You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssbgst.c 65 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static real c_b8 = 0.f;
  485. static real c_b9 = 1.f;
  486. static integer c__1 = 1;
  487. static real c_b20 = -1.f;
  488. /* > \brief \b SSBGST */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download SSBGST + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbgst.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbgst.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbgst.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE SSBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, */
  507. /* LDX, WORK, INFO ) */
  508. /* CHARACTER UPLO, VECT */
  509. /* INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N */
  510. /* REAL AB( LDAB, * ), BB( LDBB, * ), WORK( * ), */
  511. /* $ X( LDX, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > SSBGST reduces a real symmetric-definite banded generalized */
  518. /* > eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
  519. /* > such that C has the same bandwidth as A. */
  520. /* > */
  521. /* > B must have been previously factorized as S**T*S by SPBSTF, using a */
  522. /* > split Cholesky factorization. A is overwritten by C = X**T*A*X, where */
  523. /* > X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the */
  524. /* > bandwidth of A. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] VECT */
  529. /* > \verbatim */
  530. /* > VECT is CHARACTER*1 */
  531. /* > = 'N': do not form the transformation matrix X; */
  532. /* > = 'V': form X. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] UPLO */
  536. /* > \verbatim */
  537. /* > UPLO is CHARACTER*1 */
  538. /* > = 'U': Upper triangle of A is stored; */
  539. /* > = 'L': Lower triangle of A is stored. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N */
  543. /* > \verbatim */
  544. /* > N is INTEGER */
  545. /* > The order of the matrices A and B. N >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] KA */
  549. /* > \verbatim */
  550. /* > KA is INTEGER */
  551. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  552. /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] KB */
  556. /* > \verbatim */
  557. /* > KB is INTEGER */
  558. /* > The number of superdiagonals of the matrix B if UPLO = 'U', */
  559. /* > or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] AB */
  563. /* > \verbatim */
  564. /* > AB is REAL array, dimension (LDAB,N) */
  565. /* > On entry, the upper or lower triangle of the symmetric band */
  566. /* > matrix A, stored in the first ka+1 rows of the array. The */
  567. /* > j-th column of A is stored in the j-th column of the array AB */
  568. /* > as follows: */
  569. /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
  570. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */
  571. /* > */
  572. /* > On exit, the transformed matrix X**T*A*X, stored in the same */
  573. /* > format as A. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] LDAB */
  577. /* > \verbatim */
  578. /* > LDAB is INTEGER */
  579. /* > The leading dimension of the array AB. LDAB >= KA+1. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] BB */
  583. /* > \verbatim */
  584. /* > BB is REAL array, dimension (LDBB,N) */
  585. /* > The banded factor S from the split Cholesky factorization of */
  586. /* > B, as returned by SPBSTF, stored in the first KB+1 rows of */
  587. /* > the array. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDBB */
  591. /* > \verbatim */
  592. /* > LDBB is INTEGER */
  593. /* > The leading dimension of the array BB. LDBB >= KB+1. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] X */
  597. /* > \verbatim */
  598. /* > X is REAL array, dimension (LDX,N) */
  599. /* > If VECT = 'V', the n-by-n matrix X. */
  600. /* > If VECT = 'N', the array X is not referenced. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] LDX */
  604. /* > \verbatim */
  605. /* > LDX is INTEGER */
  606. /* > The leading dimension of the array X. */
  607. /* > LDX >= f2cmax(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] WORK */
  611. /* > \verbatim */
  612. /* > WORK is REAL array, dimension (2*N) */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] INFO */
  616. /* > \verbatim */
  617. /* > INFO is INTEGER */
  618. /* > = 0: successful exit */
  619. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  620. /* > \endverbatim */
  621. /* Authors: */
  622. /* ======== */
  623. /* > \author Univ. of Tennessee */
  624. /* > \author Univ. of California Berkeley */
