_offset], m, dum, dum, &c_n1, &ierr);
  983. lwork_dgelqf_mn__ = (integer) dum[0];
  984. dorglq_(n, n, m, dum, n, dum, dum, &c_n1, &ierr);
  985. lwork_dorglq_nn__ = (integer) dum[0];
  986. dorglq_(m, n, m, &a[a_offset], m, dum, dum, &c_n1, &ierr);
  987. lwork_dorglq_mn__ = (integer) dum[0];
  988. dorgbr_("P", m, m, m, &a[a_offset], n, dum, dum, &c_n1, &ierr);
  989. lwork_dorgbr_p_mm__ = (integer) dum[0];
  990. dormbr_("P", "R", "T", m, m, m, dum, m, dum, dum, m, dum, &c_n1, &
  991. ierr);
  992. lwork_dormbr_prt_mm__ = (integer) dum[0];
  993. dormbr_("P", "R", "T", m, n, m, dum, m, dum, dum, m, dum, &c_n1, &
  994. ierr);
  995. lwork_dormbr_prt_mn__ = (integer) dum[0];
  996. dormbr_("P", "R", "T", n, n, m, dum, n, dum, dum, n, dum, &c_n1, &
  997. ierr);
  998. lwork_dormbr_prt_nn__ = (integer) dum[0];
  999. dormbr_("Q", "L", "N", m, m, m, dum, m, dum, dum, m, dum, &c_n1, &
  1000. ierr);
  1001. lwork_dormbr_qln_mm__ = (integer) dum[0];
  1002. if (*n >= mnthr) {
  1003. if (wntqn) {
  1004. /* Path 1t (N >> M, JOBZ='N') */
  1005. wrkbl = *m + lwork_dgelqf_mn__;
  1006. /* Computing MAX */
  1007. i__1 = wrkbl, i__2 = *m * 3 + lwork_dgebrd_mm__;
  1008. wrkbl = f2cmax(i__1,i__2);
  1009. /* Computing MAX */
  1010. i__1 = wrkbl, i__2 = bdspac + *m;
  1011. maxwrk = f2cmax(i__1,i__2);
  1012. minwrk = bdspac + *m;
  1013. } else if (wntqo) {
  1014. /* Path 2t (N >> M, JOBZ='O') */
  1015. wrkbl = *m + lwork_dgelqf_mn__;
  1016. /* Computing MAX */
  1017. i__1 = wrkbl, i__2 = *m + lwork_dorglq_mn__;
  1018. wrkbl = f2cmax(i__1,i__2);
  1019. /* Computing MAX */
  1020. i__1 = wrkbl, i__2 = *m * 3 + lwork_dgebrd_mm__;
  1021. wrkbl = f2cmax(i__1,i__2);
  1022. /* Computing MAX */
  1023. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1024. wrkbl = f2cmax(i__1,i__2);
  1025. /* Computing MAX */
  1026. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_mm__;
  1027. wrkbl = f2cmax(i__1,i__2);
  1028. /* Computing MAX */
  1029. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1030. wrkbl = f2cmax(i__1,i__2);
  1031. maxwrk = wrkbl + (*m << 1) * *m;
  1032. minwrk = bdspac + (*m << 1) * *m + *m * 3;
  1033. } else if (wntqs) {
  1034. /* Path 3t (N >> M, JOBZ='S') */
  1035. wrkbl = *m + lwork_dgelqf_mn__;
  1036. /* Computing MAX */
  1037. i__1 = wrkbl, i__2 = *m + lwork_dorglq_mn__;
  1038. wrkbl = f2cmax(i__1,i__2);
  1039. /* Computing MAX */
  1040. i__1 = wrkbl, i__2 = *m * 3 + lwork_dgebrd_mm__;
  1041. wrkbl = f2cmax(i__1,i__2);
  1042. /* Computing MAX */
  1043. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1044. wrkbl = f2cmax(i__1,i__2);
  1045. /* Computing MAX */
  1046. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_mm__;
  1047. wrkbl = f2cmax(i__1,i__2);
  1048. /* Computing MAX */
  1049. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1050. wrkbl = f2cmax(i__1,i__2);
  1051. maxwrk = wrkbl + *m * *m;
  1052. minwrk = bdspac + *m * *m + *m * 3;
  1053. } else if (wntqa) {
  1054. /* Path 4t (N >> M, JOBZ='A') */
  1055. wrkbl = *m + lwork_dgelqf_mn__;
  1056. /* Computing MAX */
  1057. i__1 = wrkbl, i__2 = *m + lwork_dorglq_nn__;
  1058. wrkbl = f2cmax(i__1,i__2);
  1059. /* Computing MAX */
  1060. i__1 = wrkbl, i__2 = *m * 3 + lwork_dgebrd_mm__;
  1061. wrkbl = f2cmax(i__1,i__2);
  1062. /* Computing MAX */
  1063. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1064. wrkbl = f2cmax(i__1,i__2);
  1065. /* Computing MAX */
  1066. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_mm__;
  1067. wrkbl = f2cmax(i__1,i__2);
  1068. /* Computing MAX */
  1069. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1070. wrkbl = f2cmax(i__1,i__2);
  1071. maxwrk = wrkbl + *m * *m;
  1072. /* Computing MAX */
  1073. i__1 = *m * 3 + bdspac, i__2 = *m + *n;
  1074. minwrk = *m * *m + f2cmax(i__1,i__2);
  1075. }
  1076. } else {
  1077. /* Path 5t (N > M, but not much larger) */
  1078. wrkbl = *m * 3 + lwork_dgebrd_mn__;
  1079. if (wntqn) {
  1080. /* Path 5tn (N > M, jobz='N') */
  1081. /* Computing MAX */
  1082. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1083. maxwrk = f2cmax(i__1,i__2);
  1084. minwrk = *m * 3 + f2cmax(*n,bdspac);
  1085. } else if (wntqo) {
  1086. /* Path 5to (N > M, jobz='O') */
  1087. /* Computing MAX */
  1088. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1089. wrkbl = f2cmax(i__1,i__2);
  1090. /* Computing MAX */
  1091. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_mn__;
  1092. wrkbl = f2cmax(i__1,i__2);
  1093. /* Computing MAX */
  1094. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1095. wrkbl = f2cmax(i__1,i__2);
  1096. maxwrk = wrkbl + *m * *n;
  1097. /* Computing MAX */
  1098. i__1 = *n, i__2 = *m * *m + bdspac;
  1099. minwrk = *m * 3 + f2cmax(i__1,i__2);
  1100. } else if (wntqs) {
  1101. /* Path 5ts (N > M, jobz='S') */
  1102. /* Computing MAX */
  1103. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1104. wrkbl = f2cmax(i__1,i__2);
  1105. /* Computing MAX */
  1106. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_mn__;
  1107. wrkbl = f2cmax(i__1,i__2);
  1108. /* Computing MAX */
  1109. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1110. maxwrk = f2cmax(i__1,i__2);
  1111. minwrk = *m * 3 + f2cmax(*n,bdspac);
