You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgges3.c 36 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static complex c_b2 = {1.f,0.f};
  486. static integer c_n1 = -1;
  487. static integer c__1 = 1;
  488. static integer c__0 = 0;
  489. /* > \brief <b> CGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
  490. for GE matrices (blocked algorithm)</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CGGES3 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgges3.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgges3.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgges3.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, */
  509. /* $ LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, */
  510. /* $ WORK, LWORK, RWORK, BWORK, INFO ) */
  511. /* CHARACTER JOBVSL, JOBVSR, SORT */
  512. /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */
  513. /* LOGICAL BWORK( * ) */
  514. /* REAL RWORK( * ) */
  515. /* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), */
  516. /* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), */
  517. /* $ WORK( * ) */
  518. /* LOGICAL SELCTG */
  519. /* EXTERNAL SELCTG */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > CGGES3 computes for a pair of N-by-N complex nonsymmetric matrices */
  526. /* > (A,B), the generalized eigenvalues, the generalized complex Schur */
  527. /* > form (S, T), and optionally left and/or right Schur vectors (VSL */
  528. /* > and VSR). This gives the generalized Schur factorization */
  529. /* > */
  530. /* > (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H ) */
  531. /* > */
  532. /* > where (VSR)**H is the conjugate-transpose of VSR. */
  533. /* > */
  534. /* > Optionally, it also orders the eigenvalues so that a selected cluster */
  535. /* > of eigenvalues appears in the leading diagonal blocks of the upper */
  536. /* > triangular matrix S and the upper triangular matrix T. The leading */
  537. /* > columns of VSL and VSR then form an unitary basis for the */
  538. /* > corresponding left and right eigenspaces (deflating subspaces). */
  539. /* > */
  540. /* > (If only the generalized eigenvalues are needed, use the driver */
  541. /* > CGGEV instead, which is faster.) */
  542. /* > */
  543. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
  544. /* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
  545. /* > usually represented as the pair (alpha,beta), as there is a */
  546. /* > reasonable interpretation for beta=0, and even for both being zero. */
  547. /* > */
  548. /* > A pair of matrices (S,T) is in generalized complex Schur form if S */
  549. /* > and T are upper triangular and, in addition, the diagonal elements */
  550. /* > of T are non-negative real numbers. */
  551. /* > \endverbatim */
  552. /* Arguments: */
  553. /* ========== */
  554. /* > \param[in] JOBVSL */
  555. /* > \verbatim */
  556. /* > JOBVSL is CHARACTER*1 */
  557. /* > = 'N': do not compute the left Schur vectors; */
  558. /* > = 'V': compute the left Schur vectors. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] JOBVSR */
  562. /* > \verbatim */
  563. /* > JOBVSR is CHARACTER*1 */
  564. /* > = 'N': do not compute the right Schur vectors; */
  565. /* > = 'V': compute the right Schur vectors. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] SORT */
  569. /* > \verbatim */
  570. /* > SORT is CHARACTER*1 */
  571. /* > Specifies whether or not to order the eigenvalues on the */
  572. /* > diagonal of the generalized Schur form. */
  573. /* > = 'N': Eigenvalues are not ordered; */
  574. /* > = 'S': Eigenvalues are ordered (see SELCTG). */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] SELCTG */
  578. /* > \verbatim */
  579. /* > SELCTG is a LOGICAL FUNCTION of two COMPLEX arguments */
