You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhegvx.c 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {1.,0.};
  485. static integer c__1 = 1;
  486. static integer c_n1 = -1;
  487. /* > \brief \b ZHEGVX */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZHEGVX + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvx.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvx.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvx.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, */
  506. /* VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, */
  507. /* LWORK, RWORK, IWORK, IFAIL, INFO ) */
  508. /* CHARACTER JOBZ, RANGE, UPLO */
  509. /* INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N */
  510. /* DOUBLE PRECISION ABSTOL, VL, VU */
  511. /* INTEGER IFAIL( * ), IWORK( * ) */
  512. /* DOUBLE PRECISION RWORK( * ), W( * ) */
  513. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ), */
  514. /* $ Z( LDZ, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > ZHEGVX computes selected eigenvalues, and optionally, eigenvectors */
  521. /* > of a complex generalized Hermitian-definite eigenproblem, of the form */
  522. /* > A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */
  523. /* > B are assumed to be Hermitian and B is also positive definite. */
  524. /* > Eigenvalues and eigenvectors can be selected by specifying either a */
  525. /* > range of values or a range of indices for the desired eigenvalues. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] ITYPE */
  530. /* > \verbatim */
  531. /* > ITYPE is INTEGER */
  532. /* > Specifies the problem type to be solved: */
  533. /* > = 1: A*x = (lambda)*B*x */
  534. /* > = 2: A*B*x = (lambda)*x */
  535. /* > = 3: B*A*x = (lambda)*x */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] JOBZ */
  539. /* > \verbatim */
  540. /* > JOBZ is CHARACTER*1 */
  541. /* > = 'N': Compute eigenvalues only; */
  542. /* > = 'V': Compute eigenvalues and eigenvectors. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] RANGE */
  546. /* > \verbatim */
  547. /* > RANGE is CHARACTER*1 */
  548. /* > = 'A': all eigenvalues will be found. */
  549. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  550. /* > will be found. */
  551. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] UPLO */
  555. /* > \verbatim */
  556. /* > UPLO is CHARACTER*1 */
  557. /* > = 'U': Upper triangles of A and B are stored; */
  558. /* > = 'L': Lower triangles of A and B are stored. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] N */
  562. /* > \verbatim */
  563. /* > N is INTEGER */
  564. /* > The order of the matrices A and B. N >= 0. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] A */
  568. /* > \verbatim */
  569. /* > A is COMPLEX*16 array, dimension (LDA, N) */
  570. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the */
  571. /* > leading N-by-N upper triangular part of A contains the */
  572. /* > upper triangular part of the matrix A. If UPLO = 'L', */
  573. /* > the leading N-by-N lower triangular part of A contains */
  574. /* > the lower triangular part of the matrix A. */
  575. /* > */
  576. /* > On exit, the lower triangle (if UPLO='L') or the upper */
  577. /* > triangle (if UPLO='U') of A, including the diagonal, is */
  578. /* > destroyed. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] LDA */
  582. /* > \verbatim */
  583. /* > LDA is INTEGER */
  584. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in,out] B */
  588. /* > \verbatim */
  589. /* > B is COMPLEX*16 array, dimension (LDB, N) */
  590. /* > On entry, the Hermitian matrix B. If UPLO = 'U', the */
  591. /* > leading N-by-N upper triangular part of B contains the */
  592. /* > upper triangular part of the matrix B. If UPLO = 'L', */
  593. /* > the leading N-by-N lower triangular part of B contains */
  594. /* > the lower triangular part of the matrix B. */
  595. /* > */
  596. /* > On exit, if INFO <= N, the part of B containing the matrix is */
  597. /* > overwritten by the triangular factor U or L from the Cholesky */
  598. /* > factorization B = U**H*U or B = L*L**H. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] LDB */
  602. /* > \verbatim */
  603. /* > LDB is INTEGER */
