You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zheevx.c 34 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c_n1 = -1;
  486. /* > \brief <b> ZHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE mat
  487. rices</b> */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZHEEVX + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, */
  506. /* ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, */
  507. /* IWORK, IFAIL, INFO ) */
  508. /* CHARACTER JOBZ, RANGE, UPLO */
  509. /* INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N */
  510. /* DOUBLE PRECISION ABSTOL, VL, VU */
  511. /* INTEGER IFAIL( * ), IWORK( * ) */
  512. /* DOUBLE PRECISION RWORK( * ), W( * ) */
  513. /* COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > ZHEEVX computes selected eigenvalues and, optionally, eigenvectors */
  520. /* > of a complex Hermitian matrix A. Eigenvalues and eigenvectors can */
  521. /* > be selected by specifying either a range of values or a range of */
  522. /* > indices for the desired eigenvalues. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] JOBZ */
  527. /* > \verbatim */
  528. /* > JOBZ is CHARACTER*1 */
  529. /* > = 'N': Compute eigenvalues only; */
  530. /* > = 'V': Compute eigenvalues and eigenvectors. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] RANGE */
  534. /* > \verbatim */
  535. /* > RANGE is CHARACTER*1 */
  536. /* > = 'A': all eigenvalues will be found. */
  537. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  538. /* > will be found. */
  539. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] UPLO */
  543. /* > \verbatim */
  544. /* > UPLO is CHARACTER*1 */
  545. /* > = 'U': Upper triangle of A is stored; */
  546. /* > = 'L': Lower triangle of A is stored. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] N */
  550. /* > \verbatim */
  551. /* > N is INTEGER */
  552. /* > The order of the matrix A. N >= 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in,out] A */
  556. /* > \verbatim */
  557. /* > A is COMPLEX*16 array, dimension (LDA, N) */
  558. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the */
  559. /* > leading N-by-N upper triangular part of A contains the */
  560. /* > upper triangular part of the matrix A. If UPLO = 'L', */
  561. /* > the leading N-by-N lower triangular part of A contains */
  562. /* > the lower triangular part of the matrix A. */
  563. /* > On exit, the lower triangle (if UPLO='L') or the upper */
  564. /* > triangle (if UPLO='U') of A, including the diagonal, is */
  565. /* > destroyed. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] LDA */
  569. /* > \verbatim */
  570. /* > LDA is INTEGER */
  571. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] VL */
  575. /* > \verbatim */
  576. /* > VL is DOUBLE PRECISION */
  577. /* > If RANGE='V', the lower bound of the interval to */
  578. /* > be searched for eigenvalues. VL < VU. */
  579. /* > Not referenced if RANGE = 'A' or 'I'. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] VU */
  583. /* > \verbatim */
  584. /* > VU is DOUBLE PRECISION */
  585. /* > If RANGE='V', the upper bound of the interval to */
  586. /* > be searched for eigenvalues. VL < VU. */
  587. /* > Not referenced if RANGE = 'A' or 'I'. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] IL */
  591. /* > \verbatim */
  592. /* > IL is INTEGER */
  593. /* > If RANGE='I', the index of the */
  594. /* > smallest eigenvalue to be returned. */
  595. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  596. /* > Not referenced if RANGE = 'A' or 'V'. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] IU */
  600. /* > \verbatim */
  601. /* > IU is INTEGER */
  602. /* > If RANGE='I', the index of the */
  603. /* > largest eigenvalue to be returned. */
  604. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  605. /* > Not referenced if RANGE = 'A' or 'V'. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] ABSTOL */
  609. /* > \verbatim */
  610. /* > ABSTOL is DOUBLE PRECISION */
