You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cstedc.c 32 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__9 = 9;
  487. static integer c__0 = 0;
  488. static integer c__2 = 2;
  489. static real c_b17 = 0.f;
  490. static real c_b18 = 1.f;
  491. static integer c__1 = 1;
  492. /* > \brief \b CSTEDC */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download CSTEDC + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstedc.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstedc.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstedc.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE CSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, */
  511. /* LRWORK, IWORK, LIWORK, INFO ) */
  512. /* CHARACTER COMPZ */
  513. /* INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N */
  514. /* INTEGER IWORK( * ) */
  515. /* REAL D( * ), E( * ), RWORK( * ) */
  516. /* COMPLEX WORK( * ), Z( LDZ, * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
  523. /* > symmetric tridiagonal matrix using the divide and conquer method. */
  524. /* > The eigenvectors of a full or band complex Hermitian matrix can also */
  525. /* > be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this */
  526. /* > matrix to tridiagonal form. */
  527. /* > */
  528. /* > This code makes very mild assumptions about floating point */
  529. /* > arithmetic. It will work on machines with a guard digit in */
  530. /* > add/subtract, or on those binary machines without guard digits */
  531. /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
  532. /* > It could conceivably fail on hexadecimal or decimal machines */
  533. /* > without guard digits, but we know of none. See SLAED3 for details. */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] COMPZ */
  538. /* > \verbatim */
  539. /* > COMPZ is CHARACTER*1 */
  540. /* > = 'N': Compute eigenvalues only. */
  541. /* > = 'I': Compute eigenvectors of tridiagonal matrix also. */
  542. /* > = 'V': Compute eigenvectors of original Hermitian matrix */
  543. /* > also. On entry, Z contains the unitary matrix used */
  544. /* > to reduce the original matrix to tridiagonal form. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] N */
  548. /* > \verbatim */
  549. /* > N is INTEGER */
  550. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in,out] D */
  554. /* > \verbatim */
  555. /* > D is REAL array, dimension (N) */
  556. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  557. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] E */
  561. /* > \verbatim */
  562. /* > E is REAL array, dimension (N-1) */
  563. /* > On entry, the subdiagonal elements of the tridiagonal matrix. */
  564. /* > On exit, E has been destroyed. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] Z */
  568. /* > \verbatim */
  569. /* > Z is COMPLEX array, dimension (LDZ,N) */
  570. /* > On entry, if COMPZ = 'V', then Z contains the unitary */
  571. /* > matrix used in the reduction to tridiagonal form. */
  572. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  573. /* > orthonormal eigenvectors of the original Hermitian matrix, */
  574. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  575. /* > of the symmetric tridiagonal matrix. */
  576. /* > If COMPZ = 'N', then Z is not referenced. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] LDZ */
  580. /* > \verbatim */
  581. /* > LDZ is INTEGER */
  582. /* > The leading dimension of the array Z. LDZ >= 1. */
  583. /* > If eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] WORK */
  587. /* > \verbatim */
  588. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  589. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LWORK */
  593. /* > \verbatim */
  594. /* > LWORK is INTEGER */
  595. /* > The dimension of the array WORK. */
  596. /* > If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1. */
  597. /* > If COMPZ = 'V' and N > 1, LWORK must be at least N*N. */
  598. /* > Note that for COMPZ = 'V', then if N is less than or */
  599. /* > equal to the minimum divide size, usually 25, then LWORK need */
  600. /* > only be 1. */
  601. /* > */
  602. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  603. /* > only calculates the optimal sizes of the WORK, RWORK and */