  625. /* > \author Univ. of Colorado Denver */
  626. /* > \author NAG Ltd. */
  627. /* > \date December 2016 */
  628. /* > \ingroup realOTHERcomputational */
  629. /* ===================================================================== */
  630. /* Subroutine */ void ssbgst_(char *vect, char *uplo, integer *n, integer *ka,
  631. integer *kb, real *ab, integer *ldab, real *bb, integer *ldbb, real *
  632. x, integer *ldx, real *work, integer *info)
  633. {
  634. /* System generated locals */
  635. integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
  636. i__2, i__3, i__4;
  637. real r__1;
  638. /* Local variables */
  639. integer inca;
  640. extern /* Subroutine */ void sger_(integer *, integer *, real *, real *,
  641. integer *, real *, integer *, real *, integer *), srot_(integer *,
  642. real *, integer *, real *, integer *, real *, real *);
  643. integer i__, j, k, l, m;
  644. real t;
  645. extern logical lsame_(char *, char *);
  646. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  647. integer i0, i1;
  648. logical upper;
  649. integer i2, j1, j2;
  650. logical wantx;
  651. extern /* Subroutine */ void slar2v_(integer *, real *, real *, real *,
  652. integer *, real *, real *, integer *);
  653. real ra;
  654. integer nr, nx;
  655. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  656. logical update;
  657. extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *,
  658. real *, real *, integer *), slartg_(real *, real *, real *
  659. , real *, real *);
  660. integer ka1, kb1;
  661. extern /* Subroutine */ void slargv_(integer *, real *, integer *, real *,
  662. integer *, real *, integer *);
  663. real ra1;
  664. extern /* Subroutine */ void slartv_(integer *, real *, integer *, real *,
  665. integer *, real *, real *, integer *);
  666. integer j1t, j2t;
  667. real bii;
  668. integer kbt, nrt;
  669. /* -- LAPACK computational routine (version 3.7.0) -- */
  670. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  671. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  672. /* December 2016 */
  673. /* ===================================================================== */
  674. /* Test the input parameters */
  675. /* Parameter adjustments */
  676. ab_dim1 = *ldab;
  677. ab_offset = 1 + ab_dim1 * 1;
  678. ab -= ab_offset;
  679. bb_dim1 = *ldbb;
  680. bb_offset = 1 + bb_dim1 * 1;
  681. bb -= bb_offset;
  682. x_dim1 = *ldx;
  683. x_offset = 1 + x_dim1 * 1;
  684. x -= x_offset;
  685. --work;
  686. /* Function Body */
  687. wantx = lsame_(vect, "V");
  688. upper = lsame_(uplo, "U");
  689. ka1 = *ka + 1;
  690. kb1 = *kb + 1;
  691. *info = 0;
  692. if (! wantx && ! lsame_(vect, "N")) {
  693. *info = -1;
  694. } else if (! upper && ! lsame_(uplo, "L")) {
  695. *info = -2;
  696. } else if (*n < 0) {
  697. *info = -3;
  698. } else if (*ka < 0) {
  699. *info = -4;
  700. } else if (*kb < 0 || *kb > *ka) {
  701. *info = -5;
  702. } else if (*ldab < *ka + 1) {
  703. *info = -7;
  704. } else if (*ldbb < *kb + 1) {
  705. *info = -9;
  706. } else if (*ldx < 1 || wantx && *ldx < f2cmax(1,*n)) {
  707. *info = -11;
  708. }
  709. if (*info != 0) {
  710. i__1 = -(*info);
  711. xerbla_("SSBGST", &i__1, (ftnlen)6);
  712. return;
  713. }
  714. /* Quick return if possible */
  715. if (*n == 0) {
  716. return;
  717. }
  718. inca = *ldab * ka1;
  719. /* Initialize X to the unit matrix, if needed */
  720. if (wantx) {
  721. slaset_("Full", n, n, &c_b8, &c_b9, &x[x_offset], ldx);
  722. }
  723. /* Set M to the splitting point m. It must be the same value as is */
  724. /* used in SPBSTF. The chosen value allows the arrays WORK and RWORK */
  725. /* to be of dimension (N). */
  726. m = (*n + *kb) / 2;
  727. /* The routine works in two phases, corresponding to the two halves */
  728. /* of the split Cholesky factorization of B as S**T*S where */
  729. /* S = ( U ) */
  730. /* ( M L ) */
  731. /* with U upper triangular of order m, and L lower triangular of */
  732. /* order n-m. S has the same bandwidth as B. */
  733. /* S is treated as a product of elementary matrices: */
  734. /* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
  735. /* where S(i) is determined by the i-th row of S. */
  736. /* In phase 1, the index i takes the values n, n-1, ... , m+1; */
  737. /* in phase 2, it takes the values 1, 2, ... , m. */
  738. /* For each value of i, the current matrix A is updated by forming */
  739. /* inv(S(i))**T*A*inv(S(i)). This creates a triangular bulge outside */