  611. /* > The absolute error tolerance for the eigenvalues. */
  612. /* > An approximate eigenvalue is accepted as converged */
  613. /* > when it is determined to lie in an interval [a,b] */
  614. /* > of width less than or equal to */
  615. /* > */
  616. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  617. /* > */
  618. /* > where EPS is the machine precision. If ABSTOL is less than */
  619. /* > or equal to zero, then EPS*|T| will be used in its place, */
  620. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  621. /* > by reducing A to tridiagonal form. */
  622. /* > */
  623. /* > Eigenvalues will be computed most accurately when ABSTOL is */
  624. /* > set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
  625. /* > If this routine returns with INFO>0, indicating that some */
  626. /* > eigenvectors did not converge, try setting ABSTOL to */
  627. /* > 2*DLAMCH('S'). */
  628. /* > */
  629. /* > See "Computing Small Singular Values of Bidiagonal Matrices */
  630. /* > with Guaranteed High Relative Accuracy," by Demmel and */
  631. /* > Kahan, LAPACK Working Note #3. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] M */
  635. /* > \verbatim */
  636. /* > M is INTEGER */
  637. /* > The total number of eigenvalues found. 0 <= M <= N. */
  638. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] W */
  642. /* > \verbatim */
  643. /* > W is DOUBLE PRECISION array, dimension (N) */
  644. /* > On normal exit, the first M elements contain the selected */
  645. /* > eigenvalues in ascending order. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] Z */
  649. /* > \verbatim */
  650. /* > Z is COMPLEX*16 array, dimension (LDZ, f2cmax(1,M)) */
  651. /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
  652. /* > contain the orthonormal eigenvectors of the matrix A */
  653. /* > corresponding to the selected eigenvalues, with the i-th */
  654. /* > column of Z holding the eigenvector associated with W(i). */
  655. /* > If an eigenvector fails to converge, then that column of Z */
  656. /* > contains the latest approximation to the eigenvector, and the */
  657. /* > index of the eigenvector is returned in IFAIL. */
  658. /* > If JOBZ = 'N', then Z is not referenced. */
  659. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  660. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  661. /* > is not known in advance and an upper bound must be used. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[in] LDZ */
  665. /* > \verbatim */
  666. /* > LDZ is INTEGER */
  667. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  668. /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[out] WORK */
  672. /* > \verbatim */
  673. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  674. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[in] LWORK */
  678. /* > \verbatim */
  679. /* > LWORK is INTEGER */
  680. /* > The length of the array WORK. LWORK >= 1, when N <= 1; */
  681. /* > otherwise 2*N. */
  682. /* > For optimal efficiency, LWORK >= (NB+1)*N, */
  683. /* > where NB is the f2cmax of the blocksize for ZHETRD and for */
  684. /* > ZUNMTR as returned by ILAENV. */
  685. /* > */
  686. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  687. /* > only calculates the optimal size of the WORK array, returns */
  688. /* > this value as the first entry of the WORK array, and no error */
  689. /* > message related to LWORK is issued by XERBLA. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[out] RWORK */
  693. /* > \verbatim */
  694. /* > RWORK is DOUBLE PRECISION array, dimension (7*N) */
  695. /* > \endverbatim */
  696. /* > */
  697. /* > \param[out] IWORK */
  698. /* > \verbatim */
  699. /* > IWORK is INTEGER array, dimension (5*N) */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[out] IFAIL */
  703. /* > \verbatim */
  704. /* > IFAIL is INTEGER array, dimension (N) */
  705. /* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
  706. /* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
