You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbtrd.c 37 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__1 = 1;
  489. /* > \brief \b CHBTRD */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CHBTRD + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbtrd.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbtrd.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbtrd.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CHBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, */
  508. /* WORK, INFO ) */
  509. /* CHARACTER UPLO, VECT */
  510. /* INTEGER INFO, KD, LDAB, LDQ, N */
  511. /* REAL D( * ), E( * ) */
  512. /* COMPLEX AB( LDAB, * ), Q( LDQ, * ), WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > CHBTRD reduces a complex Hermitian band matrix A to real symmetric */
  519. /* > tridiagonal form T by a unitary similarity transformation: */
  520. /* > Q**H * A * Q = T. */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] VECT */
  525. /* > \verbatim */
  526. /* > VECT is CHARACTER*1 */
  527. /* > = 'N': do not form Q; */
  528. /* > = 'V': form Q; */
  529. /* > = 'U': update a matrix X, by forming X*Q. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] UPLO */
  533. /* > \verbatim */
  534. /* > UPLO is CHARACTER*1 */
  535. /* > = 'U': Upper triangle of A is stored; */
  536. /* > = 'L': Lower triangle of A is stored. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] N */
  540. /* > \verbatim */
  541. /* > N is INTEGER */
  542. /* > The order of the matrix A. N >= 0. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] KD */
  546. /* > \verbatim */
  547. /* > KD is INTEGER */
  548. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  549. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in,out] AB */
  553. /* > \verbatim */
  554. /* > AB is COMPLEX array, dimension (LDAB,N) */
  555. /* > On entry, the upper or lower triangle of the Hermitian band */
  556. /* > matrix A, stored in the first KD+1 rows of the array. The */
  557. /* > j-th column of A is stored in the j-th column of the array AB */
  558. /* > as follows: */
  559. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  560. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  561. /* > On exit, the diagonal elements of AB are overwritten by the */
  562. /* > diagonal elements of the tridiagonal matrix T; if KD > 0, the */
  563. /* > elements on the first superdiagonal (if UPLO = 'U') or the */
  564. /* > first subdiagonal (if UPLO = 'L') are overwritten by the */
  565. /* > off-diagonal elements of T; the rest of AB is overwritten by */
  566. /* > values generated during the reduction. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] LDAB */
  570. /* > \verbatim */
  571. /* > LDAB is INTEGER */
  572. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[out] D */
  576. /* > \verbatim */
  577. /* > D is REAL array, dimension (N) */
  578. /* > The diagonal elements of the tridiagonal matrix T. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] E */
  582. /* > \verbatim */
  583. /* > E is REAL array, dimension (N-1) */
  584. /* > The off-diagonal elements of the tridiagonal matrix T: */
  585. /* > E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] Q */
  589. /* > \verbatim */
  590. /* > Q is COMPLEX array, dimension (LDQ,N) */
  591. /* > On entry, if VECT = 'U', then Q must contain an N-by-N */