  740. /* the band of A. The bulge is then pushed down toward the bottom of */
  741. /* A in phase 1, and up toward the top of A in phase 2, by applying */
  742. /* plane rotations. */
  743. /* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
  744. /* of them are linearly independent, so annihilating a bulge requires */
  745. /* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
  746. /* set of kb-1 rotations, and a 2nd set of kb rotations. */
  747. /* Wherever possible, rotations are generated and applied in vector */
  748. /* operations of length NR between the indices J1 and J2 (sometimes */
  749. /* replaced by modified values NRT, J1T or J2T). */
  750. /* The cosines and sines of the rotations are stored in the array */
  751. /* WORK. The cosines of the 1st set of rotations are stored in */
  752. /* elements n+2:n+m-kb-1 and the sines of the 1st set in elements */
  753. /* 2:m-kb-1; the cosines of the 2nd set are stored in elements */
  754. /* n+m-kb+1:2*n and the sines of the second set in elements m-kb+1:n. */
  755. /* The bulges are not formed explicitly; nonzero elements outside the */
  756. /* band are created only when they are required for generating new */
  757. /* rotations; they are stored in the array WORK, in positions where */
  758. /* they are later overwritten by the sines of the rotations which */
  759. /* annihilate them. */
  760. /* **************************** Phase 1 ***************************** */
  761. /* The logical structure of this phase is: */
  762. /* UPDATE = .TRUE. */
  763. /* DO I = N, M + 1, -1 */
  764. /* use S(i) to update A and create a new bulge */
  765. /* apply rotations to push all bulges KA positions downward */
  766. /* END DO */
  767. /* UPDATE = .FALSE. */
  768. /* DO I = M + KA + 1, N - 1 */
  769. /* apply rotations to push all bulges KA positions downward */
  770. /* END DO */
  771. /* To avoid duplicating code, the two loops are merged. */
  772. update = TRUE_;
  773. i__ = *n + 1;
  774. L10:
  775. if (update) {
  776. --i__;
  777. /* Computing MIN */
  778. i__1 = *kb, i__2 = i__ - 1;
  779. kbt = f2cmin(i__1,i__2);
  780. i0 = i__ - 1;
  781. /* Computing MIN */
  782. i__1 = *n, i__2 = i__ + *ka;
  783. i1 = f2cmin(i__1,i__2);
  784. i2 = i__ - kbt + ka1;
  785. if (i__ < m + 1) {
  786. update = FALSE_;
  787. ++i__;
  788. i0 = m;
  789. if (*ka == 0) {
  790. goto L480;
  791. }
  792. goto L10;
  793. }
  794. } else {
  795. i__ += *ka;
  796. if (i__ > *n - 1) {
  797. goto L480;
  798. }
  799. }
  800. if (upper) {
  801. /* Transform A, working with the upper triangle */
  802. if (update) {
  803. /* Form inv(S(i))**T * A * inv(S(i)) */
  804. bii = bb[kb1 + i__ * bb_dim1];
  805. i__1 = i1;
  806. for (j = i__; j <= i__1; ++j) {
  807. ab[i__ - j + ka1 + j * ab_dim1] /= bii;
  808. /* L20: */
  809. }
  810. /* Computing MAX */
  811. i__1 = 1, i__2 = i__ - *ka;
  812. i__3 = i__;
  813. for (j = f2cmax(i__1,i__2); j <= i__3; ++j) {
  814. ab[j - i__ + ka1 + i__ * ab_dim1] /= bii;
  815. /* L30: */
  816. }
  817. i__3 = i__ - 1;
  818. for (k = i__ - kbt; k <= i__3; ++k) {
  819. i__1 = k;
  820. for (j = i__ - kbt; j <= i__1; ++j) {
  821. ab[j - k + ka1 + k * ab_dim1] = ab[j - k + ka1 + k *
  822. ab_dim1] - bb[j - i__ + kb1 + i__ * bb_dim1] * ab[
  823. k - i__ + ka1 + i__ * ab_dim1] - bb[k - i__ + kb1
  824. + i__ * bb_dim1] * ab[j - i__ + ka1 + i__ *
  825. ab_dim1] + ab[ka1 + i__ * ab_dim1] * bb[j - i__ +
  826. kb1 + i__ * bb_dim1] * bb[k - i__ + kb1 + i__ *
  827. bb_dim1];
  828. /* L40: */
  829. }
  830. /* Computing MAX */
  831. i__1 = 1, i__2 = i__ - *ka;
  832. i__4 = i__ - kbt - 1;
  833. for (j = f2cmax(i__1,i__2); j <= i__4; ++j) {
  834. ab[j - k + ka1 + k * ab_dim1] -= bb[k - i__ + kb1 + i__ *
  835. bb_dim1] * ab[j - i__ + ka1 + i__ * ab_dim1];
  836. /* L50: */
  837. }
  838. /* L60: */
  839. }
  840. i__3 = i1;
  841. for (j = i__; j <= i__3; ++j) {
  842. /* Computing MAX */
  843. i__4 = j - *ka, i__1 = i__ - kbt;
  844. i__2 = i__ - 1;
  845. for (k = f2cmax(i__4,i__1); k <= i__2; ++k) {
  846. ab[k - j + ka1 + j * ab_dim1] -= bb[k - i__ + kb1 + i__ *
  847. bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1];
  848. /* L70: */
  849. }
  850. /* L80: */
  851. }
  852. if (wantx) {
  853. /* post-multiply X by inv(S(i)) */
  854. i__3 = *n - m;
  855. r__1 = 1.f / bii;
  856. sscal_(&i__3, &r__1, &x[m + 1 + i__ * x_dim1], &c__1);
  857. if (kbt > 0) {
  858. i__3 = *n - m;
  859. sger_(&i__3, &kbt, &c_b20, &x[m + 1 + i__ * x_dim1], &
  860. c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