  1112. } else if (wntqa) {
  1113. /* Path 5ta (N > M, jobz='A') */
  1114. /* Computing MAX */
  1115. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_qln_mm__;
  1116. wrkbl = f2cmax(i__1,i__2);
  1117. /* Computing MAX */
  1118. i__1 = wrkbl, i__2 = *m * 3 + lwork_dormbr_prt_nn__;
  1119. wrkbl = f2cmax(i__1,i__2);
  1120. /* Computing MAX */
  1121. i__1 = wrkbl, i__2 = *m * 3 + bdspac;
  1122. maxwrk = f2cmax(i__1,i__2);
  1123. minwrk = *m * 3 + f2cmax(*n,bdspac);
  1124. }
  1125. }
  1126. }
  1127. maxwrk = f2cmax(maxwrk,minwrk);
  1128. work[1] = (doublereal) maxwrk;
  1129. if (*lwork < minwrk && ! lquery) {
  1130. *info = -12;
  1131. }
  1132. }
  1133. if (*info != 0) {
  1134. i__1 = -(*info);
  1135. xerbla_("DGESDD", &i__1, (ftnlen)6);
  1136. return 0;
  1137. } else if (lquery) {
  1138. return 0;
  1139. }
  1140. /* Quick return if possible */
  1141. if (*m == 0 || *n == 0) {
  1142. return 0;
  1143. }
  1144. /* Get machine constants */
  1145. eps = dlamch_("P");
  1146. smlnum = sqrt(dlamch_("S")) / eps;
  1147. bignum = 1. / smlnum;
  1148. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1149. anrm = dlange_("M", m, n, &a[a_offset], lda, dum);
  1150. if (disnan_(&anrm)) {
  1151. *info = -4;
  1152. return 0;
  1153. }
  1154. iscl = 0;
  1155. if (anrm > 0. && anrm < smlnum) {
  1156. iscl = 1;
  1157. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
  1158. ierr);
  1159. } else if (anrm > bignum) {
  1160. iscl = 1;
  1161. dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
  1162. ierr);
  1163. }
  1164. if (*m >= *n) {
  1165. /* A has at least as many rows as columns. If A has sufficiently */
  1166. /* more rows than columns, first reduce using the QR */
  1167. /* decomposition (if sufficient workspace available) */
  1168. if (*m >= mnthr) {
  1169. if (wntqn) {
  1170. /* Path 1 (M >> N, JOBZ='N') */
  1171. /* No singular vectors to be computed */
  1172. itau = 1;
  1173. nwork = itau + *n;
  1174. /* Compute A=Q*R */
  1175. /* Workspace: need N [tau] + N [work] */
  1176. /* Workspace: prefer N [tau] + N*NB [work] */
  1177. i__1 = *lwork - nwork + 1;
  1178. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1179. i__1, &ierr);
  1180. /* Zero out below R */
  1181. i__1 = *n - 1;
  1182. i__2 = *n - 1;
  1183. dlaset_("L", &i__1, &i__2, &c_b63, &c_b63, &a[a_dim1 + 2],
  1184. lda);
  1185. ie = 1;
  1186. itauq = ie + *n;
  1187. itaup = itauq + *n;
  1188. nwork = itaup + *n;
  1189. /* Bidiagonalize R in A */
  1190. /* Workspace: need 3*N [e, tauq, taup] + N [work] */
  1191. /* Workspace: prefer 3*N [e, tauq, taup] + 2*N*NB [work] */
  1192. i__1 = *lwork - nwork + 1;
  1193. dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  1194. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1195. nwork = ie + *n;
  1196. /* Perform bidiagonal SVD, computing singular values only */
  1197. /* Workspace: need N [e] + BDSPAC */
  1198. dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1199. dum, idum, &work[nwork], &iwork[1], info);
  1200. } else if (wntqo) {
  1201. /* Path 2 (M >> N, JOBZ = 'O') */
  1202. /* N left singular vectors to be overwritten on A and */
  1203. /* N right singular vectors to be computed in VT */
  1204. ir = 1;
  1205. /* WORK(IR) is LDWRKR by N */
  1206. if (*lwork >= *lda * *n + *n * *n + *n * 3 + bdspac) {
  1207. ldwrkr = *lda;
  1208. } else {
  1209. ldwrkr = (*lwork - *n * *n - *n * 3 - bdspac) / *n;
  1210. }
  1211. itau = ir + ldwrkr * *n;
  1212. nwork = itau + *n;
  1213. /* Compute A=Q*R */
  1214. /* Workspace: need N*N [R] + N [tau] + N [work] */
  1215. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1216. i__1 = *lwork - nwork + 1;
  1217. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1218. i__1, &ierr);
  1219. /* Copy R to WORK(IR), zeroing out below it */
  1220. dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  1221. i__1 = *n - 1;
  1222. i__2 = *n - 1;
  1223. dlaset_("L", &i__1, &i__2, &c_b63, &c_b63, &work[ir + 1], &
  1224. ldwrkr);
  1225. /* Generate Q in A */
  1226. /* Workspace: need N*N [R] + N [tau] + N [work] */
  1227. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1228. i__1 = *lwork - nwork + 1;
  1229. dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
  1230. &i__1, &ierr);
  1231. ie = itau;
  1232. itauq = ie + *n;
  1233. itaup = itauq + *n;
  1234. nwork = itaup + *n;
  1235. /* Bidiagonalize R in WORK(IR) */
  1236. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N [work] */
  1237. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + 2*N*NB [work] */
  1238. i__1 = *lwork - nwork + 1;
  1239. dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
  1240. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1241. /* WORK(IU) is N by N */
  1242. iu = nwork;
  1243. nwork = iu + *n * *n;
  1244. /* Perform bidiagonal SVD, computing left singular vectors */
  1245. /* of bidiagonal matrix in WORK(IU) and computing right */
  1246. /* singular vectors of bidiagonal matrix in VT */
  1247. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N*N [U] + BDSPAC */
  1248. dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
  1249. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1250. info);