  580. /* > SELCTG must be declared EXTERNAL in the calling subroutine. */
  581. /* > If SORT = 'N', SELCTG is not referenced. */
  582. /* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
  583. /* > to the top left of the Schur form. */
  584. /* > An eigenvalue ALPHA(j)/BETA(j) is selected if */
  585. /* > SELCTG(ALPHA(j),BETA(j)) is true. */
  586. /* > */
  587. /* > Note that a selected complex eigenvalue may no longer satisfy */
  588. /* > SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since */
  589. /* > ordering may change the value of complex eigenvalues */
  590. /* > (especially if the eigenvalue is ill-conditioned), in this */
  591. /* > case INFO is set to N+2 (See INFO below). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] N */
  595. /* > \verbatim */
  596. /* > N is INTEGER */
  597. /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] A */
  601. /* > \verbatim */
  602. /* > A is COMPLEX array, dimension (LDA, N) */
  603. /* > On entry, the first of the pair of matrices. */
  604. /* > On exit, A has been overwritten by its generalized Schur */
  605. /* > form S. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDA */
  609. /* > \verbatim */
  610. /* > LDA is INTEGER */
  611. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in,out] B */
  615. /* > \verbatim */
  616. /* > B is COMPLEX array, dimension (LDB, N) */
  617. /* > On entry, the second of the pair of matrices. */
  618. /* > On exit, B has been overwritten by its generalized Schur */
  619. /* > form T. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] LDB */
  623. /* > \verbatim */
  624. /* > LDB is INTEGER */
  625. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] SDIM */
  629. /* > \verbatim */
  630. /* > SDIM is INTEGER */
  631. /* > If SORT = 'N', SDIM = 0. */
  632. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  633. /* > for which SELCTG is true. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] ALPHA */
  637. /* > \verbatim */
  638. /* > ALPHA is COMPLEX array, dimension (N) */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] BETA */
  642. /* > \verbatim */
  643. /* > BETA is COMPLEX array, dimension (N) */
  644. /* > On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the */
  645. /* > generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j), */
  646. /* > j=1,...,N are the diagonals of the complex Schur form (A,B) */
  647. /* > output by CGGES3. The BETA(j) will be non-negative real. */
  648. /* > */
  649. /* > Note: the quotients ALPHA(j)/BETA(j) may easily over- or */
  650. /* > underflow, and BETA(j) may even be zero. Thus, the user */
  651. /* > should avoid naively computing the ratio alpha/beta. */
  652. /* > However, ALPHA will be always less than and usually */
  653. /* > comparable with norm(A) in magnitude, and BETA always less */
  654. /* > than and usually comparable with norm(B). */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[out] VSL */
  658. /* > \verbatim */
  659. /* > VSL is COMPLEX array, dimension (LDVSL,N) */
  660. /* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
  661. /* > Not referenced if JOBVSL = 'N'. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[in] LDVSL */
  665. /* > \verbatim */
  666. /* > LDVSL is INTEGER */
  667. /* > The leading dimension of the matrix VSL. LDVSL >= 1, and */
  668. /* > if JOBVSL = 'V', LDVSL >= N. */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[out] VSR */
  672. /* > \verbatim */
  673. /* > VSR is COMPLEX array, dimension (LDVSR,N) */
  674. /* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
  675. /* > Not referenced if JOBVSR = 'N'. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in] LDVSR */
  679. /* > \verbatim */