  861. + 1 + (i__ - kbt) * x_dim1], ldx);
  862. }
  863. }
  864. /* store a(i,i1) in RA1 for use in next loop over K */
  865. ra1 = ab[i__ - i1 + ka1 + i1 * ab_dim1];
  866. }
  867. /* Generate and apply vectors of rotations to chase all the */
  868. /* existing bulges KA positions down toward the bottom of the */
  869. /* band */
  870. i__3 = *kb - 1;
  871. for (k = 1; k <= i__3; ++k) {
  872. if (update) {
  873. /* Determine the rotations which would annihilate the bulge */
  874. /* which has in theory just been created */
  875. if (i__ - k + *ka < *n && i__ - k > 1) {
  876. /* generate rotation to annihilate a(i,i-k+ka+1) */
  877. slartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
  878. work[*n + i__ - k + *ka - m], &work[i__ - k + *ka
  879. - m], &ra);
  880. /* create nonzero element a(i-k,i-k+ka+1) outside the */
  881. /* band and store it in WORK(i-k) */
  882. t = -bb[kb1 - k + i__ * bb_dim1] * ra1;
  883. work[i__ - k] = work[*n + i__ - k + *ka - m] * t - work[
  884. i__ - k + *ka - m] * ab[(i__ - k + *ka) * ab_dim1
  885. + 1];
  886. ab[(i__ - k + *ka) * ab_dim1 + 1] = work[i__ - k + *ka -
  887. m] * t + work[*n + i__ - k + *ka - m] * ab[(i__ -
  888. k + *ka) * ab_dim1 + 1];
  889. ra1 = ra;
  890. }
  891. }
  892. /* Computing MAX */
  893. i__2 = 1, i__4 = k - i0 + 2;
  894. j2 = i__ - k - 1 + f2cmax(i__2,i__4) * ka1;
  895. nr = (*n - j2 + *ka) / ka1;
  896. j1 = j2 + (nr - 1) * ka1;
  897. if (update) {
  898. /* Computing MAX */
  899. i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
  900. j2t = f2cmax(i__2,i__4);
  901. } else {
  902. j2t = j2;
  903. }
  904. nrt = (*n - j2t + *ka) / ka1;
  905. i__2 = j1;
  906. i__4 = ka1;
  907. for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
  908. /* create nonzero element a(j-ka,j+1) outside the band */
  909. /* and store it in WORK(j-m) */
  910. work[j - m] *= ab[(j + 1) * ab_dim1 + 1];
  911. ab[(j + 1) * ab_dim1 + 1] = work[*n + j - m] * ab[(j + 1) *
  912. ab_dim1 + 1];
  913. /* L90: */
  914. }
  915. /* generate rotations in 1st set to annihilate elements which */
  916. /* have been created outside the band */
  917. if (nrt > 0) {
  918. slargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
  919. ka1, &work[*n + j2t - m], &ka1);
  920. }
  921. if (nr > 0) {
  922. /* apply rotations in 1st set from the right */
  923. i__4 = *ka - 1;
  924. for (l = 1; l <= i__4; ++l) {
  925. slartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  926. - l + (j2 + 1) * ab_dim1], &inca, &work[*n + j2 -
  927. m], &work[j2 - m], &ka1);
  928. /* L100: */
  929. }
  930. /* apply rotations in 1st set from both sides to diagonal */
  931. /* blocks */
  932. slar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  933. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &work[
  934. *n + j2 - m], &work[j2 - m], &ka1);
  935. }
  936. /* start applying rotations in 1st set from the left */
  937. i__4 = *kb - k + 1;
  938. for (l = *ka - 1; l >= i__4; --l) {
  939. nrt = (*n - j2 + l) / ka1;
  940. if (nrt > 0) {
  941. slartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  942. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  943. work[*n + j2 - m], &work[j2 - m], &ka1);
  944. }
  945. /* L110: */
  946. }
  947. if (wantx) {
  948. /* post-multiply X by product of rotations in 1st set */
  949. i__4 = j1;
  950. i__2 = ka1;
  951. for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
  952. i__1 = *n - m;
  953. srot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  954. + 1) * x_dim1], &c__1, &work[*n + j - m], &work[j
  955. - m]);
  956. /* L120: */
  957. }
  958. }
  959. /* L130: */
  960. }
  961. if (update) {
  962. if (i2 <= *n && kbt > 0) {
  963. /* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
  964. /* band and store it in WORK(i-kbt) */
  965. work[i__ - kbt] = -bb[kb1 - kbt + i__ * bb_dim1] * ra1;
  966. }
  967. }
  968. for (k = *kb; k >= 1; --k) {
  969. if (update) {
  970. /* Computing MAX */
  971. i__3 = 2, i__2 = k - i0 + 1;
  972. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  973. } else {
  974. /* Computing MAX */
  975. i__3 = 1, i__2 = k - i0 + 1;
  976. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  977. }
  978. /* finish applying rotations in 2nd set from the left */
  979. for (l = *kb - k; l >= 1; --l) {
  980. nrt = (*n - j2 + *ka + l) / ka1;
  981. if (nrt > 0) {
  982. slartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
  983. l + 1 + (j2 - l + 1) * ab_dim1], &inca, &work[*n
  984. + j2 - *ka], &work[j2 - *ka], &ka1);
  985. }