  1251. /* Overwrite WORK(IU) by left singular vectors of R */
  1252. /* and VT by right singular vectors of R */
  1253. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N*N [U] + N [work] */
  1254. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
  1255. i__1 = *lwork - nwork + 1;
  1256. dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
  1257. itauq], &work[iu], n, &work[nwork], &i__1, &ierr);
  1258. i__1 = *lwork - nwork + 1;
  1259. dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
  1260. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1261. ierr);
  1262. /* Multiply Q in A by left singular vectors of R in */
  1263. /* WORK(IU), storing result in WORK(IR) and copying to A */
  1264. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N*N [U] */
  1265. /* Workspace: prefer M*N [R] + 3*N [e, tauq, taup] + N*N [U] */
  1266. i__1 = *m;
  1267. i__2 = ldwrkr;
  1268. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1269. i__2) {
  1270. /* Computing MIN */
  1271. i__3 = *m - i__ + 1;
  1272. chunk = f2cmin(i__3,ldwrkr);
  1273. dgemm_("N", "N", &chunk, n, n, &c_b84, &a[i__ + a_dim1],
  1274. lda, &work[iu], n, &c_b63, &work[ir], &ldwrkr);
  1275. dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
  1276. a_dim1], lda);
  1277. /* L10: */
  1278. }
  1279. } else if (wntqs) {
  1280. /* Path 3 (M >> N, JOBZ='S') */
  1281. /* N left singular vectors to be computed in U and */
  1282. /* N right singular vectors to be computed in VT */
  1283. ir = 1;
  1284. /* WORK(IR) is N by N */
  1285. ldwrkr = *n;
  1286. itau = ir + ldwrkr * *n;
  1287. nwork = itau + *n;
  1288. /* Compute A=Q*R */
  1289. /* Workspace: need N*N [R] + N [tau] + N [work] */
  1290. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1291. i__2 = *lwork - nwork + 1;
  1292. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1293. i__2, &ierr);
  1294. /* Copy R to WORK(IR), zeroing out below it */
  1295. dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  1296. i__2 = *n - 1;
  1297. i__1 = *n - 1;
  1298. dlaset_("L", &i__2, &i__1, &c_b63, &c_b63, &work[ir + 1], &
  1299. ldwrkr);
  1300. /* Generate Q in A */
  1301. /* Workspace: need N*N [R] + N [tau] + N [work] */
  1302. /* Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1303. i__2 = *lwork - nwork + 1;
  1304. dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
  1305. &i__2, &ierr);
  1306. ie = itau;
  1307. itauq = ie + *n;
  1308. itaup = itauq + *n;
  1309. nwork = itaup + *n;
  1310. /* Bidiagonalize R in WORK(IR) */
  1311. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N [work] */
  1312. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + 2*N*NB [work] */
  1313. i__2 = *lwork - nwork + 1;
  1314. dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
  1315. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1316. /* Perform bidiagonal SVD, computing left singular vectors */
  1317. /* of bidiagoal matrix in U and computing right singular */
  1318. /* vectors of bidiagonal matrix in VT */
  1319. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + BDSPAC */
  1320. dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1321. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1322. info);
  1323. /* Overwrite U by left singular vectors of R and VT */
  1324. /* by right singular vectors of R */
  1325. /* Workspace: need N*N [R] + 3*N [e, tauq, taup] + N [work] */
  1326. /* Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + N*NB [work] */
  1327. i__2 = *lwork - nwork + 1;
  1328. dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
  1329. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1330. i__2 = *lwork - nwork + 1;
  1331. dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
  1332. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1333. ierr);
  1334. /* Multiply Q in A by left singular vectors of R in */
  1335. /* WORK(IR), storing result in U */
  1336. /* Workspace: need N*N [R] */
  1337. dlacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr);
  1338. dgemm_("N", "N", m, n, n, &c_b84, &a[a_offset], lda, &work[ir]
  1339. , &ldwrkr, &c_b63, &u[u_offset], ldu);
  1340. } else if (wntqa) {
  1341. /* Path 4 (M >> N, JOBZ='A') */
  1342. /* M left singular vectors to be computed in U and */
  1343. /* N right singular vectors to be computed in VT */
  1344. iu = 1;
  1345. /* WORK(IU) is N by N */
  1346. ldwrku = *n;
  1347. itau = iu + ldwrku * *n;
  1348. nwork = itau + *n;
  1349. /* Compute A=Q*R, copying result to U */
  1350. /* Workspace: need N*N [U] + N [tau] + N [work] */
  1351. /* Workspace: prefer N*N [U] + N [tau] + N*NB [work] */
  1352. i__2 = *lwork - nwork + 1;
  1353. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1354. i__2, &ierr);
  1355. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1356. /* Generate Q in U */
  1357. /* Workspace: need N*N [U] + N [tau] + M [work] */
  1358. /* Workspace: prefer N*N [U] + N [tau] + M*NB [work] */
  1359. i__2 = *lwork - nwork + 1;
  1360. dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork],
  1361. &i__2, &ierr);
  1362. /* Produce R in A, zeroing out other entries */
  1363. i__2 = *n - 1;
  1364. i__1 = *n - 1;
