You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgges.c 37 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {0.,0.};
  485. static doublecomplex c_b2 = {1.,0.};
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. /* > \brief <b> ZGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f
  490. or GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ZGGES + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgges.f
  497. "> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgges.f
  500. "> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgges.f
  503. "> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, */
  509. /* SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, */
  510. /* LWORK, RWORK, BWORK, INFO ) */
  511. /* CHARACTER JOBVSL, JOBVSR, SORT */
  512. /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */
  513. /* LOGICAL BWORK( * ) */
  514. /* DOUBLE PRECISION RWORK( * ) */
  515. /* COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), */
  516. /* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), */
  517. /* $ WORK( * ) */
  518. /* LOGICAL SELCTG */
  519. /* EXTERNAL SELCTG */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > ZGGES computes for a pair of N-by-N complex nonsymmetric matrices */
  526. /* > (A,B), the generalized eigenvalues, the generalized complex Schur */
  527. /* > form (S, T), and optionally left and/or right Schur vectors (VSL */
  528. /* > and VSR). This gives the generalized Schur factorization */
  529. /* > */
  530. /* > (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H ) */
  531. /* > */
  532. /* > where (VSR)**H is the conjugate-transpose of VSR. */
  533. /* > */
  534. /* > Optionally, it also orders the eigenvalues so that a selected cluster */
  535. /* > of eigenvalues appears in the leading diagonal blocks of the upper */
  536. /* > triangular matrix S and the upper triangular matrix T. The leading */
  537. /* > columns of VSL and VSR then form an unitary basis for the */
  538. /* > corresponding left and right eigenspaces (deflating subspaces). */
  539. /* > */
  540. /* > (If only the generalized eigenvalues are needed, use the driver */
  541. /* > ZGGEV instead, which is faster.) */
  542. /* > */
  543. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
  544. /* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
  545. /* > usually represented as the pair (alpha,beta), as there is a */
  546. /* > reasonable interpretation for beta=0, and even for both being zero. */
  547. /* > */
  548. /* > A pair of matrices (S,T) is in generalized complex Schur form if S */
  549. /* > and T are upper triangular and, in addition, the diagonal elements */
  550. /* > of T are non-negative real numbers. */
  551. /* > \endverbatim */
  552. /* Arguments: */
  553. /* ========== */
  554. /* > \param[in] JOBVSL */
  555. /* > \verbatim */
  556. /* > JOBVSL is CHARACTER*1 */
  557. /* > = 'N': do not compute the left Schur vectors; */
  558. /* > = 'V': compute the left Schur vectors. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] JOBVSR */
  562. /* > \verbatim */
  563. /* > JOBVSR is CHARACTER*1 */
  564. /* > = 'N': do not compute the right Schur vectors; */
  565. /* > = 'V': compute the right Schur vectors. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] SORT */
  569. /* > \verbatim */
  570. /* > SORT is CHARACTER*1 */
  571. /* > Specifies whether or not to order the eigenvalues on the */
  572. /* > diagonal of the generalized Schur form. */
  573. /* > = 'N': Eigenvalues are not ordered; */
  574. /* > = 'S': Eigenvalues are ordered (see SELCTG). */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] SELCTG */
  578. /* > \verbatim */
  579. /* > SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments */
  580. /* > SELCTG must be declared EXTERNAL in the calling subroutine. */
  581. /* > If SORT = 'N', SELCTG is not referenced. */
  582. /* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
  583. /* > to the top left of the Schur form. */
  584. /* > An eigenvalue ALPHA(j)/BETA(j) is selected if */
  585. /* > SELCTG(ALPHA(j),BETA(j)) is true. */
  586. /* > */
  587. /* > Note that a selected complex eigenvalue may no longer satisfy */
  588. /* > SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since */
  589. /* > ordering may change the value of complex eigenvalues */
  590. /* > (especially if the eigenvalue is ill-conditioned), in this */
  591. /* > case INFO is set to N+2 (See INFO below). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] N */
  595. /* > \verbatim */