  680. /* > LDVSR is INTEGER */
  681. /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
  682. /* > if JOBVSR = 'V', LDVSR >= N. */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] WORK */
  686. /* > \verbatim */
  687. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  688. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[in] LWORK */
  692. /* > \verbatim */
  693. /* > LWORK is INTEGER */
  694. /* > The dimension of the array WORK. */
  695. /* > */
  696. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  697. /* > only calculates the optimal size of the WORK array, returns */
  698. /* > this value as the first entry of the WORK array, and no error */
  699. /* > message related to LWORK is issued by XERBLA. */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[out] RWORK */
  703. /* > \verbatim */
  704. /* > RWORK is REAL array, dimension (8*N) */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[out] BWORK */
  708. /* > \verbatim */
  709. /* > BWORK is LOGICAL array, dimension (N) */
  710. /* > Not referenced if SORT = 'N'. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[out] INFO */
  714. /* > \verbatim */
  715. /* > INFO is INTEGER */
  716. /* > = 0: successful exit */
  717. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  718. /* > =1,...,N: */
  719. /* > The QZ iteration failed. (A,B) are not in Schur */
  720. /* > form, but ALPHA(j) and BETA(j) should be correct for */
  721. /* > j=INFO+1,...,N. */
  722. /* > > N: =N+1: other than QZ iteration failed in CHGEQZ */
  723. /* > =N+2: after reordering, roundoff changed values of */
  724. /* > some complex eigenvalues so that leading */
  725. /* > eigenvalues in the Generalized Schur form no */
  726. /* > longer satisfy SELCTG=.TRUE. This could also */
  727. /* > be caused due to scaling. */
  728. /* > =N+3: reordering failed in CTGSEN. */
  729. /* > \endverbatim */
  730. /* Authors: */
  731. /* ======== */
  732. /* > \author Univ. of Tennessee */
  733. /* > \author Univ. of California Berkeley */
  734. /* > \author Univ. of Colorado Denver */
  735. /* > \author NAG Ltd. */
  736. /* > \date January 2015 */
  737. /* > \ingroup complexGEeigen */
  738. /* ===================================================================== */
  739. /* Subroutine */ void cgges3_(char *jobvsl, char *jobvsr, char *sort, logical
  740. (*selctg)(complex*,complex*), integer *n, complex *a, integer *lda, complex *b, integer *
  741. ldb, integer *sdim, complex *alpha, complex *beta, complex *vsl,
  742. integer *ldvsl, complex *vsr, integer *ldvsr, complex *work, integer *
  743. lwork, real *rwork, logical *bwork, integer *info)
  744. {
  745. /* System generated locals */
  746. integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
  747. vsr_dim1, vsr_offset, i__1, i__2;
  748. complex q__1;
  749. /* Local variables */
  750. real anrm, bnrm;
  751. integer idum[1], ierr, itau, iwrk;
  752. real pvsl, pvsr;
  753. integer i__;
  754. extern logical lsame_(char *, char *);
  755. integer ileft, icols;
  756. logical cursl, ilvsl, ilvsr;
  757. integer irwrk;
  758. extern /* Subroutine */ void cgghd3_(char *, char *, integer *, integer *,
  759. integer *, complex *, integer *, complex *, integer *, complex *,
  760. integer *, complex *, integer *, complex *, integer *, integer *);
  761. integer irows;
  762. extern /* Subroutine */ void cggbak_(char *, char *, integer *, integer *,
  763. integer *, real *, real *, integer *, complex *, integer *,
  764. integer *), cggbal_(char *, integer *, complex *,
  765. integer *, complex *, integer *, integer *, integer *, real *,
  766. real *, real *, integer *), slabad_(real *, real *);
  767. extern real clange_(char *, integer *, integer *, complex *, integer *,
  768. real *);