  1365. dlaset_("L", &i__2, &i__1, &c_b63, &c_b63, &a[a_dim1 + 2],
  1366. lda);
  1367. ie = itau;
  1368. itauq = ie + *n;
  1369. itaup = itauq + *n;
  1370. nwork = itaup + *n;
  1371. /* Bidiagonalize R in A */
  1372. /* Workspace: need N*N [U] + 3*N [e, tauq, taup] + N [work] */
  1373. /* Workspace: prefer N*N [U] + 3*N [e, tauq, taup] + 2*N*NB [work] */
  1374. i__2 = *lwork - nwork + 1;
  1375. dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  1376. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1377. /* Perform bidiagonal SVD, computing left singular vectors */
  1378. /* of bidiagonal matrix in WORK(IU) and computing right */
  1379. /* singular vectors of bidiagonal matrix in VT */
  1380. /* Workspace: need N*N [U] + 3*N [e, tauq, taup] + BDSPAC */
  1381. dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
  1382. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1383. info);
  1384. /* Overwrite WORK(IU) by left singular vectors of R and VT */
  1385. /* by right singular vectors of R */
  1386. /* Workspace: need N*N [U] + 3*N [e, tauq, taup] + N [work] */
  1387. /* Workspace: prefer N*N [U] + 3*N [e, tauq, taup] + N*NB [work] */
  1388. i__2 = *lwork - nwork + 1;
  1389. dormbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[
  1390. itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
  1391. ierr);
  1392. i__2 = *lwork - nwork + 1;
  1393. dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  1394. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1395. ierr);
  1396. /* Multiply Q in U by left singular vectors of R in */
  1397. /* WORK(IU), storing result in A */
  1398. /* Workspace: need N*N [U] */
  1399. dgemm_("N", "N", m, n, n, &c_b84, &u[u_offset], ldu, &work[iu]
  1400. , &ldwrku, &c_b63, &a[a_offset], lda);
  1401. /* Copy left singular vectors of A from A to U */
  1402. dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1403. }
  1404. } else {
  1405. /* M .LT. MNTHR */
  1406. /* Path 5 (M >= N, but not much larger) */
  1407. /* Reduce to bidiagonal form without QR decomposition */
  1408. ie = 1;
  1409. itauq = ie + *n;
  1410. itaup = itauq + *n;
  1411. nwork = itaup + *n;
  1412. /* Bidiagonalize A */
  1413. /* Workspace: need 3*N [e, tauq, taup] + M [work] */
  1414. /* Workspace: prefer 3*N [e, tauq, taup] + (M+N)*NB [work] */
  1415. i__2 = *lwork - nwork + 1;
  1416. dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  1417. work[itaup], &work[nwork], &i__2, &ierr);
  1418. if (wntqn) {
  1419. /* Path 5n (M >= N, JOBZ='N') */
  1420. /* Perform bidiagonal SVD, only computing singular values */
  1421. /* Workspace: need 3*N [e, tauq, taup] + BDSPAC */
  1422. dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1423. dum, idum, &work[nwork], &iwork[1], info);
  1424. } else if (wntqo) {
  1425. /* Path 5o (M >= N, JOBZ='O') */
  1426. iu = nwork;
  1427. if (*lwork >= *m * *n + *n * 3 + bdspac) {
  1428. /* WORK( IU ) is M by N */
  1429. ldwrku = *m;
  1430. nwork = iu + ldwrku * *n;
  1431. dlaset_("F", m, n, &c_b63, &c_b63, &work[iu], &ldwrku);
  1432. /* IR is unused; silence compile warnings */
  1433. ir = -1;
  1434. } else {
  1435. /* WORK( IU ) is N by N */
  1436. ldwrku = *n;
  1437. nwork = iu + ldwrku * *n;
  1438. /* WORK(IR) is LDWRKR by N */
  1439. ir = nwork;
  1440. ldwrkr = (*lwork - *n * *n - *n * 3) / *n;
  1441. }
  1442. nwork = iu + ldwrku * *n;
  1443. /* Perform bidiagonal SVD, computing left singular vectors */
  1444. /* of bidiagonal matrix in WORK(IU) and computing right */
  1445. /* singular vectors of bidiagonal matrix in VT */
  1446. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + BDSPAC */
  1447. dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], &ldwrku, &
  1448. vt[vt_offset], ldvt, dum, idum, &work[nwork], &iwork[
  1449. 1], info);
  1450. /* Overwrite VT by right singular vectors of A */
  1451. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + N [work] */
  1452. /* Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
  1453. i__2 = *lwork - nwork + 1;
  1454. dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  1455. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1456. ierr);
  1457. if (*lwork >= *m * *n + *n * 3 + bdspac) {
  1458. /* Path 5o-fast */
  1459. /* Overwrite WORK(IU) by left singular vectors of A */
  1460. /* Workspace: need 3*N [e, tauq, taup] + M*N [U] + N [work] */
  1461. /* Workspace: prefer 3*N [e, tauq, taup] + M*N [U] + N*NB [work] */
  1462. i__2 = *lwork - nwork + 1;
  1463. dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
  1464. itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
  1465. ierr);
  1466. /* Copy left singular vectors of A from WORK(IU) to A */
  1467. dlacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda);
  1468. } else {
  1469. /* Path 5o-slow */
  1470. /* Generate Q in A */
  1471. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + N [work] */
  1472. /* Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
  1473. i__2 = *lwork - nwork + 1;
  1474. dorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
  1475. work[nwork], &i__2, &ierr);
  1476. /* Multiply Q in A by left singular vectors of */
  1477. /* bidiagonal matrix in WORK(IU), storing result in */
