You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgeev.c 35 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__0 = 0;
  486. static integer c_n1 = -1;
  487. /* > \brief <b> DGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matr
  488. ices</b> */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DGEEV + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeev.f
  495. "> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeev.f
  498. "> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeev.f
  501. "> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR, */
  507. /* LDVR, WORK, LWORK, INFO ) */
  508. /* CHARACTER JOBVL, JOBVR */
  509. /* INTEGER INFO, LDA, LDVL, LDVR, LWORK, N */
  510. /* DOUBLE PRECISION A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), */
  511. /* $ WI( * ), WORK( * ), WR( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > DGEEV computes for an N-by-N real nonsymmetric matrix A, the */
  518. /* > eigenvalues and, optionally, the left and/or right eigenvectors. */
  519. /* > */
  520. /* > The right eigenvector v(j) of A satisfies */
  521. /* > A * v(j) = lambda(j) * v(j) */
  522. /* > where lambda(j) is its eigenvalue. */
  523. /* > The left eigenvector u(j) of A satisfies */
  524. /* > u(j)**H * A = lambda(j) * u(j)**H */
  525. /* > where u(j)**H denotes the conjugate-transpose of u(j). */
  526. /* > */
  527. /* > The computed eigenvectors are normalized to have Euclidean norm */
  528. /* > equal to 1 and largest component real. */
  529. /* > \endverbatim */
  530. /* Arguments: */
  531. /* ========== */
  532. /* > \param[in] JOBVL */
  533. /* > \verbatim */
  534. /* > JOBVL is CHARACTER*1 */
  535. /* > = 'N': left eigenvectors of A are not computed; */
  536. /* > = 'V': left eigenvectors of A are computed. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] JOBVR */
  540. /* > \verbatim */
  541. /* > JOBVR is CHARACTER*1 */
  542. /* > = 'N': right eigenvectors of A are not computed; */
  543. /* > = 'V': right eigenvectors of A are computed. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The order of the matrix A. N >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in,out] A */
  553. /* > \verbatim */
  554. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  555. /* > On entry, the N-by-N matrix A. */
  556. /* > On exit, A has been overwritten. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] LDA */
  560. /* > \verbatim */
  561. /* > LDA is INTEGER */
  562. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] WR */
  566. /* > \verbatim */
  567. /* > WR is DOUBLE PRECISION array, dimension (N) */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[out] WI */
  571. /* > \verbatim */
  572. /* > WI is DOUBLE PRECISION array, dimension (N) */
  573. /* > WR and WI contain the real and imaginary parts, */
  574. /* > respectively, of the computed eigenvalues. Complex */
  575. /* > conjugate pairs of eigenvalues appear consecutively */
  576. /* > with the eigenvalue having the positive imaginary part */
  577. /* > first. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[out] VL */
  581. /* > \verbatim */
  582. /* > VL is DOUBLE PRECISION array, dimension (LDVL,N) */
  583. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  584. /* > after another in the columns of VL, in the same order */
  585. /* > as their eigenvalues. */
  586. /* > If JOBVL = 'N', VL is not referenced. */
  587. /* > If the j-th eigenvalue is real, then u(j) = VL(:,j), */
  588. /* > the j-th column of VL. */
  589. /* > If the j-th and (j+1)-st eigenvalues form a complex */
  590. /* > conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
  591. /* > u(j+1) = VL(:,j) - i*VL(:,j+1). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDVL */
  595. /* > \verbatim */
  596. /* > LDVL is INTEGER */
  597. /* > The leading dimension of the array VL. LDVL >= 1; if */
  598. /* > JOBVL = 'V', LDVL >= N. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] VR */
  602. /* > \verbatim */
  603. /* > VR is DOUBLE PRECISION array, dimension (LDVR,N) */
  604. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  605. /* > after another in the columns of VR, in the same order */
  606. /* > as their eigenvalues. */
  607. /* > If JOBVR = 'N', VR is not referenced. */