  986. /* L140: */
  987. }
  988. nr = (*n - j2 + *ka) / ka1;
  989. j1 = j2 + (nr - 1) * ka1;
  990. i__3 = j2;
  991. i__2 = -ka1;
  992. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  993. work[j] = work[j - *ka];
  994. work[*n + j] = work[*n + j - *ka];
  995. /* L150: */
  996. }
  997. i__2 = j1;
  998. i__3 = ka1;
  999. for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
  1000. /* create nonzero element a(j-ka,j+1) outside the band */
  1001. /* and store it in WORK(j) */
  1002. work[j] *= ab[(j + 1) * ab_dim1 + 1];
  1003. ab[(j + 1) * ab_dim1 + 1] = work[*n + j] * ab[(j + 1) *
  1004. ab_dim1 + 1];
  1005. /* L160: */
  1006. }
  1007. if (update) {
  1008. if (i__ - k < *n - *ka && k <= kbt) {
  1009. work[i__ - k + *ka] = work[i__ - k];
  1010. }
  1011. }
  1012. /* L170: */
  1013. }
  1014. for (k = *kb; k >= 1; --k) {
  1015. /* Computing MAX */
  1016. i__3 = 1, i__2 = k - i0 + 1;
  1017. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1018. nr = (*n - j2 + *ka) / ka1;
  1019. j1 = j2 + (nr - 1) * ka1;
  1020. if (nr > 0) {
  1021. /* generate rotations in 2nd set to annihilate elements */
  1022. /* which have been created outside the band */
  1023. slargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
  1024. work[*n + j2], &ka1);
  1025. /* apply rotations in 2nd set from the right */
  1026. i__3 = *ka - 1;
  1027. for (l = 1; l <= i__3; ++l) {
  1028. slartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1029. - l + (j2 + 1) * ab_dim1], &inca, &work[*n + j2],
  1030. &work[j2], &ka1);
  1031. /* L180: */
  1032. }
  1033. /* apply rotations in 2nd set from both sides to diagonal */
  1034. /* blocks */
  1035. slar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1036. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &work[
  1037. *n + j2], &work[j2], &ka1);
  1038. }
  1039. /* start applying rotations in 2nd set from the left */
  1040. i__3 = *kb - k + 1;
  1041. for (l = *ka - 1; l >= i__3; --l) {
  1042. nrt = (*n - j2 + l) / ka1;
  1043. if (nrt > 0) {
  1044. slartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1045. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1046. work[*n + j2], &work[j2], &ka1);
  1047. }
  1048. /* L190: */
  1049. }
  1050. if (wantx) {
  1051. /* post-multiply X by product of rotations in 2nd set */
  1052. i__3 = j1;
  1053. i__2 = ka1;
  1054. for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1055. i__4 = *n - m;
  1056. srot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1057. + 1) * x_dim1], &c__1, &work[*n + j], &work[j]);
  1058. /* L200: */
  1059. }
  1060. }
  1061. /* L210: */
  1062. }
  1063. i__2 = *kb - 1;
  1064. for (k = 1; k <= i__2; ++k) {
  1065. /* Computing MAX */
  1066. i__3 = 1, i__4 = k - i0 + 2;
  1067. j2 = i__ - k - 1 + f2cmax(i__3,i__4) * ka1;
  1068. /* finish applying rotations in 1st set from the left */
  1069. for (l = *kb - k; l >= 1; --l) {
  1070. nrt = (*n - j2 + l) / ka1;
  1071. if (nrt > 0) {
  1072. slartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1073. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1074. work[*n + j2 - m], &work[j2 - m], &ka1);
  1075. }
  1076. /* L220: */
  1077. }
  1078. /* L230: */
  1079. }
  1080. if (*kb > 1) {
  1081. i__2 = i__ - *kb + (*ka << 1) + 1;
  1082. for (j = *n - 1; j >= i__2; --j) {
  1083. work[*n + j - m] = work[*n + j - *ka - m];
  1084. work[j - m] = work[j - *ka - m];
  1085. /* L240: */
  1086. }
  1087. }
  1088. } else {
  1089. /* Transform A, working with the lower triangle */
  1090. if (update) {
  1091. /* Form inv(S(i))**T * A * inv(S(i)) */
  1092. bii = bb[i__ * bb_dim1 + 1];
  1093. i__2 = i1;
  1094. for (j = i__; j <= i__2; ++j) {
  1095. ab[j - i__ + 1 + i__ * ab_dim1] /= bii;
  1096. /* L250: */
  1097. }
  1098. /* Computing MAX */
  1099. i__2 = 1, i__3 = i__ - *ka;
  1100. i__4 = i__;
  1101. for (j = f2cmax(i__2,i__3); j <= i__4; ++j) {
  1102. ab[i__ - j + 1 + j * ab_dim1] /= bii;
  1103. /* L260: */
  1104. }
  1105. i__4 = i__ - 1;
  1106. for (k = i__ - kbt; k <= i__4; ++k) {
  1107. i__2 = k;
  1108. for (j = i__ - kbt; j <= i__2; ++j) {
  1109. ab[k - j + 1 + j * ab_dim1] = ab[k - j + 1 + j * ab_dim1]
  1110. - bb[i__ - j + 1 + j * bb_dim1] * ab[i__ - k + 1
  1111. + k * ab_dim1] - bb[i__ - k + 1 + k * bb_dim1] *
  1112. ab[i__ - j + 1 + j * ab_dim1] + ab[i__ * ab_dim1
  1113. + 1] * bb[i__ - j + 1 + j * bb_dim1] * bb[i__ - k
  1114. + 1 + k * bb_dim1];
  1115. /* L270: */
  1116. }
  1117. /* Computing MAX */
  1118. i__2 = 1, i__3 = i__ - *ka;
  1119. i__1 = i__ - kbt - 1;