  1478. /* WORK(IR) and copying to A */
  1479. /* Workspace: need 3*N [e, tauq, taup] + N*N [U] + NB*N [R] */
  1480. /* Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + M*N [R] */
  1481. i__2 = *m;
  1482. i__1 = ldwrkr;
  1483. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1484. i__1) {
  1485. /* Computing MIN */
  1486. i__3 = *m - i__ + 1;
  1487. chunk = f2cmin(i__3,ldwrkr);
  1488. dgemm_("N", "N", &chunk, n, n, &c_b84, &a[i__ +
  1489. a_dim1], lda, &work[iu], &ldwrku, &c_b63, &
  1490. work[ir], &ldwrkr);
  1491. dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
  1492. a_dim1], lda);
  1493. /* L20: */
  1494. }
  1495. }
  1496. } else if (wntqs) {
  1497. /* Path 5s (M >= N, JOBZ='S') */
  1498. /* Perform bidiagonal SVD, computing left singular vectors */
  1499. /* of bidiagonal matrix in U and computing right singular */
  1500. /* vectors of bidiagonal matrix in VT */
  1501. /* Workspace: need 3*N [e, tauq, taup] + BDSPAC */
  1502. dlaset_("F", m, n, &c_b63, &c_b63, &u[u_offset], ldu);
  1503. dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1504. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1505. info);
  1506. /* Overwrite U by left singular vectors of A and VT */
  1507. /* by right singular vectors of A */
  1508. /* Workspace: need 3*N [e, tauq, taup] + N [work] */
  1509. /* Workspace: prefer 3*N [e, tauq, taup] + N*NB [work] */
  1510. i__1 = *lwork - nwork + 1;
  1511. dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
  1512. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1513. i__1 = *lwork - nwork + 1;
  1514. dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  1515. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1516. ierr);
  1517. } else if (wntqa) {
  1518. /* Path 5a (M >= N, JOBZ='A') */
  1519. /* Perform bidiagonal SVD, computing left singular vectors */
  1520. /* of bidiagonal matrix in U and computing right singular */
  1521. /* vectors of bidiagonal matrix in VT */
  1522. /* Workspace: need 3*N [e, tauq, taup] + BDSPAC */
  1523. dlaset_("F", m, m, &c_b63, &c_b63, &u[u_offset], ldu);
  1524. dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1525. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1526. info);
  1527. /* Set the right corner of U to identity matrix */
  1528. if (*m > *n) {
  1529. i__1 = *m - *n;
  1530. i__2 = *m - *n;
  1531. dlaset_("F", &i__1, &i__2, &c_b63, &c_b84, &u[*n + 1 + (*
  1532. n + 1) * u_dim1], ldu);
  1533. }
  1534. /* Overwrite U by left singular vectors of A and VT */
  1535. /* by right singular vectors of A */
  1536. /* Workspace: need 3*N [e, tauq, taup] + M [work] */
  1537. /* Workspace: prefer 3*N [e, tauq, taup] + M*NB [work] */
  1538. i__1 = *lwork - nwork + 1;
  1539. dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1540. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1541. i__1 = *lwork - nwork + 1;
  1542. dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
  1543. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1544. ierr);
  1545. }
  1546. }
  1547. } else {
  1548. /* A has more columns than rows. If A has sufficiently more */
  1549. /* columns than rows, first reduce using the LQ decomposition (if */
  1550. /* sufficient workspace available) */
  1551. if (*n >= mnthr) {
  1552. if (wntqn) {
  1553. /* Path 1t (N >> M, JOBZ='N') */
  1554. /* No singular vectors to be computed */
  1555. itau = 1;
  1556. nwork = itau + *m;
  1557. /* Compute A=L*Q */
  1558. /* Workspace: need M [tau] + M [work] */
  1559. /* Workspace: prefer M [tau] + M*NB [work] */
  1560. i__1 = *lwork - nwork + 1;
  1561. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1562. i__1, &ierr);
  1563. /* Zero out above L */
  1564. i__1 = *m - 1;
  1565. i__2 = *m - 1;
  1566. dlaset_("U", &i__1, &i__2, &c_b63, &c_b63, &a[(a_dim1 << 1) +
  1567. 1], lda);
  1568. ie = 1;
  1569. itauq = ie + *m;
  1570. itaup = itauq + *m;
  1571. nwork = itaup + *m;
  1572. /* Bidiagonalize L in A */
  1573. /* Workspace: need 3*M [e, tauq, taup] + M [work] */
  1574. /* Workspace: prefer 3*M [e, tauq, taup] + 2*M*NB [work] */
  1575. i__1 = *lwork - nwork + 1;
  1576. dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
  1577. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1578. nwork = ie + *m;
  1579. /* Perform bidiagonal SVD, computing singular values only */
  1580. /* Workspace: need M [e] + BDSPAC */
  1581. dbdsdc_("U", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1582. dum, idum, &work[nwork], &iwork[1], info);
  1583. } else if (wntqo) {
  1584. /* Path 2t (N >> M, JOBZ='O') */
  1585. /* M right singular vectors to be overwritten on A and */
  1586. /* M left singular vectors to be computed in U */
  1587. ivt = 1;
  1588. /* WORK(IVT) is M by M */
  1589. /* WORK(IL) is M by M; it is later resized to M by chunk for gemm */
  1590. il = ivt + *m * *m;
  1591. if (*lwork >= *m * *n + *m * *m + *m * 3 + bdspac) {
  1592. ldwrkl = *m;
  1593. chunk = *n;
  1594. } else {
  1595. ldwrkl = *m;
  1596. chunk = (*lwork - *m * *m) / *m;
  1597. }
  1598. itau = il + ldwrkl * *m;
  1599. nwork = itau + *m;
  1600. /* Compute A=L*Q */
  1601. /* Workspace: need M*M [VT] + M*M [L] + M [tau] + M [work] */