  592. /* > matrix X; if VECT = 'N' or 'V', then Q need not be set. */
  593. /* > */
  594. /* > On exit: */
  595. /* > if VECT = 'V', Q contains the N-by-N unitary matrix Q; */
  596. /* > if VECT = 'U', Q contains the product X*Q; */
  597. /* > if VECT = 'N', the array Q is not referenced. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] LDQ */
  601. /* > \verbatim */
  602. /* > LDQ is INTEGER */
  603. /* > The leading dimension of the array Q. */
  604. /* > LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] WORK */
  608. /* > \verbatim */
  609. /* > WORK is COMPLEX array, dimension (N) */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] INFO */
  613. /* > \verbatim */
  614. /* > INFO is INTEGER */
  615. /* > = 0: successful exit */
  616. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  617. /* > \endverbatim */
  618. /* Authors: */
  619. /* ======== */
  620. /* > \author Univ. of Tennessee */
  621. /* > \author Univ. of California Berkeley */
  622. /* > \author Univ. of Colorado Denver */
  623. /* > \author NAG Ltd. */
  624. /* > \date December 2016 */
  625. /* > \ingroup complexOTHERcomputational */
  626. /* > \par Further Details: */
  627. /* ===================== */
  628. /* > */
  629. /* > \verbatim */
  630. /* > */
  631. /* > Modified by Linda Kaufman, Bell Labs. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* ===================================================================== */
  635. /* Subroutine */ int chbtrd_(char *vect, char *uplo, integer *n, integer *kd,
  636. complex *ab, integer *ldab, real *d__, real *e, complex *q, integer *
  637. ldq, complex *work, integer *info)
  638. {
  639. /* System generated locals */
  640. integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4,
  641. i__5, i__6;
  642. real r__1;
  643. complex q__1;
  644. /* Local variables */
  645. integer inca, jend, lend, jinc;
  646. real abst;
  647. integer incx, last;
  648. complex temp;
  649. extern /* Subroutine */ int crot_(integer *, complex *, integer *,
  650. complex *, integer *, real *, complex *);
  651. integer j1end, j1inc, i__, j, k, l;
  652. complex t;
  653. extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
  654. integer *);
  655. integer iqend;
  656. extern logical lsame_(char *, char *);
  657. logical initq, wantq, upper;
  658. integer i2, j1, j2;
  659. extern /* Subroutine */ int clar2v_(integer *, complex *, complex *,
  660. complex *, integer *, real *, complex *, integer *);
  661. integer nq, nr, iqaend;
  662. extern /* Subroutine */ int clacgv_(integer *, complex *, integer *),
  663. claset_(char *, integer *, integer *, complex *, complex *,
  664. complex *, integer *), clartg_(complex *, complex *, real
  665. *, complex *, complex *), xerbla_(char *, integer *, ftnlen),
  666. clargv_(integer *, complex *, integer *, complex *, integer *,
  667. real *, integer *), clartv_(integer *, complex *, integer *,
  668. complex *, integer *, real *, complex *, integer *);
  669. integer kd1, ibl, iqb, kdn, jin, nrt, kdm1;
  670. /* -- LAPACK computational routine (version 3.7.0) -- */
  671. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  672. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  673. /* December 2016 */
  674. /* ===================================================================== */