  596. /* > N is INTEGER */
  597. /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] A */
  601. /* > \verbatim */
  602. /* > A is COMPLEX*16 array, dimension (LDA, N) */
  603. /* > On entry, the first of the pair of matrices. */
  604. /* > On exit, A has been overwritten by its generalized Schur */
  605. /* > form S. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDA */
  609. /* > \verbatim */
  610. /* > LDA is INTEGER */
  611. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in,out] B */
  615. /* > \verbatim */
  616. /* > B is COMPLEX*16 array, dimension (LDB, N) */
  617. /* > On entry, the second of the pair of matrices. */
  618. /* > On exit, B has been overwritten by its generalized Schur */
  619. /* > form T. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] LDB */
  623. /* > \verbatim */
  624. /* > LDB is INTEGER */
  625. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] SDIM */
  629. /* > \verbatim */
  630. /* > SDIM is INTEGER */
  631. /* > If SORT = 'N', SDIM = 0. */
  632. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  633. /* > for which SELCTG is true. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] ALPHA */
  637. /* > \verbatim */
  638. /* > ALPHA is COMPLEX*16 array, dimension (N) */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] BETA */
  642. /* > \verbatim */
  643. /* > BETA is COMPLEX*16 array, dimension (N) */
  644. /* > On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the */
  645. /* > generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j), */
  646. /* > j=1,...,N are the diagonals of the complex Schur form (A,B) */
  647. /* > output by ZGGES. The BETA(j) will be non-negative real. */
  648. /* > */
  649. /* > Note: the quotients ALPHA(j)/BETA(j) may easily over- or */
  650. /* > underflow, and BETA(j) may even be zero. Thus, the user */
  651. /* > should avoid naively computing the ratio alpha/beta. */
  652. /* > However, ALPHA will be always less than and usually */
  653. /* > comparable with norm(A) in magnitude, and BETA always less */
  654. /* > than and usually comparable with norm(B). */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[out] VSL */
  658. /* > \verbatim */
  659. /* > VSL is COMPLEX*16 array, dimension (LDVSL,N) */
  660. /* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
  661. /* > Not referenced if JOBVSL = 'N'. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[in] LDVSL */
  665. /* > \verbatim */
  666. /* > LDVSL is INTEGER */
  667. /* > The leading dimension of the matrix VSL. LDVSL >= 1, and */
  668. /* > if JOBVSL = 'V', LDVSL >= N. */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[out] VSR */
  672. /* > \verbatim */
  673. /* > VSR is COMPLEX*16 array, dimension (LDVSR,N) */
  674. /* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
  675. /* > Not referenced if JOBVSR = 'N'. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in] LDVSR */
  679. /* > \verbatim */
  680. /* > LDVSR is INTEGER */
  681. /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
  682. /* > if JOBVSR = 'V', LDVSR >= N. */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] WORK */
  686. /* > \verbatim */
  687. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  688. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[in] LWORK */
  692. /* > \verbatim */
  693. /* > LWORK is INTEGER */
  694. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  695. /* > For good performance, LWORK must generally be larger. */
  696. /* > */
  697. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  698. /* > only calculates the optimal size of the WORK array, returns */
  699. /* > this value as the first entry of the WORK array, and no error */
  700. /* > message related to LWORK is issued by XERBLA. */
  701. /* > \endverbatim */
  702. /* > */
  703. /* > \param[out] RWORK */
  704. /* > \verbatim */
  705. /* > RWORK is DOUBLE PRECISION array, dimension (8*N) */
  706. /* > \endverbatim */
  707. /* > */
  708. /* > \param[out] BWORK */
  709. /* > \verbatim */
  710. /* > BWORK is LOGICAL array, dimension (N) */
  711. /* > Not referenced if SORT = 'N'. */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[out] INFO */
  715. /* > \verbatim */
  716. /* > INFO is INTEGER */
  717. /* > = 0: successful exit */
  718. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  719. /* > =1,...,N: */
  720. /* > The QZ iteration failed. (A,B) are not in Schur */
  721. /* > form, but ALPHA(j) and BETA(j) should be correct for */
  722. /* > j=INFO+1,...,N. */