  604. /* > IWORK arrays, returns these values as the first entries of */
  605. /* > the WORK, RWORK and IWORK arrays, and no error message */
  606. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] RWORK */
  610. /* > \verbatim */
  611. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  612. /* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] LRWORK */
  616. /* > \verbatim */
  617. /* > LRWORK is INTEGER */
  618. /* > The dimension of the array RWORK. */
  619. /* > If COMPZ = 'N' or N <= 1, LRWORK must be at least 1. */
  620. /* > If COMPZ = 'V' and N > 1, LRWORK must be at least */
  621. /* > 1 + 3*N + 2*N*lg N + 4*N**2 , */
  622. /* > where lg( N ) = smallest integer k such */
  623. /* > that 2**k >= N. */
  624. /* > If COMPZ = 'I' and N > 1, LRWORK must be at least */
  625. /* > 1 + 4*N + 2*N**2 . */
  626. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  627. /* > equal to the minimum divide size, usually 25, then LRWORK */
  628. /* > need only be f2cmax(1,2*(N-1)). */
  629. /* > */
  630. /* > If LRWORK = -1, then a workspace query is assumed; the */
  631. /* > routine only calculates the optimal sizes of the WORK, RWORK */
  632. /* > and IWORK arrays, returns these values as the first entries */
  633. /* > of the WORK, RWORK and IWORK arrays, and no error message */
  634. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] IWORK */
  638. /* > \verbatim */
  639. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  640. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[in] LIWORK */
  644. /* > \verbatim */
  645. /* > LIWORK is INTEGER */
  646. /* > The dimension of the array IWORK. */
  647. /* > If COMPZ = 'N' or N <= 1, LIWORK must be at least 1. */
  648. /* > If COMPZ = 'V' or N > 1, LIWORK must be at least */
  649. /* > 6 + 6*N + 5*N*lg N. */
  650. /* > If COMPZ = 'I' or N > 1, LIWORK must be at least */
  651. /* > 3 + 5*N . */
  652. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  653. /* > equal to the minimum divide size, usually 25, then LIWORK */
  654. /* > need only be 1. */
  655. /* > */
  656. /* > If LIWORK = -1, then a workspace query is assumed; the */
  657. /* > routine only calculates the optimal sizes of the WORK, RWORK */
  658. /* > and IWORK arrays, returns these values as the first entries */
  659. /* > of the WORK, RWORK and IWORK arrays, and no error message */
  660. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] INFO */
  664. /* > \verbatim */
  665. /* > INFO is INTEGER */
  666. /* > = 0: successful exit. */
  667. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  668. /* > > 0: The algorithm failed to compute an eigenvalue while */
  669. /* > working on the submatrix lying in rows and columns */
  670. /* > INFO/(N+1) through mod(INFO,N+1). */
  671. /* > \endverbatim */
  672. /* Authors: */
  673. /* ======== */
  674. /* > \author Univ. of Tennessee */
  675. /* > \author Univ. of California Berkeley */
  676. /* > \author Univ. of Colorado Denver */
  677. /* > \author NAG Ltd. */
  678. /* > \date December 2016 */
  679. /* > \ingroup complexOTHERcomputational */
  680. /* > \par Contributors: */
  681. /* ================== */
  682. /* > */
  683. /* > Jeff Rutter, Computer Science Division, University of California */
  684. /* > at Berkeley, USA */
  685. /* ===================================================================== */
  686. /* Subroutine */ int cstedc_(char *compz, integer *n, real *d__, real *e,
  687. complex *z__, integer *ldz, complex *work, integer *lwork, real *
  688. rwork, integer *lrwork, integer *iwork, integer *liwork, integer *
  689. info)
  690. {
  691. /* System generated locals */
  692. integer z_dim1, z_offset, i__1, i__2, i__3, i__4;
  693. real r__1, r__2;
  694. /* Local variables */
  695. real tiny;
  696. integer i__, j, k, m;
  697. real p;
  698. extern logical lsame_(char *, char *);
  699. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  700. complex *, integer *);
  701. integer lwmin;
  702. extern /* Subroutine */ int claed0_(integer *, integer *, real *, real *,
  703. complex *, integer *, complex *, integer *, real *, integer *,
  704. integer *);
  705. integer start, ii, ll;