  604. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] VL */
  608. /* > \verbatim */
  609. /* > VL is DOUBLE PRECISION */
  610. /* > */
  611. /* > If RANGE='V', the lower bound of the interval to */
  612. /* > be searched for eigenvalues. VL < VU. */
  613. /* > Not referenced if RANGE = 'A' or 'I'. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] VU */
  617. /* > \verbatim */
  618. /* > VU is DOUBLE PRECISION */
  619. /* > */
  620. /* > If RANGE='V', the upper bound of the interval to */
  621. /* > be searched for eigenvalues. VL < VU. */
  622. /* > Not referenced if RANGE = 'A' or 'I'. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] IL */
  626. /* > \verbatim */
  627. /* > IL is INTEGER */
  628. /* > */
  629. /* > If RANGE='I', the index of the */
  630. /* > smallest eigenvalue to be returned. */
  631. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  632. /* > Not referenced if RANGE = 'A' or 'V'. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] IU */
  636. /* > \verbatim */
  637. /* > IU is INTEGER */
  638. /* > */
  639. /* > If RANGE='I', the index of the */
  640. /* > largest eigenvalue to be returned. */
  641. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  642. /* > Not referenced if RANGE = 'A' or 'V'. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[in] ABSTOL */
  646. /* > \verbatim */
  647. /* > ABSTOL is DOUBLE PRECISION */
  648. /* > The absolute error tolerance for the eigenvalues. */
  649. /* > An approximate eigenvalue is accepted as converged */
  650. /* > when it is determined to lie in an interval [a,b] */
  651. /* > of width less than or equal to */
  652. /* > */
  653. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  654. /* > */
  655. /* > where EPS is the machine precision. If ABSTOL is less than */
  656. /* > or equal to zero, then EPS*|T| will be used in its place, */
  657. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  658. /* > by reducing C to tridiagonal form, where C is the symmetric */
  659. /* > matrix of the standard symmetric problem to which the */
  660. /* > generalized problem is transformed. */
  661. /* > */
  662. /* > Eigenvalues will be computed most accurately when ABSTOL is */
  663. /* > set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
  664. /* > If this routine returns with INFO>0, indicating that some */
  665. /* > eigenvectors did not converge, try setting ABSTOL to */
  666. /* > 2*DLAMCH('S'). */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[out] M */
  670. /* > \verbatim */
  671. /* > M is INTEGER */
  672. /* > The total number of eigenvalues found. 0 <= M <= N. */
  673. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] W */
  677. /* > \verbatim */
  678. /* > W is DOUBLE PRECISION array, dimension (N) */
  679. /* > The first M elements contain the selected */
  680. /* > eigenvalues in ascending order. */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[out] Z */
  684. /* > \verbatim */
  685. /* > Z is COMPLEX*16 array, dimension (LDZ, f2cmax(1,M)) */
  686. /* > If JOBZ = 'N', then Z is not referenced. */
  687. /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
  688. /* > contain the orthonormal eigenvectors of the matrix A */
  689. /* > corresponding to the selected eigenvalues, with the i-th */
  690. /* > column of Z holding the eigenvector associated with W(i). */
  691. /* > The eigenvectors are normalized as follows: */
  692. /* > if ITYPE = 1 or 2, Z**T*B*Z = I; */
  693. /* > if ITYPE = 3, Z**T*inv(B)*Z = I. */
  694. /* > */
  695. /* > If an eigenvector fails to converge, then that column of Z */
  696. /* > contains the latest approximation to the eigenvector, and the */
  697. /* > index of the eigenvector is returned in IFAIL. */
  698. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  699. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  700. /* > is not known in advance and an upper bound must be used. */
  701. /* > \endverbatim */
  702. /* > */
  703. /* > \param[in] LDZ */
  704. /* > \verbatim */
  705. /* > LDZ is INTEGER */
  706. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  707. /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
  708. /* > \endverbatim */
  709. /* > */
  710. /* > \param[out] WORK */