  769. extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
  770. real *, integer *, integer *, complex *, integer *, integer *);
  771. logical ilascl, ilbscl;
  772. extern /* Subroutine */ void cgeqrf_(integer *, integer *, complex *,
  773. integer *, complex *, complex *, integer *, integer *);
  774. extern real slamch_(char *);
  775. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  776. *, integer *, complex *, integer *), claset_(char *,
  777. integer *, integer *, complex *, complex *, complex *, integer *);
  778. extern int xerbla_(char *, integer *, ftnlen);
  779. real bignum;
  780. extern /* Subroutine */ void chgeqz_(char *, char *, char *, integer *,
  781. integer *, integer *, complex *, integer *, complex *, integer *,
  782. complex *, complex *, complex *, integer *, complex *, integer *,
  783. complex *, integer *, real *, integer *),
  784. ctgsen_(integer *, logical *, logical *, logical *, integer *,
  785. complex *, integer *, complex *, integer *, complex *, complex *,
  786. complex *, integer *, complex *, integer *, integer *, real *,
  787. real *, real *, complex *, integer *, integer *, integer *,
  788. integer *);
  789. integer ijobvl, iright, ijobvr;
  790. real anrmto, bnrmto;
  791. logical lastsl;
  792. extern /* Subroutine */ void cungqr_(integer *, integer *, integer *,
  793. complex *, integer *, complex *, complex *, integer *, integer *),
  794. cunmqr_(char *, char *, integer *, integer *, integer *, complex
  795. *, integer *, complex *, complex *, integer *, complex *, integer
  796. *, integer *);
  797. real smlnum;
  798. logical wantst, lquery;
  799. integer lwkopt;
  800. real dif[2];
  801. integer ihi, ilo;
  802. real eps;
  803. /* -- LAPACK driver routine (version 3.6.1) -- */
  804. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  805. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  806. /* January 2015 */
  807. /* ===================================================================== */
  808. /* Decode the input arguments */
  809. /* Parameter adjustments */
  810. a_dim1 = *lda;
  811. a_offset = 1 + a_dim1 * 1;
  812. a -= a_offset;
  813. b_dim1 = *ldb;
  814. b_offset = 1 + b_dim1 * 1;
  815. b -= b_offset;
  816. --alpha;
  817. --beta;
  818. vsl_dim1 = *ldvsl;
  819. vsl_offset = 1 + vsl_dim1 * 1;
  820. vsl -= vsl_offset;
  821. vsr_dim1 = *ldvsr;
  822. vsr_offset = 1 + vsr_dim1 * 1;
  823. vsr -= vsr_offset;
  824. --work;
  825. --rwork;
  826. --bwork;
  827. /* Function Body */
  828. if (lsame_(jobvsl, "N")) {
  829. ijobvl = 1;
  830. ilvsl = FALSE_;
  831. } else if (lsame_(jobvsl, "V")) {
  832. ijobvl = 2;
  833. ilvsl = TRUE_;
  834. } else {
  835. ijobvl = -1;
  836. ilvsl = FALSE_;
  837. }
  838. if (lsame_(jobvsr, "N")) {
  839. ijobvr = 1;
  840. ilvsr = FALSE_;
  841. } else if (lsame_(jobvsr, "V")) {
  842. ijobvr = 2;
  843. ilvsr = TRUE_;
  844. } else {
  845. ijobvr = -1;
  846. ilvsr = FALSE_;
  847. }
  848. wantst = lsame_(sort, "S");
  849. /* Test the input arguments */
  850. *info = 0;
  851. lquery = *lwork == -1;
  852. if (ijobvl <= 0) {
  853. *info = -1;
  854. } else if (ijobvr <= 0) {
  855. *info = -2;
  856. } else if (! wantst && ! lsame_(sort, "N")) {
  857. *info = -3;
  858. } else if (*n < 0) {
  859. *info = -5;
  860. } else if (*lda < f2cmax(1,*n)) {
  861. *info = -7;
  862. } else if (*ldb < f2cmax(1,*n)) {
  863. *info = -9;
  864. } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
  865. *info = -14;
  866. } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
  867. *info = -16;
  868. } else /* if(complicated condition) */ {
  869. /* Computing MAX */
  870. i__1 = 1, i__2 = *n << 1;
  871. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  872. *info = -18;
  873. }
  874. }