  706. extern /* Subroutine */ int clacrm_(integer *, integer *, complex *,
  707. integer *, real *, integer *, complex *, integer *, real *);
  708. extern real slamch_(char *);
  709. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  710. *, integer *, complex *, integer *), xerbla_(char *,
  711. integer *, ftnlen);
  712. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  713. integer *, integer *, ftnlen, ftnlen);
  714. integer finish;
  715. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  716. real *, integer *, integer *, real *, integer *, integer *), sstedc_(char *, integer *, real *, real *, real *,
  717. integer *, real *, integer *, integer *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *,
  718. real *, integer *);
  719. integer liwmin, icompz;
  720. extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *,
  721. complex *, integer *, real *, integer *);
  722. real orgnrm;
  723. extern real slanst_(char *, integer *, real *, real *);
  724. extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
  725. integer lrwmin;
  726. logical lquery;
  727. integer smlsiz;
  728. extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *,
  729. real *, integer *, real *, integer *);
  730. integer lgn;
  731. real eps;
  732. /* -- LAPACK computational routine (version 3.7.0) -- */
  733. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  734. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  735. /* December 2016 */
  736. /* ===================================================================== */
  737. /* Test the input parameters. */
  738. /* Parameter adjustments */
  739. --d__;
  740. --e;
  741. z_dim1 = *ldz;
  742. z_offset = 1 + z_dim1 * 1;
  743. z__ -= z_offset;
  744. --work;
  745. --rwork;
  746. --iwork;
  747. /* Function Body */
  748. *info = 0;
  749. lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
  750. if (lsame_(compz, "N")) {
  751. icompz = 0;
  752. } else if (lsame_(compz, "V")) {
  753. icompz = 1;
  754. } else if (lsame_(compz, "I")) {
  755. icompz = 2;
  756. } else {
  757. icompz = -1;
  758. }
  759. if (icompz < 0) {
  760. *info = -1;
  761. } else if (*n < 0) {
  762. *info = -2;
  763. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  764. *info = -6;
  765. }
  766. if (*info == 0) {
  767. /* Compute the workspace requirements */
  768. smlsiz = ilaenv_(&c__9, "CSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
  769. ftnlen)6, (ftnlen)1);
  770. if (*n <= 1 || icompz == 0) {
  771. lwmin = 1;
  772. liwmin = 1;
  773. lrwmin = 1;
  774. } else if (*n <= smlsiz) {
  775. lwmin = 1;
  776. liwmin = 1;
  777. lrwmin = *n - 1 << 1;
  778. } else if (icompz == 1) {
  779. lgn = (integer) (log((real) (*n)) / log(2.f));
  780. if (pow_ii(c__2, lgn) < *n) {
  781. ++lgn;
  782. }
  783. if (pow_ii(c__2, lgn) < *n) {
  784. ++lgn;
  785. }
  786. lwmin = *n * *n;
  787. /* Computing 2nd power */
  788. i__1 = *n;
  789. lrwmin = *n * 3 + 1 + (*n << 1) * lgn + (i__1 * i__1 << 2);
  790. liwmin = *n * 6 + 6 + *n * 5 * lgn;
  791. } else if (icompz == 2) {
  792. lwmin = 1;
  793. /* Computing 2nd power */
  794. i__1 = *n;
  795. lrwmin = (*n << 2) + 1 + (i__1 * i__1 << 1);
  796. liwmin = *n * 5 + 3;
  797. }
  798. work[1].r = (real) lwmin, work[1].i = 0.f;
  799. rwork[1] = (real) lrwmin;
  800. iwork[1] = liwmin;
  801. if (*lwork < lwmin && ! lquery) {
  802. *info = -8;
  803. } else if (*lrwork < lrwmin && ! lquery) {
  804. *info = -10;
  805. } else if (*liwork < liwmin && ! lquery) {
  806. *info = -12;
  807. }
  808. }
  809. if (*info != 0) {
  810. i__1 = -(*info);
  811. xerbla_("CSTEDC", &i__1, (ftnlen)6);
  812. return 0;
  813. } else if (lquery) {
  814. return 0;
  815. }
  816. /* Quick return if possible */
  817. if (*n == 0) {
  818. return 0;
  819. }
  820. if (*n == 1) {
  821. if (icompz != 0) {
  822. i__1 = z_dim1 + 1;
  823. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  824. }
  825. return 0;
  826. }
  827. /* If the following conditional clause is removed, then the routine */
  828. /* will use the Divide and Conquer routine to compute only the */
  829. /* eigenvalues, which requires (3N + 3N**2) real workspace and */
  830. /* (2 + 5N + 2N lg(N)) integer workspace. */