  675. /* Test the input parameters */
  676. /* Parameter adjustments */
  677. ab_dim1 = *ldab;
  678. ab_offset = 1 + ab_dim1 * 1;
  679. ab -= ab_offset;
  680. --d__;
  681. --e;
  682. q_dim1 = *ldq;
  683. q_offset = 1 + q_dim1 * 1;
  684. q -= q_offset;
  685. --work;
  686. /* Function Body */
  687. initq = lsame_(vect, "V");
  688. wantq = initq || lsame_(vect, "U");
  689. upper = lsame_(uplo, "U");
  690. kd1 = *kd + 1;
  691. kdm1 = *kd - 1;
  692. incx = *ldab - 1;
  693. iqend = 1;
  694. *info = 0;
  695. if (! wantq && ! lsame_(vect, "N")) {
  696. *info = -1;
  697. } else if (! upper && ! lsame_(uplo, "L")) {
  698. *info = -2;
  699. } else if (*n < 0) {
  700. *info = -3;
  701. } else if (*kd < 0) {
  702. *info = -4;
  703. } else if (*ldab < kd1) {
  704. *info = -6;
  705. } else if (*ldq < f2cmax(1,*n) && wantq) {
  706. *info = -10;
  707. }
  708. if (*info != 0) {
  709. i__1 = -(*info);
  710. xerbla_("CHBTRD", &i__1, (ftnlen)6);
  711. return 0;
  712. }
  713. /* Quick return if possible */
  714. if (*n == 0) {
  715. return 0;
  716. }
  717. /* Initialize Q to the unit matrix, if needed */
  718. if (initq) {
  719. claset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq);
  720. }
  721. /* Wherever possible, plane rotations are generated and applied in */
  722. /* vector operations of length NR over the index set J1:J2:KD1. */
  723. /* The real cosines and complex sines of the plane rotations are */
  724. /* stored in the arrays D and WORK. */
  725. inca = kd1 * *ldab;
  726. /* Computing MIN */
  727. i__1 = *n - 1;
  728. kdn = f2cmin(i__1,*kd);
  729. if (upper) {
  730. if (*kd > 1) {
  731. /* Reduce to complex Hermitian tridiagonal form, working with */
  732. /* the upper triangle */
  733. nr = 0;
  734. j1 = kdn + 2;
  735. j2 = 1;
  736. i__1 = kd1 + ab_dim1;
  737. i__2 = kd1 + ab_dim1;
  738. r__1 = ab[i__2].r;
  739. ab[i__1].r = r__1, ab[i__1].i = 0.f;
  740. i__1 = *n - 2;
  741. for (i__ = 1; i__ <= i__1; ++i__) {
  742. /* Reduce i-th row of matrix to tridiagonal form */
  743. for (k = kdn + 1; k >= 2; --k) {
  744. j1 += kdn;
  745. j2 += kdn;
  746. if (nr > 0) {
  747. /* generate plane rotations to annihilate nonzero */
  748. /* elements which have been created outside the band */
  749. clargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &
  750. work[j1], &kd1, &d__[j1], &kd1);
  751. /* apply rotations from the right */
  752. /* Dependent on the the number of diagonals either */
  753. /* CLARTV or CROT is used */
  754. if (nr >= (*kd << 1) - 1) {
  755. i__2 = *kd - 1;
  756. for (l = 1; l <= i__2; ++l) {
  757. clartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1],
  758. &inca, &ab[l + j1 * ab_dim1], &inca, &
  759. d__[j1], &work[j1], &kd1);
  760. /* L10: */
  761. }
  762. } else {
  763. jend = j1 + (nr - 1) * kd1;
  764. i__2 = jend;
  765. i__3 = kd1;
  766. for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <=
  767. i__2; jinc += i__3) {
  768. crot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &
  769. c__1, &ab[jinc * ab_dim1 + 1], &c__1,
  770. &d__[jinc], &work[jinc]);
  771. /* L20: */
  772. }
  773. }
  774. }
  775. if (k > 2) {
  776. if (k <= *n - i__ + 1) {
  777. /* generate plane rotation to annihilate a(i,i+k-1) */
  778. /* within the band */
  779. clartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1]