  723. /* > > N: =N+1: other than QZ iteration failed in ZHGEQZ */
  724. /* > =N+2: after reordering, roundoff changed values of */
  725. /* > some complex eigenvalues so that leading */
  726. /* > eigenvalues in the Generalized Schur form no */
  727. /* > longer satisfy SELCTG=.TRUE. This could also */
  728. /* > be caused due to scaling. */
  729. /* > =N+3: reordering failed in ZTGSEN. */
  730. /* > \endverbatim */
  731. /* Authors: */
  732. /* ======== */
  733. /* > \author Univ. of Tennessee */
  734. /* > \author Univ. of California Berkeley */
  735. /* > \author Univ. of Colorado Denver */
  736. /* > \author NAG Ltd. */
  737. /* > \date December 2016 */
  738. /* > \ingroup complex16GEeigen */
  739. /* ===================================================================== */
  740. /* Subroutine */ void zgges_(char *jobvsl, char *jobvsr, char *sort, logical
  741. (*selctg)(doublecomplex*,doublecomplex*), integer *n, doublecomplex *a,
  742. integer *lda, doublecomplex *b,
  743. integer *ldb, integer *sdim, doublecomplex *alpha, doublecomplex *
  744. beta, doublecomplex *vsl, integer *ldvsl, doublecomplex *vsr, integer
  745. *ldvsr, doublecomplex *work, integer *lwork, doublereal *rwork,
  746. logical *bwork, integer *info)
  747. {
  748. /* System generated locals */
  749. integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
  750. vsr_dim1, vsr_offset, i__1, i__2;
  751. /* Local variables */
  752. doublereal anrm, bnrm;
  753. integer idum[1], ierr, itau, iwrk;
  754. doublereal pvsl, pvsr;
  755. integer i__;
  756. extern logical lsame_(char *, char *);
  757. integer ileft, icols;
  758. logical cursl, ilvsl, ilvsr;
  759. integer irwrk, irows;
  760. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  761. extern doublereal dlamch_(char *);
  762. extern /* Subroutine */ void zggbak_(char *, char *, integer *, integer *,
  763. integer *, doublereal *, doublereal *, integer *, doublecomplex *,
  764. integer *, integer *), zggbal_(char *, integer *,
  765. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  766. , integer *, doublereal *, doublereal *, doublereal *, integer *);
  767. logical ilascl, ilbscl;
  768. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  769. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  770. integer *, integer *, ftnlen, ftnlen);
  771. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  772. integer *, doublereal *);
  773. doublereal bignum;
  774. integer ijobvl, iright;
  775. extern /* Subroutine */ void zgghrd_(char *, char *, integer *, integer *,
  776. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  777. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  778. ), zlascl_(char *, integer *, integer *,
  779. doublereal *, doublereal *, integer *, integer *, doublecomplex *,
  780. integer *, integer *);
  781. integer ijobvr;
  782. extern /* Subroutine */ void zgeqrf_(integer *, integer *, doublecomplex *,
  783. integer *, doublecomplex *, doublecomplex *, integer *, integer *
  784. );
  785. doublereal anrmto;
  786. integer lwkmin;
  787. logical lastsl;
  788. doublereal bnrmto;
  789. extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
  790. doublecomplex *, integer *, doublecomplex *, integer *),
  791. zlaset_(char *, integer *, integer *, doublecomplex *,
  792. doublecomplex *, doublecomplex *, integer *), zhgeqz_(
  793. char *, char *, char *, integer *, integer *, integer *,
  794. doublecomplex *, integer *, doublecomplex *, integer *,
  795. doublecomplex *, doublecomplex *, doublecomplex *, integer *,
  796. doublecomplex *, integer *, doublecomplex *, integer *,
  797. doublereal *, integer *), ztgsen_(integer
  798. *, logical *, logical *, logical *, integer *, doublecomplex *,
  799. integer *, doublecomplex *, integer *, doublecomplex *,
  800. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  801. integer *, integer *, doublereal *, doublereal *, doublereal *,
  802. doublecomplex *, integer *, integer *, integer *, integer *);
  803. doublereal smlnum;
  804. logical wantst, lquery;
  805. integer lwkopt;
  806. extern /* Subroutine */ void zungqr_(integer *, integer *, integer *,
  807. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  808. integer *, integer *), zunmqr_(char *, char *, integer *, integer
  809. *, integer *, doublecomplex *, integer *, doublecomplex *,
  810. doublecomplex *, integer *, doublecomplex *, integer *, integer *);
  811. doublereal dif[2];
  812. integer ihi, ilo;
  813. doublereal eps;
  814. /* -- LAPACK driver routine (version 3.7.0) -- */