  711. /* > \verbatim */
  712. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  713. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[in] LWORK */
  717. /* > \verbatim */
  718. /* > LWORK is INTEGER */
  719. /* > The length of the array WORK. LWORK >= f2cmax(1,2*N). */
  720. /* > For optimal efficiency, LWORK >= (NB+1)*N, */
  721. /* > where NB is the blocksize for ZHETRD returned by ILAENV. */
  722. /* > */
  723. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  724. /* > only calculates the optimal size of the WORK array, returns */
  725. /* > this value as the first entry of the WORK array, and no error */
  726. /* > message related to LWORK is issued by XERBLA. */
  727. /* > \endverbatim */
  728. /* > */
  729. /* > \param[out] RWORK */
  730. /* > \verbatim */
  731. /* > RWORK is DOUBLE PRECISION array, dimension (7*N) */
  732. /* > \endverbatim */
  733. /* > */
  734. /* > \param[out] IWORK */
  735. /* > \verbatim */
  736. /* > IWORK is INTEGER array, dimension (5*N) */
  737. /* > \endverbatim */
  738. /* > */
  739. /* > \param[out] IFAIL */
  740. /* > \verbatim */
  741. /* > IFAIL is INTEGER array, dimension (N) */
  742. /* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
  743. /* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
  744. /* > indices of the eigenvectors that failed to converge. */
  745. /* > If JOBZ = 'N', then IFAIL is not referenced. */
  746. /* > \endverbatim */
  747. /* > */
  748. /* > \param[out] INFO */
  749. /* > \verbatim */
  750. /* > INFO is INTEGER */
  751. /* > = 0: successful exit */
  752. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  753. /* > > 0: ZPOTRF or ZHEEVX returned an error code: */
  754. /* > <= N: if INFO = i, ZHEEVX failed to converge; */
  755. /* > i eigenvectors failed to converge. Their indices */
  756. /* > are stored in array IFAIL. */
  757. /* > > N: if INFO = N + i, for 1 <= i <= N, then the leading */
  758. /* > minor of order i of B is not positive definite. */
  759. /* > The factorization of B could not be completed and */
  760. /* > no eigenvalues or eigenvectors were computed. */
  761. /* > \endverbatim */
  762. /* Authors: */
  763. /* ======== */
  764. /* > \author Univ. of Tennessee */
  765. /* > \author Univ. of California Berkeley */
  766. /* > \author Univ. of Colorado Denver */
  767. /* > \author NAG Ltd. */
  768. /* > \date June 2016 */
  769. /* > \ingroup complex16HEeigen */
  770. /* > \par Contributors: */
  771. /* ================== */
  772. /* > */
  773. /* > Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
  774. /* ===================================================================== */
  775. /* Subroutine */ void zhegvx_(integer *itype, char *jobz, char *range, char *
  776. uplo, integer *n, doublecomplex *a, integer *lda, doublecomplex *b,
  777. integer *ldb, doublereal *vl, doublereal *vu, integer *il, integer *
  778. iu, doublereal *abstol, integer *m, doublereal *w, doublecomplex *z__,
  779. integer *ldz, doublecomplex *work, integer *lwork, doublereal *rwork,
  780. integer *iwork, integer *ifail, integer *info)
  781. {
  782. /* System generated locals */
  783. integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2;
  784. /* Local variables */
  785. extern logical lsame_(char *, char *);
  786. char trans[1];
  787. logical upper, wantz;
  788. extern /* Subroutine */ void ztrmm_(char *, char *, char *, char *,
  789. integer *, integer *, doublecomplex *, doublecomplex *, integer *,
  790. doublecomplex *, integer *),
  791. ztrsm_(char *, char *, char *, char *, integer *, integer *,
  792. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  793. integer *);
  794. integer nb;
  795. logical alleig, indeig, valeig;
  796. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  797. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  798. integer *, integer *, ftnlen, ftnlen);
  799. extern /* Subroutine */ void zhegst_(integer *, char *, integer *,
  800. doublecomplex *, integer *, doublecomplex *, integer *, integer *), zheevx_(char *, char *, char *, integer *,
  801. doublecomplex *, integer *, doublereal *, doublereal *, integer *,
  802. integer *, doublereal *, integer *, doublereal *, doublecomplex *