  831. /* Since on many architectures SSTERF is much faster than any other */
  832. /* algorithm for finding eigenvalues only, it is used here */
  833. /* as the default. If the conditional clause is removed, then */
  834. /* information on the size of workspace needs to be changed. */
  835. /* If COMPZ = 'N', use SSTERF to compute the eigenvalues. */
  836. if (icompz == 0) {
  837. ssterf_(n, &d__[1], &e[1], info);
  838. goto L70;
  839. }
  840. /* If N is smaller than the minimum divide size (SMLSIZ+1), then */
  841. /* solve the problem with another solver. */
  842. if (*n <= smlsiz) {
  843. csteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1],
  844. info);
  845. } else {
  846. /* If COMPZ = 'I', we simply call SSTEDC instead. */
  847. if (icompz == 2) {
  848. slaset_("Full", n, n, &c_b17, &c_b18, &rwork[1], n);
  849. ll = *n * *n + 1;
  850. i__1 = *lrwork - ll + 1;
  851. sstedc_("I", n, &d__[1], &e[1], &rwork[1], n, &rwork[ll], &i__1, &
  852. iwork[1], liwork, info);
  853. i__1 = *n;
  854. for (j = 1; j <= i__1; ++j) {
  855. i__2 = *n;
  856. for (i__ = 1; i__ <= i__2; ++i__) {
  857. i__3 = i__ + j * z_dim1;
  858. i__4 = (j - 1) * *n + i__;
  859. z__[i__3].r = rwork[i__4], z__[i__3].i = 0.f;
  860. /* L10: */
  861. }
  862. /* L20: */
  863. }
  864. goto L70;
  865. }
  866. /* From now on, only option left to be handled is COMPZ = 'V', */
  867. /* i.e. ICOMPZ = 1. */
  868. /* Scale. */
  869. orgnrm = slanst_("M", n, &d__[1], &e[1]);
  870. if (orgnrm == 0.f) {
  871. goto L70;
  872. }
  873. eps = slamch_("Epsilon");
  874. start = 1;
  875. /* while ( START <= N ) */
  876. L30:
  877. if (start <= *n) {
  878. /* Let FINISH be the position of the next subdiagonal entry */
  879. /* such that E( FINISH ) <= TINY or FINISH = N if no such */
  880. /* subdiagonal exists. The matrix identified by the elements */
  881. /* between START and FINISH constitutes an independent */
  882. /* sub-problem. */
  883. finish = start;
  884. L40:
  885. if (finish < *n) {
  886. tiny = eps * sqrt((r__1 = d__[finish], abs(r__1))) * sqrt((
  887. r__2 = d__[finish + 1], abs(r__2)));
  888. if ((r__1 = e[finish], abs(r__1)) > tiny) {
  889. ++finish;
  890. goto L40;
  891. }
  892. }
  893. /* (Sub) Problem determined. Compute its size and solve it. */
  894. m = finish - start + 1;
  895. if (m > smlsiz) {
  896. /* Scale. */
  897. orgnrm = slanst_("M", &m, &d__[start], &e[start]);
  898. slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
  899. start], &m, info);
  900. i__1 = m - 1;
  901. i__2 = m - 1;
  902. slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
  903. start], &i__2, info);
  904. claed0_(n, &m, &d__[start], &e[start], &z__[start * z_dim1 +
  905. 1], ldz, &work[1], n, &rwork[1], &iwork[1], info);
  906. if (*info > 0) {
  907. *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
  908. (m + 1) + start - 1;
  909. goto L70;
  910. }
  911. /* Scale back. */
  912. slascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
  913. start], &m, info);
  914. } else {
  915. ssteqr_("I", &m, &d__[start], &e[start], &rwork[1], &m, &
  916. rwork[m * m + 1], info);
  917. clacrm_(n, &m, &z__[start * z_dim1 + 1], ldz, &rwork[1], &m, &
  918. work[1], n, &rwork[m * m + 1]);
  919. clacpy_("A", n, &m, &work[1], n, &z__[start * z_dim1 + 1],
  920. ldz);
  921. if (*info > 0) {
  922. *info = start * (*n + 1) + finish;
  923. goto L70;
  924. }
  925. }
  926. start = finish + 1;
  927. goto L30;
  928. }
  929. /* endwhile */
  930. /* Use Selection Sort to minimize swaps of eigenvectors */
  931. i__1 = *n;
  932. for (ii = 2; ii <= i__1; ++ii) {
  933. i__ = ii - 1;
  934. k = i__;
  935. p = d__[i__];
  936. i__2 = *n;
  937. for (j = ii; j <= i__2; ++j) {
  938. if (d__[j] < p) {
  939. k = j;
  940. p = d__[j];
  941. }
  942. /* L50: */
  943. }
  944. if (k != i__) {
  945. d__[k] = d__[i__];
  946. d__[i__] = p;
  947. cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
  948. &c__1);
  949. }
  950. /* L60: */
  951. }
  952. }
  953. L70:
  954. work[1].r = (real) lwmin, work[1].i = 0.f;
  955. rwork[1] = (real) lrwmin;
  956. iwork[1] = liwmin;
  957. return 0;
  958. /* End of CSTEDC */
  959. } /* cstedc_ */