  875. /* Compute workspace */
  876. if (*info == 0) {
  877. cgeqrf_(n, n, &b[b_offset], ldb, &work[1], &work[1], &c_n1, &ierr);
  878. /* Computing MAX */
  879. i__1 = 1, i__2 = *n + (integer) work[1].r;
  880. lwkopt = f2cmax(i__1,i__2);
  881. cunmqr_("L", "C", n, n, n, &b[b_offset], ldb, &work[1], &a[a_offset],
  882. lda, &work[1], &c_n1, &ierr);
  883. /* Computing MAX */
  884. i__1 = lwkopt, i__2 = *n + (integer) work[1].r;
  885. lwkopt = f2cmax(i__1,i__2);
  886. if (ilvsl) {
  887. cungqr_(n, n, n, &vsl[vsl_offset], ldvsl, &work[1], &work[1], &
  888. c_n1, &ierr);
  889. /* Computing MAX */
  890. i__1 = lwkopt, i__2 = *n + (integer) work[1].r;
  891. lwkopt = f2cmax(i__1,i__2);
  892. }
  893. cgghd3_(jobvsl, jobvsr, n, &c__1, n, &a[a_offset], lda, &b[b_offset],
  894. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[
  895. 1], &c_n1, &ierr);
  896. /* Computing MAX */
  897. i__1 = lwkopt, i__2 = *n + (integer) work[1].r;
  898. lwkopt = f2cmax(i__1,i__2);
  899. chgeqz_("S", jobvsl, jobvsr, n, &c__1, n, &a[a_offset], lda, &b[
  900. b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl,
  901. &vsr[vsr_offset], ldvsr, &work[1], &c_n1, &rwork[1], &ierr);
  902. /* Computing MAX */
  903. i__1 = lwkopt, i__2 = (integer) work[1].r;
  904. lwkopt = f2cmax(i__1,i__2);
  905. if (wantst) {
  906. ctgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &
  907. b[b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset],
  908. ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, &pvsr, dif, &
  909. work[1], &c_n1, idum, &c__1, &ierr);
  910. /* Computing MAX */
  911. i__1 = lwkopt, i__2 = (integer) work[1].r;
  912. lwkopt = f2cmax(i__1,i__2);
  913. }
  914. q__1.r = (real) lwkopt, q__1.i = 0.f;
  915. work[1].r = q__1.r, work[1].i = q__1.i;
  916. }
  917. if (*info != 0) {
  918. i__1 = -(*info);
  919. xerbla_("CGGES3 ", &i__1, (ftnlen)7);
  920. return;
  921. } else if (lquery) {
  922. return;
  923. }
  924. /* Quick return if possible */
  925. if (*n == 0) {
  926. *sdim = 0;
  927. return;
  928. }
  929. /* Get machine constants */
  930. eps = slamch_("P");
  931. smlnum = slamch_("S");
  932. bignum = 1.f / smlnum;
  933. slabad_(&smlnum, &bignum);
  934. smlnum = sqrt(smlnum) / eps;
  935. bignum = 1.f / smlnum;
  936. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  937. anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
  938. ilascl = FALSE_;
  939. if (anrm > 0.f && anrm < smlnum) {
  940. anrmto = smlnum;
  941. ilascl = TRUE_;
  942. } else if (anrm > bignum) {
  943. anrmto = bignum;
  944. ilascl = TRUE_;
  945. }
  946. if (ilascl) {
  947. clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  948. ierr);
  949. }
  950. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  951. bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
  952. ilbscl = FALSE_;
  953. if (bnrm > 0.f && bnrm < smlnum) {
  954. bnrmto = smlnum;
  955. ilbscl = TRUE_;
  956. } else if (bnrm > bignum) {
  957. bnrmto = bignum;
  958. ilbscl = TRUE_;
  959. }
  960. if (ilbscl) {
  961. clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  962. ierr);
  963. }
  964. /* Permute the matrix to make it more nearly triangular */
  965. ileft = 1;
  966. iright = *n + 1;
  967. irwrk = iright + *n;
  968. cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
  969. ileft], &rwork[iright], &rwork[irwrk], &ierr);
  970. /* Reduce B to triangular form (QR decomposition of B) */
  971. irows = ihi + 1 - ilo;
  972. icols = *n + 1 - ilo;
  973. itau = 1;
  974. iwrk = itau + irows;
  975. i__1 = *lwork + 1 - iwrk;
  976. cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  977. iwrk], &i__1, &ierr);
  978. /* Apply the orthogonal transformation to matrix A */
  979. i__1 = *lwork + 1 - iwrk;