  803. , integer *, doublecomplex *, integer *, doublereal *, integer *,
  804. integer *, integer *);
  805. integer lwkopt;
  806. logical lquery;
  807. extern /* Subroutine */ int zpotrf_(char *, integer *, doublecomplex *,
  808. integer *, integer *);
  809. /* -- LAPACK driver routine (version 3.7.0) -- */
  810. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  811. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  812. /* June 2016 */
  813. /* ===================================================================== */
  814. /* Test the input parameters. */
  815. /* Parameter adjustments */
  816. a_dim1 = *lda;
  817. a_offset = 1 + a_dim1 * 1;
  818. a -= a_offset;
  819. b_dim1 = *ldb;
  820. b_offset = 1 + b_dim1 * 1;
  821. b -= b_offset;
  822. --w;
  823. z_dim1 = *ldz;
  824. z_offset = 1 + z_dim1 * 1;
  825. z__ -= z_offset;
  826. --work;
  827. --rwork;
  828. --iwork;
  829. --ifail;
  830. /* Function Body */
  831. wantz = lsame_(jobz, "V");
  832. upper = lsame_(uplo, "U");
  833. alleig = lsame_(range, "A");
  834. valeig = lsame_(range, "V");
  835. indeig = lsame_(range, "I");
  836. lquery = *lwork == -1;
  837. *info = 0;
  838. if (*itype < 1 || *itype > 3) {
  839. *info = -1;
  840. } else if (! (wantz || lsame_(jobz, "N"))) {
  841. *info = -2;
  842. } else if (! (alleig || valeig || indeig)) {
  843. *info = -3;
  844. } else if (! (upper || lsame_(uplo, "L"))) {
  845. *info = -4;
  846. } else if (*n < 0) {
  847. *info = -5;
  848. } else if (*lda < f2cmax(1,*n)) {
  849. *info = -7;
  850. } else if (*ldb < f2cmax(1,*n)) {
  851. *info = -9;
  852. } else {
  853. if (valeig) {
  854. if (*n > 0 && *vu <= *vl) {
  855. *info = -11;
  856. }
  857. } else if (indeig) {
  858. if (*il < 1 || *il > f2cmax(1,*n)) {
  859. *info = -12;
  860. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  861. *info = -13;
  862. }
  863. }
  864. }
  865. if (*info == 0) {
  866. if (*ldz < 1 || wantz && *ldz < *n) {
  867. *info = -18;
  868. }
  869. }
  870. if (*info == 0) {
  871. nb = ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
  872. (ftnlen)1);
  873. /* Computing MAX */
  874. i__1 = 1, i__2 = (nb + 1) * *n;
  875. lwkopt = f2cmax(i__1,i__2);
  876. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  877. /* Computing MAX */
  878. i__1 = 1, i__2 = *n << 1;
  879. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  880. *info = -20;
  881. }
  882. }
  883. if (*info != 0) {
  884. i__1 = -(*info);
  885. xerbla_("ZHEGVX", &i__1, (ftnlen)6);
  886. return;
  887. } else if (lquery) {
  888. return;
  889. }
  890. /* Quick return if possible */
  891. *m = 0;
  892. if (*n == 0) {
  893. return;
  894. }
  895. /* Form a Cholesky factorization of B. */
  896. zpotrf_(uplo, n, &b[b_offset], ldb, info);
  897. if (*info != 0) {
  898. *info = *n + *info;
  899. return;
  900. }
  901. /* Transform problem to standard eigenvalue problem and solve. */
  902. zhegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
  903. zheevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol,
  904. m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &rwork[1], &iwork[
  905. 1], &ifail[1], info);
  906. if (wantz) {
  907. /* Backtransform eigenvectors to the original problem. */
  908. if (*info > 0) {
  909. *m = *info - 1;
  910. }
  911. if (*itype == 1 || *itype == 2) {
  912. /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
  913. /* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y */
  914. if (upper) {
  915. *(unsigned char *)trans = 'N';
  916. } else {
  917. *(unsigned char *)trans = 'C';
  918. }
  919. ztrsm_("Left", uplo, trans, "Non-unit", n, m, &c_b1, &b[b_offset],
  920. ldb, &z__[z_offset], ldz);
  921. } else if (*itype == 3) {
  922. /* For B*A*x=(lambda)*x; */
  923. /* backtransform eigenvectors: x = L*y or U**H *y */
  924. if (upper) {
  925. *(unsigned char *)trans = 'C';
  926. } else {
  927. *(unsigned char *)trans = 'N';
  928. }
  929. ztrmm_("Left", uplo, trans, "Non-unit", n, m, &c_b1, &b[b_offset],
  930. ldb, &z__[z_offset], ldz);
  931. }
  932. }
  933. /* Set WORK(1) to optimal complex workspace size. */
  934. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  935. return;
  936. /* End of ZHEGVX */
  937. } /* zhegvx_ */