  608. /* > If the j-th eigenvalue is real, then v(j) = VR(:,j), */
  609. /* > the j-th column of VR. */
  610. /* > If the j-th and (j+1)-st eigenvalues form a complex */
  611. /* > conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
  612. /* > v(j+1) = VR(:,j) - i*VR(:,j+1). */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] LDVR */
  616. /* > \verbatim */
  617. /* > LDVR is INTEGER */
  618. /* > The leading dimension of the array VR. LDVR >= 1; if */
  619. /* > JOBVR = 'V', LDVR >= N. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] WORK */
  623. /* > \verbatim */
  624. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  625. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] LWORK */
  629. /* > \verbatim */
  630. /* > LWORK is INTEGER */
  631. /* > The dimension of the array WORK. LWORK >= f2cmax(1,3*N), and */
  632. /* > if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good */
  633. /* > performance, LWORK must generally be larger. */
  634. /* > */
  635. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  636. /* > only calculates the optimal size of the WORK array, returns */
  637. /* > this value as the first entry of the WORK array, and no error */
  638. /* > message related to LWORK is issued by XERBLA. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] INFO */
  642. /* > \verbatim */
  643. /* > INFO is INTEGER */
  644. /* > = 0: successful exit */
  645. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  646. /* > > 0: if INFO = i, the QR algorithm failed to compute all the */
  647. /* > eigenvalues, and no eigenvectors have been computed; */
  648. /* > elements i+1:N of WR and WI contain eigenvalues which */
  649. /* > have converged. */
  650. /* > \endverbatim */
  651. /* Authors: */
  652. /* ======== */
  653. /* > \author Univ. of Tennessee */
  654. /* > \author Univ. of California Berkeley */
  655. /* > \author Univ. of Colorado Denver */
  656. /* > \author NAG Ltd. */
  657. /* > \date June 2016 */
  658. /* @precisions fortran d -> s */
  659. /* > \ingroup doubleGEeigen */
  660. /* ===================================================================== */
  661. /* Subroutine */ void dgeev_(char *jobvl, char *jobvr, integer *n, doublereal *
  662. a, integer *lda, doublereal *wr, doublereal *wi, doublereal *vl,
  663. integer *ldvl, doublereal *vr, integer *ldvr, doublereal *work,
  664. integer *lwork, integer *info)
  665. {
  666. /* System generated locals */
  667. integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  668. i__2, i__3;
  669. doublereal d__1, d__2;
  670. /* Local variables */
  671. integer ibal;
  672. char side[1];
  673. doublereal anrm;
  674. integer ierr, itau;
  675. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  676. doublereal *, integer *, doublereal *, doublereal *);
  677. integer iwrk, nout;
  678. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  679. integer i__, k;
  680. doublereal r__;
  681. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  682. integer *);
  683. extern logical lsame_(char *, char *);
  684. extern doublereal dlapy2_(doublereal *, doublereal *);
  685. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *), dgebak_(
  686. char *, char *, integer *, integer *, integer *, doublereal *,
  687. integer *, doublereal *, integer *, integer *),
  688. dgebal_(char *, integer *, doublereal *, integer *, integer *,
  689. integer *, doublereal *, integer *);
  690. doublereal cs;
  691. logical scalea;
  692. extern doublereal dlamch_(char *);
  693. doublereal cscale;
  694. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  695. integer *, doublereal *);
  696. extern /* Subroutine */ void dgehrd_(integer *, integer *, integer *,
  697. doublereal *, integer *, doublereal *, doublereal *, integer *,
  698. integer *);
  699. doublereal sn;
  700. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  701. doublereal *, doublereal *, integer *, integer *, doublereal *,
  702. integer *, integer *);
  703. extern integer idamax_(integer *, doublereal *, integer *);
  704. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  705. doublereal *, integer *, doublereal *, integer *),
  706. dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  707. doublereal *);
  708. extern int xerbla_(char *, integer *, ftnlen);