  980. cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  981. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  982. ierr);
  983. /* Initialize VSL */
  984. if (ilvsl) {
  985. claset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl);
  986. if (irows > 1) {
  987. i__1 = irows - 1;
  988. i__2 = irows - 1;
  989. clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
  990. ilo + 1 + ilo * vsl_dim1], ldvsl);
  991. }
  992. i__1 = *lwork + 1 - iwrk;
  993. cungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
  994. work[itau], &work[iwrk], &i__1, &ierr);
  995. }
  996. /* Initialize VSR */
  997. if (ilvsr) {
  998. claset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr);
  999. }
  1000. /* Reduce to generalized Hessenberg form */
  1001. i__1 = *lwork + 1 - iwrk;
  1002. cgghd3_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  1003. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk]
  1004. , &i__1, &ierr);
  1005. *sdim = 0;
  1006. /* Perform QZ algorithm, computing Schur vectors if desired */
  1007. iwrk = itau;
  1008. i__1 = *lwork + 1 - iwrk;
  1009. chgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  1010. b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &
  1011. vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &rwork[irwrk], &ierr);
  1012. if (ierr != 0) {
  1013. if (ierr > 0 && ierr <= *n) {
  1014. *info = ierr;
  1015. } else if (ierr > *n && ierr <= *n << 1) {
  1016. *info = ierr - *n;
  1017. } else {
  1018. *info = *n + 1;
  1019. }
  1020. goto L30;
  1021. }
  1022. /* Sort eigenvalues ALPHA/BETA if desired */
  1023. if (wantst) {
  1024. /* Undo scaling on eigenvalues before selecting */
  1025. if (ilascl) {
  1026. clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, &c__1, &alpha[1], n,
  1027. &ierr);
  1028. }
  1029. if (ilbscl) {
  1030. clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, &c__1, &beta[1], n,
  1031. &ierr);
  1032. }
  1033. /* Select eigenvalues */
  1034. i__1 = *n;
  1035. for (i__ = 1; i__ <= i__1; ++i__) {
  1036. bwork[i__] = (*selctg)(&alpha[i__], &beta[i__]);
  1037. /* L10: */
  1038. }
  1039. i__1 = *lwork - iwrk + 1;
  1040. ctgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
  1041. b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl,
  1042. &vsr[vsr_offset], ldvsr, sdim, &pvsl, &pvsr, dif, &work[iwrk],
  1043. &i__1, idum, &c__1, &ierr);
  1044. if (ierr == 1) {
  1045. *info = *n + 3;
  1046. }
  1047. }
  1048. /* Apply back-permutation to VSL and VSR */
  1049. if (ilvsl) {
  1050. cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
  1051. vsl[vsl_offset], ldvsl, &ierr);
  1052. }
  1053. if (ilvsr) {
  1054. cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
  1055. vsr[vsr_offset], ldvsr, &ierr);
  1056. }
  1057. /* Undo scaling */
  1058. if (ilascl) {
  1059. clascl_("U", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
  1060. ierr);
  1061. clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
  1062. ierr);
  1063. }
  1064. if (ilbscl) {
  1065. clascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
  1066. ierr);
  1067. clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1068. ierr);
  1069. }
  1070. if (wantst) {
  1071. /* Check if reordering is correct */
  1072. lastsl = TRUE_;
  1073. *sdim = 0;
  1074. i__1 = *n;
  1075. for (i__ = 1; i__ <= i__1; ++i__) {
  1076. cursl = (*selctg)(&alpha[i__], &beta[i__]);
  1077. if (cursl) {
  1078. ++(*sdim);
  1079. }
  1080. if (cursl && ! lastsl) {
  1081. *info = *n + 2;
  1082. }
  1083. lastsl = cursl;
  1084. /* L20: */
  1085. }
  1086. }
  1087. L30:
  1088. q__1.r = (real) lwkopt, q__1.i = 0.f;
  1089. work[1].r = q__1.r, work[1].i = q__1.i;
  1090. return;
  1091. /* End of CGGES3 */
  1092. } /* cgges3_ */