  815. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  816. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  817. /* December 2016 */
  818. /* ===================================================================== */
  819. /* Decode the input arguments */
  820. /* Parameter adjustments */
  821. a_dim1 = *lda;
  822. a_offset = 1 + a_dim1 * 1;
  823. a -= a_offset;
  824. b_dim1 = *ldb;
  825. b_offset = 1 + b_dim1 * 1;
  826. b -= b_offset;
  827. --alpha;
  828. --beta;
  829. vsl_dim1 = *ldvsl;
  830. vsl_offset = 1 + vsl_dim1 * 1;
  831. vsl -= vsl_offset;
  832. vsr_dim1 = *ldvsr;
  833. vsr_offset = 1 + vsr_dim1 * 1;
  834. vsr -= vsr_offset;
  835. --work;
  836. --rwork;
  837. --bwork;
  838. /* Function Body */
  839. if (lsame_(jobvsl, "N")) {
  840. ijobvl = 1;
  841. ilvsl = FALSE_;
  842. } else if (lsame_(jobvsl, "V")) {
  843. ijobvl = 2;
  844. ilvsl = TRUE_;
  845. } else {
  846. ijobvl = -1;
  847. ilvsl = FALSE_;
  848. }
  849. if (lsame_(jobvsr, "N")) {
  850. ijobvr = 1;
  851. ilvsr = FALSE_;
  852. } else if (lsame_(jobvsr, "V")) {
  853. ijobvr = 2;
  854. ilvsr = TRUE_;
  855. } else {
  856. ijobvr = -1;
  857. ilvsr = FALSE_;
  858. }
  859. wantst = lsame_(sort, "S");
  860. /* Test the input arguments */
  861. *info = 0;
  862. lquery = *lwork == -1;
  863. if (ijobvl <= 0) {
  864. *info = -1;
  865. } else if (ijobvr <= 0) {
  866. *info = -2;
  867. } else if (! wantst && ! lsame_(sort, "N")) {
  868. *info = -3;
  869. } else if (*n < 0) {
  870. *info = -5;
  871. } else if (*lda < f2cmax(1,*n)) {
  872. *info = -7;
  873. } else if (*ldb < f2cmax(1,*n)) {
  874. *info = -9;
  875. } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
  876. *info = -14;
  877. } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
  878. *info = -16;
  879. }
  880. /* Compute workspace */
  881. /* (Note: Comments in the code beginning "Workspace:" describe the */
  882. /* minimal amount of workspace needed at that point in the code, */
  883. /* as well as the preferred amount for good performance. */
  884. /* NB refers to the optimal block size for the immediately */
  885. /* following subroutine, as returned by ILAENV.) */
  886. if (*info == 0) {
  887. /* Computing MAX */
  888. i__1 = 1, i__2 = *n << 1;
  889. lwkmin = f2cmax(i__1,i__2);
  890. /* Computing MAX */
  891. i__1 = 1, i__2 = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", n, &c__1, n,
  892. &c__0, (ftnlen)6, (ftnlen)1);
  893. lwkopt = f2cmax(i__1,i__2);
  894. /* Computing MAX */
  895. i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "ZUNMQR", " ", n, &
  896. c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  897. lwkopt = f2cmax(i__1,i__2);
  898. if (ilvsl) {
  899. /* Computing MAX */
  900. i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "ZUNGQR", " ", n, &
  901. c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  902. lwkopt = f2cmax(i__1,i__2);
  903. }
  904. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  905. if (*lwork < lwkmin && ! lquery) {
  906. *info = -18;
  907. }
  908. }
  909. if (*info != 0) {
  910. i__1 = -(*info);
  911. xerbla_("ZGGES ", &i__1, (ftnlen)6);
  912. return;
  913. } else if (lquery) {
  914. return;
  915. }
  916. /* Quick return if possible */
  917. if (*n == 0) {
  918. *sdim = 0;
  919. return;
  920. }
  921. /* Get machine constants */
  922. eps = dlamch_("P");
  923. smlnum = dlamch_("S");
  924. bignum = 1. / smlnum;
  925. dlabad_(&smlnum, &bignum);
  926. smlnum = sqrt(smlnum) / eps;
  927. bignum = 1. / smlnum;
  928. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  929. anrm = zlange_("M", n, n, &a[a_offset], lda, &rwork[1]);
  930. ilascl = FALSE_;
  931. if (anrm > 0. && anrm < smlnum) {
  932. anrmto = smlnum;
  933. ilascl = TRUE_;
  934. } else if (anrm > bignum) {
  935. anrmto = bignum;
  936. ilascl = TRUE_;
  937. }
  938. if (ilascl) {
  939. zlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  940. ierr);
  941. }
  942. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  943. bnrm = zlange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
  944. ilbscl = FALSE_;
  945. if (bnrm > 0. && bnrm < smlnum) {
  946. bnrmto = smlnum;
  947. ilbscl = TRUE_;
  948. } else if (bnrm > bignum) {
  949. bnrmto = bignum;
  950. ilbscl = TRUE_;
  951. }
  952. if (ilbscl) {
  953. zlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  954. ierr);
  955. }
  956. /* Permute the matrix to make it more nearly triangular */
  957. /* (Real Workspace: need 6*N) */
  958. ileft = 1;
  959. iright = *n + 1;