  780. , &ab[*kd - k + 2 + (i__ + k - 1) *
  781. ab_dim1], &d__[i__ + k - 1], &work[i__ +
  782. k - 1], &temp);
  783. i__3 = *kd - k + 3 + (i__ + k - 2) * ab_dim1;
  784. ab[i__3].r = temp.r, ab[i__3].i = temp.i;
  785. /* apply rotation from the right */
  786. i__3 = k - 3;
  787. crot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) *
  788. ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ +
  789. k - 1) * ab_dim1], &c__1, &d__[i__ + k -
  790. 1], &work[i__ + k - 1]);
  791. }
  792. ++nr;
  793. j1 = j1 - kdn - 1;
  794. }
  795. /* apply plane rotations from both sides to diagonal */
  796. /* blocks */
  797. if (nr > 0) {
  798. clar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 +
  799. j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca,
  800. &d__[j1], &work[j1], &kd1);
  801. }
  802. /* apply plane rotations from the left */
  803. if (nr > 0) {
  804. clacgv_(&nr, &work[j1], &kd1);
  805. if ((*kd << 1) - 1 < nr) {
  806. /* Dependent on the the number of diagonals either */
  807. /* CLARTV or CROT is used */
  808. i__3 = *kd - 1;
  809. for (l = 1; l <= i__3; ++l) {
  810. if (j2 + l > *n) {
  811. nrt = nr - 1;
  812. } else {
  813. nrt = nr;
  814. }
  815. if (nrt > 0) {
  816. clartv_(&nrt, &ab[*kd - l + (j1 + l) *
  817. ab_dim1], &inca, &ab[*kd - l + 1
  818. + (j1 + l) * ab_dim1], &inca, &
  819. d__[j1], &work[j1], &kd1);
  820. }
  821. /* L30: */
  822. }
  823. } else {
  824. j1end = j1 + kd1 * (nr - 2);
  825. if (j1end >= j1) {
  826. i__3 = j1end;
  827. i__2 = kd1;
  828. for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=
  829. i__3; jin += i__2) {
  830. i__4 = *kd - 1;
  831. crot_(&i__4, &ab[*kd - 1 + (jin + 1) *
  832. ab_dim1], &incx, &ab[*kd + (jin +
  833. 1) * ab_dim1], &incx, &d__[jin], &
  834. work[jin]);
  835. /* L40: */
  836. }
  837. }
  838. /* Computing MIN */
  839. i__2 = kdm1, i__3 = *n - j2;
  840. lend = f2cmin(i__2,i__3);
  841. last = j1end + kd1;
  842. if (lend > 0) {
  843. crot_(&lend, &ab[*kd - 1 + (last + 1) *
  844. ab_dim1], &incx, &ab[*kd + (last + 1)
  845. * ab_dim1], &incx, &d__[last], &work[
  846. last]);
  847. }
  848. }
  849. }
  850. if (wantq) {
  851. /* accumulate product of plane rotations in Q */
  852. if (initq) {
  853. /* take advantage of the fact that Q was */
  854. /* initially the Identity matrix */
  855. iqend = f2cmax(iqend,j2);
  856. /* Computing MAX */
  857. i__2 = 0, i__3 = k - 3;
  858. i2 = f2cmax(i__2,i__3);
  859. iqaend = i__ * *kd + 1;
  860. if (k == 2) {
  861. iqaend += *kd;
  862. }
  863. iqaend = f2cmin(iqaend,iqend);
  864. i__2 = j2;
  865. i__3 = kd1;
  866. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
  867. += i__3) {
  868. ibl = i__ - i2 / kdm1;
  869. ++i2;
  870. /* Computing MAX */
  871. i__4 = 1, i__5 = j - ibl;
  872. iqb = f2cmax(i__4,i__5);
  873. nq = iqaend + 1 - iqb;
  874. /* Computing MIN */
  875. i__4 = iqaend + *kd;
  876. iqaend = f2cmin(i__4,iqend);
  877. r_cnjg(&q__1, &work[j]);
  878. crot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
  879. &q[iqb + j * q_dim1], &c__1, &d__[j],
  880. &q__1);
  881. /* L50: */
  882. }
  883. } else {
  884. i__3 = j2;
  885. i__2 = kd1;
  886. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
  887. += i__2) {
  888. r_cnjg(&q__1, &work[j]);
  889. crot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
  890. j * q_dim1 + 1], &c__1, &d__[j], &