  1120. for (j = f2cmax(i__2,i__3); j <= i__1; ++j) {
  1121. ab[k - j + 1 + j * ab_dim1] -= bb[i__ - k + 1 + k *
  1122. bb_dim1] * ab[i__ - j + 1 + j * ab_dim1];
  1123. /* L280: */
  1124. }
  1125. /* L290: */
  1126. }
  1127. i__4 = i1;
  1128. for (j = i__; j <= i__4; ++j) {
  1129. /* Computing MAX */
  1130. i__1 = j - *ka, i__2 = i__ - kbt;
  1131. i__3 = i__ - 1;
  1132. for (k = f2cmax(i__1,i__2); k <= i__3; ++k) {
  1133. ab[j - k + 1 + k * ab_dim1] -= bb[i__ - k + 1 + k *
  1134. bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1];
  1135. /* L300: */
  1136. }
  1137. /* L310: */
  1138. }
  1139. if (wantx) {
  1140. /* post-multiply X by inv(S(i)) */
  1141. i__4 = *n - m;
  1142. r__1 = 1.f / bii;
  1143. sscal_(&i__4, &r__1, &x[m + 1 + i__ * x_dim1], &c__1);
  1144. if (kbt > 0) {
  1145. i__4 = *n - m;
  1146. i__3 = *ldbb - 1;
  1147. sger_(&i__4, &kbt, &c_b20, &x[m + 1 + i__ * x_dim1], &
  1148. c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
  1149. &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
  1150. }
  1151. }
  1152. /* store a(i1,i) in RA1 for use in next loop over K */
  1153. ra1 = ab[i1 - i__ + 1 + i__ * ab_dim1];
  1154. }
  1155. /* Generate and apply vectors of rotations to chase all the */
  1156. /* existing bulges KA positions down toward the bottom of the */
  1157. /* band */
  1158. i__4 = *kb - 1;
  1159. for (k = 1; k <= i__4; ++k) {
  1160. if (update) {
  1161. /* Determine the rotations which would annihilate the bulge */
  1162. /* which has in theory just been created */
  1163. if (i__ - k + *ka < *n && i__ - k > 1) {
  1164. /* generate rotation to annihilate a(i-k+ka+1,i) */
  1165. slartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &work[*n +
  1166. i__ - k + *ka - m], &work[i__ - k + *ka - m], &ra)
  1167. ;
  1168. /* create nonzero element a(i-k+ka+1,i-k) outside the */
  1169. /* band and store it in WORK(i-k) */
  1170. t = -bb[k + 1 + (i__ - k) * bb_dim1] * ra1;
  1171. work[i__ - k] = work[*n + i__ - k + *ka - m] * t - work[
  1172. i__ - k + *ka - m] * ab[ka1 + (i__ - k) * ab_dim1]
  1173. ;
  1174. ab[ka1 + (i__ - k) * ab_dim1] = work[i__ - k + *ka - m] *
  1175. t + work[*n + i__ - k + *ka - m] * ab[ka1 + (i__
  1176. - k) * ab_dim1];
  1177. ra1 = ra;
  1178. }
  1179. }
  1180. /* Computing MAX */
  1181. i__3 = 1, i__1 = k - i0 + 2;
  1182. j2 = i__ - k - 1 + f2cmax(i__3,i__1) * ka1;
  1183. nr = (*n - j2 + *ka) / ka1;
  1184. j1 = j2 + (nr - 1) * ka1;
  1185. if (update) {
  1186. /* Computing MAX */
  1187. i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
  1188. j2t = f2cmax(i__3,i__1);
  1189. } else {
  1190. j2t = j2;
  1191. }
  1192. nrt = (*n - j2t + *ka) / ka1;
  1193. i__3 = j1;
  1194. i__1 = ka1;
  1195. for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1196. /* create nonzero element a(j+1,j-ka) outside the band */
  1197. /* and store it in WORK(j-m) */
  1198. work[j - m] *= ab[ka1 + (j - *ka + 1) * ab_dim1];
  1199. ab[ka1 + (j - *ka + 1) * ab_dim1] = work[*n + j - m] * ab[ka1
  1200. + (j - *ka + 1) * ab_dim1];
  1201. /* L320: */
  1202. }
  1203. /* generate rotations in 1st set to annihilate elements which */
  1204. /* have been created outside the band */
  1205. if (nrt > 0) {
  1206. slargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
  1207. j2t - m], &ka1, &work[*n + j2t - m], &ka1);
  1208. }
  1209. if (nr > 0) {
  1210. /* apply rotations in 1st set from the left */
  1211. i__1 = *ka - 1;
  1212. for (l = 1; l <= i__1; ++l) {
  1213. slartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1214. l + 2 + (j2 - l) * ab_dim1], &inca, &work[*n + j2
  1215. - m], &work[j2 - m], &ka1);
  1216. /* L330: */
  1217. }
  1218. /* apply rotations in 1st set from both sides to diagonal */
  1219. /* blocks */
  1220. slar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1221. 1], &ab[j2 * ab_dim1 + 2], &inca, &work[*n + j2 - m],
  1222. &work[j2 - m], &ka1);
  1223. }
  1224. /* start applying rotations in 1st set from the right */
  1225. i__1 = *kb - k + 1;
  1226. for (l = *ka - 1; l >= i__1; --l) {
  1227. nrt = (*n - j2 + l) / ka1;
  1228. if (nrt > 0) {
  1229. slartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1230. ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
  1231. j2 - m], &work[j2 - m], &ka1);
  1232. }
  1233. /* L340: */
  1234. }
  1235. if (wantx) {
  1236. /* post-multiply X by product of rotations in 1st set */
  1237. i__1 = j1;
  1238. i__3 = ka1;
  1239. for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1240. i__2 = *n - m;