  707. /* > indices of the eigenvectors that failed to converge. */
  708. /* > If JOBZ = 'N', then IFAIL is not referenced. */
  709. /* > \endverbatim */
  710. /* > */
  711. /* > \param[out] INFO */
  712. /* > \verbatim */
  713. /* > INFO is INTEGER */
  714. /* > = 0: successful exit */
  715. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  716. /* > > 0: if INFO = i, then i eigenvectors failed to converge. */
  717. /* > Their indices are stored in array IFAIL. */
  718. /* > \endverbatim */
  719. /* Authors: */
  720. /* ======== */
  721. /* > \author Univ. of Tennessee */
  722. /* > \author Univ. of California Berkeley */
  723. /* > \author Univ. of Colorado Denver */
  724. /* > \author NAG Ltd. */
  725. /* > \date June 2016 */
  726. /* > \ingroup complex16HEeigen */
  727. /* ===================================================================== */
  728. /* Subroutine */ void zheevx_(char *jobz, char *range, char *uplo, integer *n,
  729. doublecomplex *a, integer *lda, doublereal *vl, doublereal *vu,
  730. integer *il, integer *iu, doublereal *abstol, integer *m, doublereal *
  731. w, doublecomplex *z__, integer *ldz, doublecomplex *work, integer *
  732. lwork, doublereal *rwork, integer *iwork, integer *ifail, integer *
  733. info)
  734. {
  735. /* System generated locals */
  736. integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
  737. doublereal d__1, d__2;
  738. /* Local variables */
  739. integer indd, inde;
  740. doublereal anrm;
  741. integer imax;
  742. doublereal rmin, rmax;
  743. logical test;
  744. integer itmp1, i__, j, indee;
  745. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  746. integer *);
  747. doublereal sigma;
  748. extern logical lsame_(char *, char *);
  749. integer iinfo;
  750. char order[1];
  751. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  752. doublereal *, integer *);
  753. logical lower, wantz;
  754. extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
  755. doublecomplex *, integer *);
  756. integer nb, jj;
  757. extern doublereal dlamch_(char *);
  758. logical alleig, indeig;
  759. integer iscale, indibl;
  760. logical valeig;
  761. doublereal safmin;
  762. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  763. integer *, integer *, ftnlen, ftnlen);
  764. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  765. extern void zdscal_(
  766. integer *, doublereal *, doublecomplex *, integer *);
  767. doublereal abstll, bignum;
  768. extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *,
  769. integer *, doublereal *);
  770. integer indiwk, indisp, indtau;
  771. extern /* Subroutine */ void dsterf_(integer *, doublereal *, doublereal *,
  772. integer *), dstebz_(char *, char *, integer *, doublereal *,
  773. doublereal *, integer *, integer *, doublereal *, doublereal *,
  774. doublereal *, integer *, integer *, doublereal *, integer *,
  775. integer *, doublereal *, integer *, integer *);
  776. integer indrwk, indwrk;
  777. extern /* Subroutine */ void zhetrd_(char *, integer *, doublecomplex *,
  778. integer *, doublereal *, doublereal *, doublecomplex *,
  779. doublecomplex *, integer *, integer *);
  780. integer lwkmin;
  781. extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
  782. doublecomplex *, integer *, doublecomplex *, integer *);
  783. integer llwork, nsplit;
  784. doublereal smlnum;
  785. extern /* Subroutine */ void zstein_(integer *, doublereal *, doublereal *,
  786. integer *, doublereal *, integer *, integer *, doublecomplex *,
  787. integer *, doublereal *, integer *, integer *, integer *);
  788. integer lwkopt;
  789. logical lquery;
  790. extern /* Subroutine */ void zsteqr_(char *, integer *, doublereal *,
  791. doublereal *, doublecomplex *, integer *, doublereal *, integer *), zungtr_(char *, integer *, doublecomplex *, integer *,
  792. doublecomplex *, doublecomplex *, integer *, integer *),
  793. zunmtr_(char *, char *, char *, integer *, integer *,
  794. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  795. integer *, doublecomplex *, integer *, integer *);