  960. irwrk = iright + *n;
  961. zggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
  962. ileft], &rwork[iright], &rwork[irwrk], &ierr);
  963. /* Reduce B to triangular form (QR decomposition of B) */
  964. /* (Complex Workspace: need N, prefer N*NB) */
  965. irows = ihi + 1 - ilo;
  966. icols = *n + 1 - ilo;
  967. itau = 1;
  968. iwrk = itau + irows;
  969. i__1 = *lwork + 1 - iwrk;
  970. zgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  971. iwrk], &i__1, &ierr);
  972. /* Apply the orthogonal transformation to matrix A */
  973. /* (Complex Workspace: need N, prefer N*NB) */
  974. i__1 = *lwork + 1 - iwrk;
  975. zunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  976. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  977. ierr);
  978. /* Initialize VSL */
  979. /* (Complex Workspace: need N, prefer N*NB) */
  980. if (ilvsl) {
  981. zlaset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl);
  982. if (irows > 1) {
  983. i__1 = irows - 1;
  984. i__2 = irows - 1;
  985. zlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
  986. ilo + 1 + ilo * vsl_dim1], ldvsl);
  987. }
  988. i__1 = *lwork + 1 - iwrk;
  989. zungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
  990. work[itau], &work[iwrk], &i__1, &ierr);
  991. }
  992. /* Initialize VSR */
  993. if (ilvsr) {
  994. zlaset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr);
  995. }
  996. /* Reduce to generalized Hessenberg form */
  997. /* (Workspace: none needed) */
  998. zgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  999. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
  1000. *sdim = 0;
  1001. /* Perform QZ algorithm, computing Schur vectors if desired */
  1002. /* (Complex Workspace: need N) */
  1003. /* (Real Workspace: need N) */
  1004. iwrk = itau;
  1005. i__1 = *lwork + 1 - iwrk;
  1006. zhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  1007. b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &
  1008. vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &rwork[irwrk], &ierr);
  1009. if (ierr != 0) {
  1010. if (ierr > 0 && ierr <= *n) {
  1011. *info = ierr;
  1012. } else if (ierr > *n && ierr <= *n << 1) {
  1013. *info = ierr - *n;
  1014. } else {
  1015. *info = *n + 1;
  1016. }
  1017. goto L30;
  1018. }
  1019. /* Sort eigenvalues ALPHA/BETA if desired */
  1020. /* (Workspace: none needed) */
  1021. if (wantst) {
  1022. /* Undo scaling on eigenvalues before selecting */
  1023. if (ilascl) {
  1024. zlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, &c__1, &alpha[1], n,
  1025. &ierr);
  1026. }
  1027. if (ilbscl) {
  1028. zlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, &c__1, &beta[1], n,
  1029. &ierr);
  1030. }
  1031. /* Select eigenvalues */
  1032. i__1 = *n;
  1033. for (i__ = 1; i__ <= i__1; ++i__) {
  1034. bwork[i__] = (*selctg)(&alpha[i__], &beta[i__]);
  1035. /* L10: */
  1036. }
  1037. i__1 = *lwork - iwrk + 1;
  1038. ztgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
  1039. b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl,
  1040. &vsr[vsr_offset], ldvsr, sdim, &pvsl, &pvsr, dif, &work[iwrk],
  1041. &i__1, idum, &c__1, &ierr);
  1042. if (ierr == 1) {
  1043. *info = *n + 3;
  1044. }
  1045. }
  1046. /* Apply back-permutation to VSL and VSR */
  1047. /* (Workspace: none needed) */
  1048. if (ilvsl) {
  1049. zggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
  1050. vsl[vsl_offset], ldvsl, &ierr);
  1051. }
  1052. if (ilvsr) {
  1053. zggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
  1054. vsr[vsr_offset], ldvsr, &ierr);
  1055. }
  1056. /* Undo scaling */
  1057. if (ilascl) {
  1058. zlascl_("U", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
  1059. ierr);
  1060. zlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
  1061. ierr);
  1062. }
  1063. if (ilbscl) {
  1064. zlascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
  1065. ierr);
  1066. zlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1067. ierr);
  1068. }
  1069. if (wantst) {
  1070. /* Check if reordering is correct */
  1071. lastsl = TRUE_;
  1072. *sdim = 0;
  1073. i__1 = *n;
  1074. for (i__ = 1; i__ <= i__1; ++i__) {
  1075. cursl = (*selctg)(&alpha[i__], &beta[i__]);
  1076. if (cursl) {
  1077. ++(*sdim);
  1078. }
  1079. if (cursl && ! lastsl) {
  1080. *info = *n + 2;
  1081. }
  1082. lastsl = cursl;
  1083. /* L20: */
  1084. }
  1085. }
  1086. L30:
  1087. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  1088. return;
  1089. /* End of ZGGES */
  1090. } /* zgges_ */