  709. logical select[1];
  710. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  711. integer *, integer *, ftnlen, ftnlen);
  712. doublereal bignum;
  713. extern /* Subroutine */ void dorghr_(integer *, integer *, integer *,
  714. doublereal *, integer *, doublereal *, doublereal *, integer *,
  715. integer *), dhseqr_(char *, char *, integer *, integer *, integer
  716. *, doublereal *, integer *, doublereal *, doublereal *,
  717. doublereal *, integer *, doublereal *, integer *, integer *);
  718. integer minwrk, maxwrk;
  719. logical wantvl;
  720. doublereal smlnum;
  721. integer hswork;
  722. logical lquery, wantvr;
  723. extern /* Subroutine */ void dtrevc3_(char *, char *, logical *, integer *,
  724. doublereal *, integer *, doublereal *, integer *, doublereal *,
  725. integer *, integer *, integer *, doublereal *, integer *, integer
  726. *);
  727. integer ihi;
  728. doublereal scl;
  729. integer ilo;
  730. doublereal dum[1], eps;
  731. integer lwork_trevc__;
  732. /* -- LAPACK driver routine (version 3.7.0) -- */
  733. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  734. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  735. /* June 2016 */
  736. /* ===================================================================== */
  737. /* Test the input arguments */
  738. /* Parameter adjustments */
  739. a_dim1 = *lda;
  740. a_offset = 1 + a_dim1 * 1;
  741. a -= a_offset;
  742. --wr;
  743. --wi;
  744. vl_dim1 = *ldvl;
  745. vl_offset = 1 + vl_dim1 * 1;
  746. vl -= vl_offset;
  747. vr_dim1 = *ldvr;
  748. vr_offset = 1 + vr_dim1 * 1;
  749. vr -= vr_offset;
  750. --work;
  751. /* Function Body */
  752. *info = 0;
  753. lquery = *lwork == -1;
  754. wantvl = lsame_(jobvl, "V");
  755. wantvr = lsame_(jobvr, "V");
  756. if (! wantvl && ! lsame_(jobvl, "N")) {
  757. *info = -1;
  758. } else if (! wantvr && ! lsame_(jobvr, "N")) {
  759. *info = -2;
  760. } else if (*n < 0) {
  761. *info = -3;
  762. } else if (*lda < f2cmax(1,*n)) {
  763. *info = -5;
  764. } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
  765. *info = -9;
  766. } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
  767. *info = -11;
  768. }
  769. /* Compute workspace */
  770. /* (Note: Comments in the code beginning "Workspace:" describe the */
  771. /* minimal amount of workspace needed at that point in the code, */
  772. /* as well as the preferred amount for good performance. */
  773. /* NB refers to the optimal block size for the immediately */
  774. /* following subroutine, as returned by ILAENV. */
  775. /* HSWORK refers to the workspace preferred by DHSEQR, as */
  776. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  777. /* the worst case.) */
  778. if (*info == 0) {
  779. if (*n == 0) {
  780. minwrk = 1;
  781. maxwrk = 1;
  782. } else {
  783. maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1,
  784. n, &c__0, (ftnlen)6, (ftnlen)1);
  785. if (wantvl) {
  786. minwrk = *n << 2;
  787. /* Computing MAX */
  788. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
  789. "DORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)
  790. 1);
  791. maxwrk = f2cmax(i__1,i__2);
  792. dhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  793. 1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
  794. hswork = (integer) work[1];
  795. /* Computing MAX */
  796. i__1 = maxwrk, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = *
  797. n + hswork;
  798. maxwrk = f2cmax(i__1,i__2);
  799. dtrevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
  800. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  801. work[1], &c_n1, &ierr);
  802. lwork_trevc__ = (integer) work[1];
  803. /* Computing MAX */
  804. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  805. maxwrk = f2cmax(i__1,i__2);
  806. /* Computing MAX */
  807. i__1 = maxwrk, i__2 = *n << 2;
  808. maxwrk = f2cmax(i__1,i__2);
  809. } else if (wantvr) {
  810. minwrk = *n << 2;
  811. /* Computing MAX */
  812. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
  813. "DORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)
  814. 1);
  815. maxwrk = f2cmax(i__1,i__2);
  816. dhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  817. 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