  1602. /* Workspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work] */
  1603. i__1 = *lwork - nwork + 1;
  1604. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1605. i__1, &ierr);
  1606. /* Copy L to WORK(IL), zeroing about above it */
  1607. dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
  1608. i__1 = *m - 1;
  1609. i__2 = *m - 1;
  1610. dlaset_("U", &i__1, &i__2, &c_b63, &c_b63, &work[il + ldwrkl],
  1611. &ldwrkl);
  1612. /* Generate Q in A */
  1613. /* Workspace: need M*M [VT] + M*M [L] + M [tau] + M [work] */
  1614. /* Workspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work] */
  1615. i__1 = *lwork - nwork + 1;
  1616. dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
  1617. &i__1, &ierr);
  1618. ie = itau;
  1619. itauq = ie + *m;
  1620. itaup = itauq + *m;
  1621. nwork = itaup + *m;
  1622. /* Bidiagonalize L in WORK(IL) */
  1623. /* Workspace: need M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1624. /* Workspace: prefer M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + 2*M*NB [work] */
  1625. i__1 = *lwork - nwork + 1;
  1626. dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
  1627. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1628. /* Perform bidiagonal SVD, computing left singular vectors */
  1629. /* of bidiagonal matrix in U, and computing right singular */
  1630. /* vectors of bidiagonal matrix in WORK(IVT) */
  1631. /* Workspace: need M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + BDSPAC */
  1632. dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1633. work[ivt], m, dum, idum, &work[nwork], &iwork[1],
  1634. info);
  1635. /* Overwrite U by left singular vectors of L and WORK(IVT) */
  1636. /* by right singular vectors of L */
  1637. /* Workspace: need M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1638. /* Workspace: prefer M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M*NB [work] */
  1639. i__1 = *lwork - nwork + 1;
  1640. dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
  1641. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1642. i__1 = *lwork - nwork + 1;
  1643. dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
  1644. itaup], &work[ivt], m, &work[nwork], &i__1, &ierr);
  1645. /* Multiply right singular vectors of L in WORK(IVT) by Q */
  1646. /* in A, storing result in WORK(IL) and copying to A */
  1647. /* Workspace: need M*M [VT] + M*M [L] */
  1648. /* Workspace: prefer M*M [VT] + M*N [L] */
  1649. /* At this point, L is resized as M by chunk. */
  1650. i__1 = *n;
  1651. i__2 = chunk;
  1652. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1653. i__2) {
  1654. /* Computing MIN */
  1655. i__3 = *n - i__ + 1;
  1656. blk = f2cmin(i__3,chunk);
  1657. dgemm_("N", "N", m, &blk, m, &c_b84, &work[ivt], m, &a[
  1658. i__ * a_dim1 + 1], lda, &c_b63, &work[il], &
  1659. ldwrkl);
  1660. dlacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1
  1661. + 1], lda);
  1662. /* L30: */
  1663. }
  1664. } else if (wntqs) {
  1665. /* Path 3t (N >> M, JOBZ='S') */
  1666. /* M right singular vectors to be computed in VT and */
  1667. /* M left singular vectors to be computed in U */
  1668. il = 1;
  1669. /* WORK(IL) is M by M */
  1670. ldwrkl = *m;
  1671. itau = il + ldwrkl * *m;
  1672. nwork = itau + *m;
  1673. /* Compute A=L*Q */
  1674. /* Workspace: need M*M [L] + M [tau] + M [work] */
  1675. /* Workspace: prefer M*M [L] + M [tau] + M*NB [work] */
  1676. i__2 = *lwork - nwork + 1;
  1677. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1678. i__2, &ierr);
  1679. /* Copy L to WORK(IL), zeroing out above it */
  1680. dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
  1681. i__2 = *m - 1;
  1682. i__1 = *m - 1;
  1683. dlaset_("U", &i__2, &i__1, &c_b63, &c_b63, &work[il + ldwrkl],
  1684. &ldwrkl);
  1685. /* Generate Q in A */
  1686. /* Workspace: need M*M [L] + M [tau] + M [work] */
  1687. /* Workspace: prefer M*M [L] + M [tau] + M*NB [work] */
  1688. i__2 = *lwork - nwork + 1;
  1689. dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
  1690. &i__2, &ierr);
  1691. ie = itau;
  1692. itauq = ie + *m;
  1693. itaup = itauq + *m;
  1694. nwork = itaup + *m;
  1695. /* Bidiagonalize L in WORK(IU). */
  1696. /* Workspace: need M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1697. /* Workspace: prefer M*M [L] + 3*M [e, tauq, taup] + 2*M*NB [work] */
  1698. i__2 = *lwork - nwork + 1;
  1699. dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
  1700. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1701. /* Perform bidiagonal SVD, computing left singular vectors */
  1702. /* of bidiagonal matrix in U and computing right singular */
  1703. /* vectors of bidiagonal matrix in VT */
  1704. /* Workspace: need M*M [L] + 3*M [e, tauq, taup] + BDSPAC */
  1705. dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1706. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1707. info);
  1708. /* Overwrite U by left singular vectors of L and VT */
  1709. /* by right singular vectors of L */
  1710. /* Workspace: need M*M [L] + 3*M [e, tauq, taup] + M [work] */
  1711. /* Workspace: prefer M*M [L] + 3*M [e, tauq, taup] + M*NB [work] */
  1712. i__2 = *lwork - nwork + 1;