  796. doublereal eps, vll, vuu, tmp1;
  797. /* -- LAPACK driver routine (version 3.7.0) -- */
  798. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  799. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  800. /* June 2016 */
  801. /* ===================================================================== */
  802. /* Test the input parameters. */
  803. /* Parameter adjustments */
  804. a_dim1 = *lda;
  805. a_offset = 1 + a_dim1 * 1;
  806. a -= a_offset;
  807. --w;
  808. z_dim1 = *ldz;
  809. z_offset = 1 + z_dim1 * 1;
  810. z__ -= z_offset;
  811. --work;
  812. --rwork;
  813. --iwork;
  814. --ifail;
  815. /* Function Body */
  816. lower = lsame_(uplo, "L");
  817. wantz = lsame_(jobz, "V");
  818. alleig = lsame_(range, "A");
  819. valeig = lsame_(range, "V");
  820. indeig = lsame_(range, "I");
  821. lquery = *lwork == -1;
  822. *info = 0;
  823. if (! (wantz || lsame_(jobz, "N"))) {
  824. *info = -1;
  825. } else if (! (alleig || valeig || indeig)) {
  826. *info = -2;
  827. } else if (! (lower || lsame_(uplo, "U"))) {
  828. *info = -3;
  829. } else if (*n < 0) {
  830. *info = -4;
  831. } else if (*lda < f2cmax(1,*n)) {
  832. *info = -6;
  833. } else {
  834. if (valeig) {
  835. if (*n > 0 && *vu <= *vl) {
  836. *info = -8;
  837. }
  838. } else if (indeig) {
  839. if (*il < 1 || *il > f2cmax(1,*n)) {
  840. *info = -9;
  841. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  842. *info = -10;
  843. }
  844. }
  845. }
  846. if (*info == 0) {
  847. if (*ldz < 1 || wantz && *ldz < *n) {
  848. *info = -15;
  849. }
  850. }
  851. if (*info == 0) {
  852. if (*n <= 1) {
  853. lwkmin = 1;
  854. work[1].r = (doublereal) lwkmin, work[1].i = 0.;
  855. } else {
  856. lwkmin = *n << 1;
  857. nb = ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (
  858. ftnlen)6, (ftnlen)1);
  859. /* Computing MAX */
  860. i__1 = nb, i__2 = ilaenv_(&c__1, "ZUNMTR", uplo, n, &c_n1, &c_n1,
  861. &c_n1, (ftnlen)6, (ftnlen)1);
  862. nb = f2cmax(i__1,i__2);
  863. /* Computing MAX */
  864. i__1 = 1, i__2 = (nb + 1) * *n;
  865. lwkopt = f2cmax(i__1,i__2);
  866. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  867. }
  868. if (*lwork < lwkmin && ! lquery) {
  869. *info = -17;
  870. }
  871. }
  872. if (*info != 0) {
  873. i__1 = -(*info);
  874. xerbla_("ZHEEVX", &i__1, (ftnlen)6);
  875. return;
  876. } else if (lquery) {
  877. return;
  878. }
  879. /* Quick return if possible */
  880. *m = 0;
  881. if (*n == 0) {
  882. return;
  883. }
  884. if (*n == 1) {
  885. if (alleig || indeig) {
  886. *m = 1;
  887. i__1 = a_dim1 + 1;
  888. w[1] = a[i__1].r;
  889. } else if (valeig) {
  890. i__1 = a_dim1 + 1;
  891. i__2 = a_dim1 + 1;
  892. if (*vl < a[i__1].r && *vu >= a[i__2].r) {
  893. *m = 1;
  894. i__1 = a_dim1 + 1;
  895. w[1] = a[i__1].r;
  896. }
  897. }
  898. if (wantz) {
  899. i__1 = z_dim1 + 1;
  900. z__[i__1].r = 1., z__[i__1].i = 0.;
  901. }
  902. return;
  903. }
  904. /* Get machine constants. */
  905. safmin = dlamch_("Safe minimum");
  906. eps = dlamch_("Precision");
  907. smlnum = safmin / eps;
  908. bignum = 1. / smlnum;
  909. rmin = sqrt(smlnum);
  910. /* Computing MIN */
  911. d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
  912. rmax = f2cmin(d__1,d__2);
  913. /* Scale matrix to allowable range, if necessary. */
  914. iscale = 0;
  915. abstll = *abstol;
  916. if (valeig) {
  917. vll = *vl;
  918. vuu = *vu;
  919. }
  920. anrm = zlanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
  921. if (anrm > 0. && anrm < rmin) {
  922. iscale = 1;
  923. sigma = rmin / anrm;
  924. } else if (anrm > rmax) {
  925. iscale = 1;
  926. sigma = rmax / anrm;
  927. }
  928. if (iscale == 1) {
  929. if (lower) {
  930. i__1 = *n;
  931. for (j = 1; j <= i__1; ++j) {
  932. i__2 = *n - j + 1;
  933. zdscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
  934. /* L10: */
  935. }
  936. } else {
  937. i__1 = *n;
  938. for (j = 1; j <= i__1; ++j) {