  818. hswork = (integer) work[1];
  819. /* Computing MAX */
  820. i__1 = maxwrk, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = *
  821. n + hswork;
  822. maxwrk = f2cmax(i__1,i__2);
  823. dtrevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
  824. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  825. work[1], &c_n1, &ierr);
  826. lwork_trevc__ = (integer) work[1];
  827. /* Computing MAX */
  828. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  829. maxwrk = f2cmax(i__1,i__2);
  830. /* Computing MAX */
  831. i__1 = maxwrk, i__2 = *n << 2;
  832. maxwrk = f2cmax(i__1,i__2);
  833. } else {
  834. minwrk = *n * 3;
  835. dhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  836. 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
  837. hswork = (integer) work[1];
  838. /* Computing MAX */
  839. i__1 = maxwrk, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = *
  840. n + hswork;
  841. maxwrk = f2cmax(i__1,i__2);
  842. }
  843. maxwrk = f2cmax(maxwrk,minwrk);
  844. }
  845. work[1] = (doublereal) maxwrk;
  846. if (*lwork < minwrk && ! lquery) {
  847. *info = -13;
  848. }
  849. }
  850. if (*info != 0) {
  851. i__1 = -(*info);
  852. xerbla_("DGEEV ", &i__1, (ftnlen)6);
  853. return;
  854. } else if (lquery) {
  855. return;
  856. }
  857. /* Quick return if possible */
  858. if (*n == 0) {
  859. return;
  860. }
  861. /* Get machine constants */
  862. eps = dlamch_("P");
  863. smlnum = dlamch_("S");
  864. bignum = 1. / smlnum;
  865. dlabad_(&smlnum, &bignum);
  866. smlnum = sqrt(smlnum) / eps;
  867. bignum = 1. / smlnum;
  868. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  869. anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
  870. scalea = FALSE_;
  871. if (anrm > 0. && anrm < smlnum) {
  872. scalea = TRUE_;
  873. cscale = smlnum;
  874. } else if (anrm > bignum) {
  875. scalea = TRUE_;
  876. cscale = bignum;
  877. }
  878. if (scalea) {
  879. dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  880. ierr);
  881. }
  882. /* Balance the matrix */
  883. /* (Workspace: need N) */
  884. ibal = 1;
  885. dgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
  886. /* Reduce to upper Hessenberg form */
  887. /* (Workspace: need 3*N, prefer 2*N+N*NB) */
  888. itau = ibal + *n;
  889. iwrk = itau + *n;
  890. i__1 = *lwork - iwrk + 1;
  891. dgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
  892. &ierr);
  893. if (wantvl) {
  894. /* Want left eigenvectors */
  895. /* Copy Householder vectors to VL */
  896. *(unsigned char *)side = 'L';
  897. dlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
  898. ;
  899. /* Generate orthogonal matrix in VL */
  900. /* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  901. i__1 = *lwork - iwrk + 1;
  902. dorghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk],
  903. &i__1, &ierr);
  904. /* Perform QR iteration, accumulating Schur vectors in VL */
  905. /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
  906. iwrk = itau;
  907. i__1 = *lwork - iwrk + 1;
  908. dhseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
  909. vl[vl_offset], ldvl, &work[iwrk], &i__1, info);
  910. if (wantvr) {
  911. /* Want left and right eigenvectors */
  912. /* Copy Schur vectors to VR */
  913. *(unsigned char *)side = 'B';
  914. dlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
  915. }
  916. } else if (wantvr) {
  917. /* Want right eigenvectors */
  918. /* Copy Householder vectors to VR */
  919. *(unsigned char *)side = 'R';
  920. dlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
  921. ;
  922. /* Generate orthogonal matrix in VR */
  923. /* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  924. i__1 = *lwork - iwrk + 1;
  925. dorghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk],
  926. &i__1, &ierr);
  927. /* Perform QR iteration, accumulating Schur vectors in VR */
  928. /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
  929. iwrk = itau;
  930. i__1 = *lwork - iwrk + 1;
  931. dhseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
  932. vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
  933. } else {
  934. /* Compute eigenvalues only */
  935. /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
  936. iwrk = itau;
  937. i__1 = *lwork - iwrk + 1;