  1241. srot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1242. + 1) * x_dim1], &c__1, &work[*n + j - m], &work[j
  1243. - m]);
  1244. /* L350: */
  1245. }
  1246. }
  1247. /* L360: */
  1248. }
  1249. if (update) {
  1250. if (i2 <= *n && kbt > 0) {
  1251. /* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
  1252. /* band and store it in WORK(i-kbt) */
  1253. work[i__ - kbt] = -bb[kbt + 1 + (i__ - kbt) * bb_dim1] * ra1;
  1254. }
  1255. }
  1256. for (k = *kb; k >= 1; --k) {
  1257. if (update) {
  1258. /* Computing MAX */
  1259. i__4 = 2, i__3 = k - i0 + 1;
  1260. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1261. } else {
  1262. /* Computing MAX */
  1263. i__4 = 1, i__3 = k - i0 + 1;
  1264. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1265. }
  1266. /* finish applying rotations in 2nd set from the right */
  1267. for (l = *kb - k; l >= 1; --l) {
  1268. nrt = (*n - j2 + *ka + l) / ka1;
  1269. if (nrt > 0) {
  1270. slartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
  1271. inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
  1272. inca, &work[*n + j2 - *ka], &work[j2 - *ka], &ka1)
  1273. ;
  1274. }
  1275. /* L370: */
  1276. }
  1277. nr = (*n - j2 + *ka) / ka1;
  1278. j1 = j2 + (nr - 1) * ka1;
  1279. i__4 = j2;
  1280. i__3 = -ka1;
  1281. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1282. work[j] = work[j - *ka];
  1283. work[*n + j] = work[*n + j - *ka];
  1284. /* L380: */
  1285. }
  1286. i__3 = j1;
  1287. i__4 = ka1;
  1288. for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1289. /* create nonzero element a(j+1,j-ka) outside the band */
  1290. /* and store it in WORK(j) */
  1291. work[j] *= ab[ka1 + (j - *ka + 1) * ab_dim1];
  1292. ab[ka1 + (j - *ka + 1) * ab_dim1] = work[*n + j] * ab[ka1 + (
  1293. j - *ka + 1) * ab_dim1];
  1294. /* L390: */
  1295. }
  1296. if (update) {
  1297. if (i__ - k < *n - *ka && k <= kbt) {
  1298. work[i__ - k + *ka] = work[i__ - k];
  1299. }
  1300. }
  1301. /* L400: */
  1302. }
  1303. for (k = *kb; k >= 1; --k) {
  1304. /* Computing MAX */
  1305. i__4 = 1, i__3 = k - i0 + 1;
  1306. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1307. nr = (*n - j2 + *ka) / ka1;
  1308. j1 = j2 + (nr - 1) * ka1;
  1309. if (nr > 0) {
  1310. /* generate rotations in 2nd set to annihilate elements */
  1311. /* which have been created outside the band */
  1312. slargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
  1313. , &ka1, &work[*n + j2], &ka1);
  1314. /* apply rotations in 2nd set from the left */
  1315. i__4 = *ka - 1;
  1316. for (l = 1; l <= i__4; ++l) {
  1317. slartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1318. l + 2 + (j2 - l) * ab_dim1], &inca, &work[*n + j2]
  1319. , &work[j2], &ka1);
  1320. /* L410: */
  1321. }
  1322. /* apply rotations in 2nd set from both sides to diagonal */
  1323. /* blocks */
  1324. slar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1325. 1], &ab[j2 * ab_dim1 + 2], &inca, &work[*n + j2], &
  1326. work[j2], &ka1);
  1327. }
  1328. /* start applying rotations in 2nd set from the right */
  1329. i__4 = *kb - k + 1;
  1330. for (l = *ka - 1; l >= i__4; --l) {
  1331. nrt = (*n - j2 + l) / ka1;
  1332. if (nrt > 0) {
  1333. slartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1334. ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
  1335. j2], &work[j2], &ka1);
  1336. }
  1337. /* L420: */
  1338. }
  1339. if (wantx) {
  1340. /* post-multiply X by product of rotations in 2nd set */
  1341. i__4 = j1;
  1342. i__3 = ka1;
  1343. for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1344. i__1 = *n - m;
  1345. srot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1346. + 1) * x_dim1], &c__1, &work[*n + j], &work[j]);
  1347. /* L430: */
  1348. }
  1349. }
  1350. /* L440: */
  1351. }
  1352. i__3 = *kb - 1;
  1353. for (k = 1; k <= i__3; ++k) {
  1354. /* Computing MAX */
  1355. i__4 = 1, i__1 = k - i0 + 2;
  1356. j2 = i__ - k - 1 + f2cmax(i__4,i__1) * ka1;
  1357. /* finish applying rotations in 1st set from the right */
  1358. for (l = *kb - k; l >= 1; --l) {
  1359. nrt = (*n - j2 + l) / ka1;
  1360. if (nrt > 0) {
  1361. slartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1362. ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
  1363. j2 - m], &work[j2 - m], &ka1);
  1364. }
  1365. /* L450: */
  1366. }
  1367. /* L460: */
  1368. }
  1369. if (*kb > 1) {
  1370. i__3 = i__ - *kb + (*ka << 1) + 1;
  1371. for (j = *n - 1; j >= i__3; --j) {
  1372. work[*n + j - m] = work[*n + j - *ka - m];
  1373. work[j - m] = work[j - *ka - m];