  1713. dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
  1714. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1715. i__2 = *lwork - nwork + 1;
  1716. dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
  1717. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1718. ierr);
  1719. /* Multiply right singular vectors of L in WORK(IL) by */
  1720. /* Q in A, storing result in VT */
  1721. /* Workspace: need M*M [L] */
  1722. dlacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl);
  1723. dgemm_("N", "N", m, n, m, &c_b84, &work[il], &ldwrkl, &a[
  1724. a_offset], lda, &c_b63, &vt[vt_offset], ldvt);
  1725. } else if (wntqa) {
  1726. /* Path 4t (N >> M, JOBZ='A') */
  1727. /* N right singular vectors to be computed in VT and */
  1728. /* M left singular vectors to be computed in U */
  1729. ivt = 1;
  1730. /* WORK(IVT) is M by M */
  1731. ldwkvt = *m;
  1732. itau = ivt + ldwkvt * *m;
  1733. nwork = itau + *m;
  1734. /* Compute A=L*Q, copying result to VT */
  1735. /* Workspace: need M*M [VT] + M [tau] + M [work] */
  1736. /* Workspace: prefer M*M [VT] + M [tau] + M*NB [work] */
  1737. i__2 = *lwork - nwork + 1;
  1738. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1739. i__2, &ierr);
  1740. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1741. /* Generate Q in VT */
  1742. /* Workspace: need M*M [VT] + M [tau] + N [work] */
  1743. /* Workspace: prefer M*M [VT] + M [tau] + N*NB [work] */
  1744. i__2 = *lwork - nwork + 1;
  1745. dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[
  1746. nwork], &i__2, &ierr);
  1747. /* Produce L in A, zeroing out other entries */
  1748. i__2 = *m - 1;
  1749. i__1 = *m - 1;
  1750. dlaset_("U", &i__2, &i__1, &c_b63, &c_b63, &a[(a_dim1 << 1) +
  1751. 1], lda);
  1752. ie = itau;
  1753. itauq = ie + *m;
  1754. itaup = itauq + *m;
  1755. nwork = itaup + *m;
  1756. /* Bidiagonalize L in A */
  1757. /* Workspace: need M*M [VT] + 3*M [e, tauq, taup] + M [work] */
  1758. /* Workspace: prefer M*M [VT] + 3*M [e, tauq, taup] + 2*M*NB [work] */
  1759. i__2 = *lwork - nwork + 1;
  1760. dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
  1761. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1762. /* Perform bidiagonal SVD, computing left singular vectors */
  1763. /* of bidiagonal matrix in U and computing right singular */
  1764. /* vectors of bidiagonal matrix in WORK(IVT) */
  1765. /* Workspace: need M*M [VT] + 3*M [e, tauq, taup] + BDSPAC */
  1766. dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1767. work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
  1768. , info);
  1769. /* Overwrite U by left singular vectors of L and WORK(IVT) */
  1770. /* by right singular vectors of L */
  1771. /* Workspace: need M*M [VT] + 3*M [e, tauq, taup]+ M [work] */
  1772. /* Workspace: prefer M*M [VT] + 3*M [e, tauq, taup]+ M*NB [work] */
  1773. i__2 = *lwork - nwork + 1;
  1774. dormbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[
  1775. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1776. i__2 = *lwork - nwork + 1;
  1777. dormbr_("P", "R", "T", m, m, m, &a[a_offset], lda, &work[
  1778. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, &
  1779. ierr);
  1780. /* Multiply right singular vectors of L in WORK(IVT) by */
  1781. /* Q in VT, storing result in A */
  1782. /* Workspace: need M*M [VT] */
  1783. dgemm_("N", "N", m, n, m, &c_b84, &work[ivt], &ldwkvt, &vt[
  1784. vt_offset], ldvt, &c_b63, &a[a_offset], lda);
  1785. /* Copy right singular vectors of A from A to VT */
  1786. dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1787. }
  1788. } else {
  1789. /* N .LT. MNTHR */
  1790. /* Path 5t (N > M, but not much larger) */
  1791. /* Reduce to bidiagonal form without LQ decomposition */
  1792. ie = 1;
  1793. itauq = ie + *m;
  1794. itaup = itauq + *m;
  1795. nwork = itaup + *m;
  1796. /* Bidiagonalize A */
  1797. /* Workspace: need 3*M [e, tauq, taup] + N [work] */
  1798. /* Workspace: prefer 3*M [e, tauq, taup] + (M+N)*NB [work] */
  1799. i__2 = *lwork - nwork + 1;
  1800. dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  1801. work[itaup], &work[nwork], &i__2, &ierr);
  1802. if (wntqn) {
  1803. /* Path 5tn (N > M, JOBZ='N') */
  1804. /* Perform bidiagonal SVD, only computing singular values */
  1805. /* Workspace: need 3*M [e, tauq, taup] + BDSPAC */
  1806. dbdsdc_("L", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1807. dum, idum, &work[nwork], &iwork[1], info);
  1808. } else if (wntqo) {
  1809. /* Path 5to (N > M, JOBZ='O') */
  1810. ldwkvt = *m;
  1811. ivt = nwork;
  1812. if (*lwork >= *m * *n + *m * 3 + bdspac) {
  1813. /* WORK( IVT ) is M by N */
  1814. dlaset_("F", m, n, &c_b63, &c_b63, &work[ivt], &ldwkvt);
  1815. nwork = ivt + ldwkvt * *n;
  1816. /* IL is unused; silence compile warnings */
  1817. il = -1;
  1818. } else {
  1819. /* WORK( IVT ) is M by M */
  1820. nwork = ivt + ldwkvt * *m;
  1821. il = nwork;
  1822. /* WORK(IL) is M by CHUNK */
  1823. chunk = (*lwork - *m * *m - *m * 3) / *m;
  1824. }
  1825. /* Perform bidiagonal SVD, computing left singular vectors */
  1826. /* of bidiagonal matrix in U and computing right singular */