  938. dhseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
  939. vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
  940. }
  941. /* If INFO .NE. 0 from DHSEQR, then quit */
  942. if (*info != 0) {
  943. goto L50;
  944. }
  945. if (wantvl || wantvr) {
  946. /* Compute left and/or right eigenvectors */
  947. /* (Workspace: need 4*N, prefer N + N + 2*N*NB) */
  948. i__1 = *lwork - iwrk + 1;
  949. dtrevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset],
  950. ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
  951. ierr);
  952. }
  953. if (wantvl) {
  954. /* Undo balancing of left eigenvectors */
  955. /* (Workspace: need N) */
  956. dgebak_("B", "L", n, &ilo, &ihi, &work[ibal], n, &vl[vl_offset], ldvl,
  957. &ierr);
  958. /* Normalize left eigenvectors and make largest component real */
  959. i__1 = *n;
  960. for (i__ = 1; i__ <= i__1; ++i__) {
  961. if (wi[i__] == 0.) {
  962. scl = 1. / dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  963. dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  964. } else if (wi[i__] > 0.) {
  965. d__1 = dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  966. d__2 = dnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
  967. scl = 1. / dlapy2_(&d__1, &d__2);
  968. dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  969. dscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
  970. i__2 = *n;
  971. for (k = 1; k <= i__2; ++k) {
  972. /* Computing 2nd power */
  973. d__1 = vl[k + i__ * vl_dim1];
  974. /* Computing 2nd power */
  975. d__2 = vl[k + (i__ + 1) * vl_dim1];
  976. work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
  977. /* L10: */
  978. }
  979. k = idamax_(n, &work[iwrk], &c__1);
  980. dlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
  981. &cs, &sn, &r__);
  982. drot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
  983. vl_dim1 + 1], &c__1, &cs, &sn);
  984. vl[k + (i__ + 1) * vl_dim1] = 0.;
  985. }
  986. /* L20: */
  987. }
  988. }
  989. if (wantvr) {
  990. /* Undo balancing of right eigenvectors */
  991. /* (Workspace: need N) */
  992. dgebak_("B", "R", n, &ilo, &ihi, &work[ibal], n, &vr[vr_offset], ldvr,
  993. &ierr);
  994. /* Normalize right eigenvectors and make largest component real */
  995. i__1 = *n;
  996. for (i__ = 1; i__ <= i__1; ++i__) {
  997. if (wi[i__] == 0.) {
  998. scl = 1. / dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  999. dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  1000. } else if (wi[i__] > 0.) {
  1001. d__1 = dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  1002. d__2 = dnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
  1003. scl = 1. / dlapy2_(&d__1, &d__2);
  1004. dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  1005. dscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
  1006. i__2 = *n;
  1007. for (k = 1; k <= i__2; ++k) {
  1008. /* Computing 2nd power */
  1009. d__1 = vr[k + i__ * vr_dim1];
  1010. /* Computing 2nd power */
  1011. d__2 = vr[k + (i__ + 1) * vr_dim1];
  1012. work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
  1013. /* L30: */
  1014. }
  1015. k = idamax_(n, &work[iwrk], &c__1);
  1016. dlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
  1017. &cs, &sn, &r__);
  1018. drot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
  1019. vr_dim1 + 1], &c__1, &cs, &sn);
  1020. vr[k + (i__ + 1) * vr_dim1] = 0.;
  1021. }
  1022. /* L40: */
  1023. }
  1024. }
  1025. /* Undo scaling if necessary */
  1026. L50:
  1027. if (scalea) {
  1028. i__1 = *n - *info;
  1029. /* Computing MAX */
  1030. i__3 = *n - *info;
  1031. i__2 = f2cmax(i__3,1);
  1032. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
  1033. 1], &i__2, &ierr);
  1034. i__1 = *n - *info;
  1035. /* Computing MAX */
  1036. i__3 = *n - *info;
  1037. i__2 = f2cmax(i__3,1);
  1038. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
  1039. 1], &i__2, &ierr);
  1040. if (*info > 0) {
  1041. i__1 = ilo - 1;
  1042. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
  1043. n, &ierr);
  1044. i__1 = ilo - 1;
  1045. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
  1046. n, &ierr);
  1047. }
  1048. }
  1049. work[1] = (doublereal) maxwrk;
  1050. return;
  1051. /* End of DGEEV */
  1052. } /* dgeev_ */