  939. zdscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
  940. /* L20: */
  941. }
  942. }
  943. if (*abstol > 0.) {
  944. abstll = *abstol * sigma;
  945. }
  946. if (valeig) {
  947. vll = *vl * sigma;
  948. vuu = *vu * sigma;
  949. }
  950. }
  951. /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
  952. indd = 1;
  953. inde = indd + *n;
  954. indrwk = inde + *n;
  955. indtau = 1;
  956. indwrk = indtau + *n;
  957. llwork = *lwork - indwrk + 1;
  958. zhetrd_(uplo, n, &a[a_offset], lda, &rwork[indd], &rwork[inde], &work[
  959. indtau], &work[indwrk], &llwork, &iinfo);
  960. /* If all eigenvalues are desired and ABSTOL is less than or equal to */
  961. /* zero, then call DSTERF or ZUNGTR and ZSTEQR. If this fails for */
  962. /* some eigenvalue, then try DSTEBZ. */
  963. test = FALSE_;
  964. if (indeig) {
  965. if (*il == 1 && *iu == *n) {
  966. test = TRUE_;
  967. }
  968. }
  969. if ((alleig || test) && *abstol <= 0.) {
  970. dcopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
  971. indee = indrwk + (*n << 1);
  972. if (! wantz) {
  973. i__1 = *n - 1;
  974. dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
  975. dsterf_(n, &w[1], &rwork[indee], info);
  976. } else {
  977. zlacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);
  978. zungtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk]
  979. , &llwork, &iinfo);
  980. i__1 = *n - 1;
  981. dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
  982. zsteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
  983. rwork[indrwk], info);
  984. if (*info == 0) {
  985. i__1 = *n;
  986. for (i__ = 1; i__ <= i__1; ++i__) {
  987. ifail[i__] = 0;
  988. /* L30: */
  989. }
  990. }
  991. }
  992. if (*info == 0) {
  993. *m = *n;
  994. goto L40;
  995. }
  996. *info = 0;
  997. }
  998. /* Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */
  999. if (wantz) {
  1000. *(unsigned char *)order = 'B';
  1001. } else {
  1002. *(unsigned char *)order = 'E';
  1003. }
  1004. indibl = 1;
  1005. indisp = indibl + *n;
  1006. indiwk = indisp + *n;
  1007. dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
  1008. rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
  1009. rwork[indrwk], &iwork[indiwk], info);
  1010. if (wantz) {
  1011. zstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
  1012. iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
  1013. indiwk], &ifail[1], info);
  1014. /* Apply unitary matrix used in reduction to tridiagonal */
  1015. /* form to eigenvectors returned by ZSTEIN. */
  1016. zunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
  1017. z_offset], ldz, &work[indwrk], &llwork, &iinfo);
  1018. }
  1019. /* If matrix was scaled, then rescale eigenvalues appropriately. */
  1020. L40:
  1021. if (iscale == 1) {
  1022. if (*info == 0) {
  1023. imax = *m;
  1024. } else {
  1025. imax = *info - 1;
  1026. }
  1027. d__1 = 1. / sigma;
  1028. dscal_(&imax, &d__1, &w[1], &c__1);
  1029. }
  1030. /* If eigenvalues are not in order, then sort them, along with */
  1031. /* eigenvectors. */
  1032. if (wantz) {
  1033. i__1 = *m - 1;
  1034. for (j = 1; j <= i__1; ++j) {
  1035. i__ = 0;
  1036. tmp1 = w[j];
  1037. i__2 = *m;
  1038. for (jj = j + 1; jj <= i__2; ++jj) {
  1039. if (w[jj] < tmp1) {
  1040. i__ = jj;
  1041. tmp1 = w[jj];
  1042. }
  1043. /* L50: */
  1044. }
  1045. if (i__ != 0) {
  1046. itmp1 = iwork[indibl + i__ - 1];
  1047. w[i__] = w[j];
  1048. iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
  1049. w[j] = tmp1;
  1050. iwork[indibl + j - 1] = itmp1;
  1051. zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
  1052. &c__1);
  1053. if (*info != 0) {
  1054. itmp1 = ifail[i__];
  1055. ifail[i__] = ifail[j];
  1056. ifail[j] = itmp1;
  1057. }
  1058. }
  1059. /* L60: */
  1060. }
  1061. }
  1062. /* Set WORK(1) to optimal complex workspace size. */
  1063. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  1064. return;
  1065. /* End of ZHEEVX */
  1066. } /* zheevx_ */