  891. q__1);
  892. /* L60: */
  893. }
  894. }
  895. }
  896. if (j2 + kdn > *n) {
  897. /* adjust J2 to keep within the bounds of the matrix */
  898. --nr;
  899. j2 = j2 - kdn - 1;
  900. }
  901. i__2 = j2;
  902. i__3 = kd1;
  903. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3)
  904. {
  905. /* create nonzero element a(j-1,j+kd) outside the band */
  906. /* and store it in WORK */
  907. i__4 = j + *kd;
  908. i__5 = j;
  909. i__6 = (j + *kd) * ab_dim1 + 1;
  910. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i *
  911. ab[i__6].i, q__1.i = work[i__5].r * ab[i__6]
  912. .i + work[i__5].i * ab[i__6].r;
  913. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  914. i__4 = (j + *kd) * ab_dim1 + 1;
  915. i__5 = j;
  916. i__6 = (j + *kd) * ab_dim1 + 1;
  917. q__1.r = d__[i__5] * ab[i__6].r, q__1.i = d__[i__5] *
  918. ab[i__6].i;
  919. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  920. /* L70: */
  921. }
  922. /* L80: */
  923. }
  924. /* L90: */
  925. }
  926. }
  927. if (*kd > 0) {
  928. /* make off-diagonal elements real and copy them to E */
  929. i__1 = *n - 1;
  930. for (i__ = 1; i__ <= i__1; ++i__) {
  931. i__3 = *kd + (i__ + 1) * ab_dim1;
  932. t.r = ab[i__3].r, t.i = ab[i__3].i;
  933. abst = c_abs(&t);
  934. i__3 = *kd + (i__ + 1) * ab_dim1;
  935. ab[i__3].r = abst, ab[i__3].i = 0.f;
  936. e[i__] = abst;
  937. if (abst != 0.f) {
  938. q__1.r = t.r / abst, q__1.i = t.i / abst;
  939. t.r = q__1.r, t.i = q__1.i;
  940. } else {
  941. t.r = 1.f, t.i = 0.f;
  942. }
  943. if (i__ < *n - 1) {
  944. i__3 = *kd + (i__ + 2) * ab_dim1;
  945. i__2 = *kd + (i__ + 2) * ab_dim1;
  946. q__1.r = ab[i__2].r * t.r - ab[i__2].i * t.i, q__1.i = ab[
  947. i__2].r * t.i + ab[i__2].i * t.r;
  948. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  949. }
  950. if (wantq) {
  951. r_cnjg(&q__1, &t);
  952. cscal_(n, &q__1, &q[(i__ + 1) * q_dim1 + 1], &c__1);
  953. }
  954. /* L100: */
  955. }
  956. } else {
  957. /* set E to zero if original matrix was diagonal */
  958. i__1 = *n - 1;
  959. for (i__ = 1; i__ <= i__1; ++i__) {
  960. e[i__] = 0.f;
  961. /* L110: */
  962. }
  963. }
  964. /* copy diagonal elements to D */
  965. i__1 = *n;
  966. for (i__ = 1; i__ <= i__1; ++i__) {
  967. i__3 = i__;
  968. i__2 = kd1 + i__ * ab_dim1;
  969. d__[i__3] = ab[i__2].r;
  970. /* L120: */
  971. }
  972. } else {
  973. if (*kd > 1) {
  974. /* Reduce to complex Hermitian tridiagonal form, working with */
  975. /* the lower triangle */
  976. nr = 0;
  977. j1 = kdn + 2;
  978. j2 = 1;
  979. i__1 = ab_dim1 + 1;
  980. i__3 = ab_dim1 + 1;
  981. r__1 = ab[i__3].r;
  982. ab[i__1].r = r__1, ab[i__1].i = 0.f;
  983. i__1 = *n - 2;
  984. for (i__ = 1; i__ <= i__1; ++i__) {
  985. /* Reduce i-th column of matrix to tridiagonal form */
  986. for (k = kdn + 1; k >= 2; --k) {
  987. j1 += kdn;
  988. j2 += kdn;
  989. if (nr > 0) {
  990. /* generate plane rotations to annihilate nonzero */
  991. /* elements which have been created outside the band */
  992. clargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &
  993. work[j1], &kd1, &d__[j1], &kd1);
  994. /* apply plane rotations from one side */
  995. /* Dependent on the the number of diagonals either */
  996. /* CLARTV or CROT is used */
  997. if (nr > (*kd << 1) - 1) {
  998. i__3 = *kd - 1;