  1827. /* vectors of bidiagonal matrix in WORK(IVT) */
  1828. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + BDSPAC */
  1829. dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1830. work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
  1831. , info);
  1832. /* Overwrite U by left singular vectors of A */
  1833. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + M [work] */
  1834. /* Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*NB [work] */
  1835. i__2 = *lwork - nwork + 1;
  1836. dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1837. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1838. if (*lwork >= *m * *n + *m * 3 + bdspac) {
  1839. /* Path 5to-fast */
  1840. /* Overwrite WORK(IVT) by left singular vectors of A */
  1841. /* Workspace: need 3*M [e, tauq, taup] + M*N [VT] + M [work] */
  1842. /* Workspace: prefer 3*M [e, tauq, taup] + M*N [VT] + M*NB [work] */
  1843. i__2 = *lwork - nwork + 1;
  1844. dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
  1845. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2,
  1846. &ierr);
  1847. /* Copy right singular vectors of A from WORK(IVT) to A */
  1848. dlacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda);
  1849. } else {
  1850. /* Path 5to-slow */
  1851. /* Generate P**T in A */
  1852. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + M [work] */
  1853. /* Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*NB [work] */
  1854. i__2 = *lwork - nwork + 1;
  1855. dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
  1856. work[nwork], &i__2, &ierr);
  1857. /* Multiply Q in A by right singular vectors of */
  1858. /* bidiagonal matrix in WORK(IVT), storing result in */
  1859. /* WORK(IL) and copying to A */
  1860. /* Workspace: need 3*M [e, tauq, taup] + M*M [VT] + M*NB [L] */
  1861. /* Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*N [L] */
  1862. i__2 = *n;
  1863. i__1 = chunk;
  1864. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1865. i__1) {
  1866. /* Computing MIN */
  1867. i__3 = *n - i__ + 1;
  1868. blk = f2cmin(i__3,chunk);
  1869. dgemm_("N", "N", m, &blk, m, &c_b84, &work[ivt], &
  1870. ldwkvt, &a[i__ * a_dim1 + 1], lda, &c_b63, &
  1871. work[il], m);
  1872. dlacpy_("F", m, &blk, &work[il], m, &a[i__ * a_dim1 +
  1873. 1], lda);
  1874. /* L40: */
  1875. }
  1876. }
  1877. } else if (wntqs) {
  1878. /* Path 5ts (N > M, JOBZ='S') */
  1879. /* Perform bidiagonal SVD, computing left singular vectors */
  1880. /* of bidiagonal matrix in U and computing right singular */
  1881. /* vectors of bidiagonal matrix in VT */
  1882. /* Workspace: need 3*M [e, tauq, taup] + BDSPAC */
  1883. dlaset_("F", m, n, &c_b63, &c_b63, &vt[vt_offset], ldvt);
  1884. dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1885. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1886. info);
  1887. /* Overwrite U by left singular vectors of A and VT */
  1888. /* by right singular vectors of A */
  1889. /* Workspace: need 3*M [e, tauq, taup] + M [work] */
  1890. /* Workspace: prefer 3*M [e, tauq, taup] + M*NB [work] */
  1891. i__1 = *lwork - nwork + 1;
  1892. dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1893. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1894. i__1 = *lwork - nwork + 1;
  1895. dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
  1896. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1897. ierr);
  1898. } else if (wntqa) {
  1899. /* Path 5ta (N > M, JOBZ='A') */
  1900. /* Perform bidiagonal SVD, computing left singular vectors */
  1901. /* of bidiagonal matrix in U and computing right singular */
  1902. /* vectors of bidiagonal matrix in VT */
  1903. /* Workspace: need 3*M [e, tauq, taup] + BDSPAC */
  1904. dlaset_("F", n, n, &c_b63, &c_b63, &vt[vt_offset], ldvt);
  1905. dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1906. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1907. info);
  1908. /* Set the right corner of VT to identity matrix */
  1909. if (*n > *m) {
  1910. i__1 = *n - *m;
  1911. i__2 = *n - *m;
  1912. dlaset_("F", &i__1, &i__2, &c_b63, &c_b84, &vt[*m + 1 + (*
  1913. m + 1) * vt_dim1], ldvt);
  1914. }
  1915. /* Overwrite U by left singular vectors of A and VT */
  1916. /* by right singular vectors of A */
  1917. /* Workspace: need 3*M [e, tauq, taup] + N [work] */
  1918. /* Workspace: prefer 3*M [e, tauq, taup] + N*NB [work] */
  1919. i__1 = *lwork - nwork + 1;
  1920. dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1921. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1922. i__1 = *lwork - nwork + 1;
  1923. dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
  1924. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1925. ierr);
  1926. }
  1927. }
  1928. }
  1929. /* Undo scaling if necessary */
  1930. if (iscl == 1) {
  1931. if (anrm > bignum) {
  1932. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1933. minmn, &ierr);
  1934. }
  1935. if (anrm < smlnum) {
  1936. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1937. minmn, &ierr);
  1938. }
  1939. }
  1940. /* Return optimal workspace in WORK(1) */
  1941. work[1] = (doublereal) maxwrk;
  1942. return 0;
  1943. /* End of DGESDD */
  1944. } /* dgesdd_ */