  999. for (l = 1; l <= i__3; ++l) {
  1000. clartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) *
  1001. ab_dim1], &inca, &ab[kd1 - l + 1 + (
  1002. j1 - kd1 + l) * ab_dim1], &inca, &d__[
  1003. j1], &work[j1], &kd1);
  1004. /* L130: */
  1005. }
  1006. } else {
  1007. jend = j1 + kd1 * (nr - 1);
  1008. i__3 = jend;
  1009. i__2 = kd1;
  1010. for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <=
  1011. i__3; jinc += i__2) {
  1012. crot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1]
  1013. , &incx, &ab[kd1 + (jinc - *kd) *
  1014. ab_dim1], &incx, &d__[jinc], &work[
  1015. jinc]);
  1016. /* L140: */
  1017. }
  1018. }
  1019. }
  1020. if (k > 2) {
  1021. if (k <= *n - i__ + 1) {
  1022. /* generate plane rotation to annihilate a(i+k-1,i) */
  1023. /* within the band */
  1024. clartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ *
  1025. ab_dim1], &d__[i__ + k - 1], &work[i__ +
  1026. k - 1], &temp);
  1027. i__2 = k - 1 + i__ * ab_dim1;
  1028. ab[i__2].r = temp.r, ab[i__2].i = temp.i;
  1029. /* apply rotation from the left */
  1030. i__2 = k - 3;
  1031. i__3 = *ldab - 1;
  1032. i__4 = *ldab - 1;
  1033. crot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &
  1034. i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &
  1035. i__4, &d__[i__ + k - 1], &work[i__ + k -
  1036. 1]);
  1037. }
  1038. ++nr;
  1039. j1 = j1 - kdn - 1;
  1040. }
  1041. /* apply plane rotations from both sides to diagonal */
  1042. /* blocks */
  1043. if (nr > 0) {
  1044. clar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 *
  1045. ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &
  1046. inca, &d__[j1], &work[j1], &kd1);
  1047. }
  1048. /* apply plane rotations from the right */
  1049. /* Dependent on the the number of diagonals either */
  1050. /* CLARTV or CROT is used */
  1051. if (nr > 0) {
  1052. clacgv_(&nr, &work[j1], &kd1);
  1053. if (nr > (*kd << 1) - 1) {
  1054. i__2 = *kd - 1;
  1055. for (l = 1; l <= i__2; ++l) {
  1056. if (j2 + l > *n) {
  1057. nrt = nr - 1;
  1058. } else {
  1059. nrt = nr;
  1060. }
  1061. if (nrt > 0) {
  1062. clartv_(&nrt, &ab[l + 2 + (j1 - 1) *
  1063. ab_dim1], &inca, &ab[l + 1 + j1 *
  1064. ab_dim1], &inca, &d__[j1], &work[
  1065. j1], &kd1);
  1066. }
  1067. /* L150: */
  1068. }
  1069. } else {
  1070. j1end = j1 + kd1 * (nr - 2);
  1071. if (j1end >= j1) {
  1072. i__2 = j1end;
  1073. i__3 = kd1;
  1074. for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 :
  1075. j1inc <= i__2; j1inc += i__3) {
  1076. crot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 +
  1077. 3], &c__1, &ab[j1inc * ab_dim1 +
  1078. 2], &c__1, &d__[j1inc], &work[
  1079. j1inc]);
  1080. /* L160: */
  1081. }
  1082. }
  1083. /* Computing MIN */
  1084. i__3 = kdm1, i__2 = *n - j2;
  1085. lend = f2cmin(i__3,i__2);
  1086. last = j1end + kd1;
  1087. if (lend > 0) {
  1088. crot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &
  1089. c__1, &ab[last * ab_dim1 + 2], &c__1,
  1090. &d__[last], &work[last]);
  1091. }
  1092. }
  1093. }
  1094. if (wantq) {
  1095. /* accumulate product of plane rotations in Q */
  1096. if (initq) {
  1097. /* take advantage of the fact that Q was */
  1098. /* initially the Identity matrix */
  1099. iqend = f2cmax(iqend,j2);
  1100. /* Computing MAX */
  1101. i__3 = 0, i__2 = k - 3;
  1102. i2 = f2cmax(i__3,i__2);
  1103. iqaend = i__ * *kd + 1;
  1104. if (k == 2) {
  1105. iqaend += *kd;
  1106. }
  1107. iqaend = f2cmin(iqaend,iqend);
  1108. i__3 = j2;
  1109. i__2 = kd1;
  1110. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
  1111. += i__2) {
  1112. ibl = i__ - i2 / kdm1;
  1113. ++i2;
  1114. /* Computing MAX */
  1115. i__4 = 1, i__5 = j - ibl;
  1116. iqb = f2cmax(i__4,i__5);
  1117. nq = iqaend + 1 - iqb;
  1118. /* Computing MIN */
  1119. i__4 = iqaend + *kd;
  1120. iqaend = f2cmin(i__4,iqend);
  1121. crot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
  1122. &q[iqb + j * q_dim1], &c__1, &d__[j],
  1123. &work[j]);
  1124. /* L170: */
  1125. }
  1126. } else {
  1127. i__2 = j2;
  1128. i__3 = kd1;
  1129. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
  1130. += i__3) {
  1131. crot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
  1132. j * q_dim1 + 1], &c__1, &d__[j], &
  1133. work[j]);
  1134. /* L180: */
  1135. }
  1136. }
  1137. }
  1138. if (j2 + kdn > *n) {
  1139. /* adjust J2 to keep within the bounds of the matrix */
  1140. --nr;
  1141. j2 = j2 - kdn - 1;
  1142. }
  1143. i__3 = j2;
  1144. i__2 = kd1;
  1145. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2)
  1146. {
  1147. /* create nonzero element a(j+kd,j-1) outside the */
  1148. /* band and store it in WORK */
  1149. i__4 = j + *kd;
  1150. i__5 = j;
  1151. i__6 = kd1 + j * ab_dim1;
  1152. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i *
  1153. ab[i__6].i, q__1.i = work[i__5].r * ab[i__6]
  1154. .i + work[i__5].i * ab[i__6].r;
  1155. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1156. i__4 = kd1 + j * ab_dim1;
  1157. i__5 = j;
  1158. i__6 = kd1 + j * ab_dim1;
  1159. q__1.r = d__[i__5] * ab[i__6].r, q__1.i = d__[i__5] *
  1160. ab[i__6].i;
  1161. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1162. /* L190: */
  1163. }
  1164. /* L200: */
  1165. }
  1166. /* L210: */
  1167. }
  1168. }
  1169. if (*kd > 0) {
  1170. /* make off-diagonal elements real and copy them to E */
  1171. i__1 = *n - 1;
  1172. for (i__ = 1; i__ <= i__1; ++i__) {
  1173. i__2 = i__ * ab_dim1 + 2;
  1174. t.r = ab[i__2].r, t.i = ab[i__2].i;
  1175. abst = c_abs(&t);
  1176. i__2 = i__ * ab_dim1 + 2;
  1177. ab[i__2].r = abst, ab[i__2].i = 0.f;
  1178. e[i__] = abst;
  1179. if (abst != 0.f) {
  1180. q__1.r = t.r / abst, q__1.i = t.i / abst;
  1181. t.r = q__1.r, t.i = q__1.i;
  1182. } else {
  1183. t.r = 1.f, t.i = 0.f;
  1184. }
  1185. if (i__ < *n - 1) {
  1186. i__2 = (i__ + 1) * ab_dim1 + 2;
  1187. i__3 = (i__ + 1) * ab_dim1 + 2;
  1188. q__1.r = ab[i__3].r * t.r - ab[i__3].i * t.i, q__1.i = ab[
  1189. i__3].r * t.i + ab[i__3].i * t.r;
  1190. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1191. }
  1192. if (wantq) {
  1193. cscal_(n, &t, &q[(i__ + 1) * q_dim1 + 1], &c__1);
  1194. }
  1195. /* L220: */
  1196. }
  1197. } else {
  1198. /* set E to zero if original matrix was diagonal */
  1199. i__1 = *n - 1;
  1200. for (i__ = 1; i__ <= i__1; ++i__) {
  1201. e[i__] = 0.f;
  1202. /* L230: */
  1203. }
  1204. }
  1205. /* copy diagonal elements to D */
  1206. i__1 = *n;
  1207. for (i__ = 1; i__ <= i__1; ++i__) {
  1208. i__2 = i__;
  1209. i__3 = i__ * ab_dim1 + 1;
  1210. d__[i__2] = ab[i__3].r;
  1211. /* L240: */
  1212. }
  1213. }
  1214. return 0;
  1215. /* End of CHBTRD */
  1216. } /* chbtrd_ */