  1374. /* L470: */
  1375. }
  1376. }
  1377. }
  1378. goto L10;
  1379. L480:
  1380. /* **************************** Phase 2 ***************************** */
  1381. /* The logical structure of this phase is: */
  1382. /* UPDATE = .TRUE. */
  1383. /* DO I = 1, M */
  1384. /* use S(i) to update A and create a new bulge */
  1385. /* apply rotations to push all bulges KA positions upward */
  1386. /* END DO */
  1387. /* UPDATE = .FALSE. */
  1388. /* DO I = M - KA - 1, 2, -1 */
  1389. /* apply rotations to push all bulges KA positions upward */
  1390. /* END DO */
  1391. /* To avoid duplicating code, the two loops are merged. */
  1392. update = TRUE_;
  1393. i__ = 0;
  1394. L490:
  1395. if (update) {
  1396. ++i__;
  1397. /* Computing MIN */
  1398. i__3 = *kb, i__4 = m - i__;
  1399. kbt = f2cmin(i__3,i__4);
  1400. i0 = i__ + 1;
  1401. /* Computing MAX */
  1402. i__3 = 1, i__4 = i__ - *ka;
  1403. i1 = f2cmax(i__3,i__4);
  1404. i2 = i__ + kbt - ka1;
  1405. if (i__ > m) {
  1406. update = FALSE_;
  1407. --i__;
  1408. i0 = m + 1;
  1409. if (*ka == 0) {
  1410. return;
  1411. }
  1412. goto L490;
  1413. }
  1414. } else {
  1415. i__ -= *ka;
  1416. if (i__ < 2) {
  1417. return;
  1418. }
  1419. }
  1420. if (i__ < m - kbt) {
  1421. nx = m;
  1422. } else {
  1423. nx = *n;
  1424. }
  1425. if (upper) {
  1426. /* Transform A, working with the upper triangle */
  1427. if (update) {
  1428. /* Form inv(S(i))**T * A * inv(S(i)) */
  1429. bii = bb[kb1 + i__ * bb_dim1];
  1430. i__3 = i__;
  1431. for (j = i1; j <= i__3; ++j) {
  1432. ab[j - i__ + ka1 + i__ * ab_dim1] /= bii;
  1433. /* L500: */
  1434. }
  1435. /* Computing MIN */
  1436. i__4 = *n, i__1 = i__ + *ka;
  1437. i__3 = f2cmin(i__4,i__1);
  1438. for (j = i__; j <= i__3; ++j) {
  1439. ab[i__ - j + ka1 + j * ab_dim1] /= bii;
  1440. /* L510: */
  1441. }
  1442. i__3 = i__ + kbt;
  1443. for (k = i__ + 1; k <= i__3; ++k) {
  1444. i__4 = i__ + kbt;
  1445. for (j = k; j <= i__4; ++j) {
  1446. ab[k - j + ka1 + j * ab_dim1] = ab[k - j + ka1 + j *
  1447. ab_dim1] - bb[i__ - j + kb1 + j * bb_dim1] * ab[
  1448. i__ - k + ka1 + k * ab_dim1] - bb[i__ - k + kb1 +
  1449. k * bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1] +
  1450. ab[ka1 + i__ * ab_dim1] * bb[i__ - j + kb1 + j *
  1451. bb_dim1] * bb[i__ - k + kb1 + k * bb_dim1];
  1452. /* L520: */
  1453. }
  1454. /* Computing MIN */
  1455. i__1 = *n, i__2 = i__ + *ka;
  1456. i__4 = f2cmin(i__1,i__2);
  1457. for (j = i__ + kbt + 1; j <= i__4; ++j) {
  1458. ab[k - j + ka1 + j * ab_dim1] -= bb[i__ - k + kb1 + k *
  1459. bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1];
  1460. /* L530: */
  1461. }
  1462. /* L540: */
  1463. }
  1464. i__3 = i__;
  1465. for (j = i1; j <= i__3; ++j) {
  1466. /* Computing MIN */
  1467. i__1 = j + *ka, i__2 = i__ + kbt;
  1468. i__4 = f2cmin(i__1,i__2);
  1469. for (k = i__ + 1; k <= i__4; ++k) {
  1470. ab[j - k + ka1 + k * ab_dim1] -= bb[i__ - k + kb1 + k *
  1471. bb_dim1] * ab[j - i__ + ka1 + i__ * ab_dim1];
  1472. /* L550: */
  1473. }
  1474. /* L560: */
  1475. }
  1476. if (wantx) {
  1477. /* post-multiply X by inv(S(i)) */
  1478. r__1 = 1.f / bii;
  1479. sscal_(&nx, &r__1, &x[i__ * x_dim1 + 1], &c__1);
  1480. if (kbt > 0) {
  1481. i__3 = *ldbb - 1;
  1482. sger_(&nx, &kbt, &c_b20, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1483. *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
  1484. x_dim1 + 1], ldx);
  1485. }
  1486. }
  1487. /* store a(i1,i) in RA1 for use in next loop over K */
  1488. ra1 = ab[i1 - i__ + ka1 + i__ * ab_dim1];
  1489. }
  1490. /* Generate and apply vectors of rotations to chase all the */
  1491. /* existing bulges KA positions up toward the top of the band */
  1492. i__3 = *kb - 1;
  1493. for (k = 1; k <= i__3; ++k) {
  1494. if (update) {
  1495. /* Determine the rotations which would annihilate the bulge */
  1496. /* which has in theory just been created */
  1497. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1498. /* generate rotation to annihilate a(i+k-ka-1,i) */
  1499. slartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &work[*n + i__
  1500. + k - *ka], &work[i__ + k - *ka], &ra);
  1501. /* create nonzero element a(i+k-ka-1,i+k) outside the */
  1502. /* band and store it in WORK(m-kb+i+k) */
  1503. t = -bb[kb1 - k + (i__ + k) * bb_dim1] * ra1;
  1504. work[m - *kb + i__ + k] = work[*n + i__ + k - *ka] * t -
  1505. work[i__ + k - *ka] * ab[(i__ + k) * ab_dim1 + 1];
  1506. ab[(i__ + k) * ab_dim1 + 1] = work[i__ + k - *ka] * t +
  1507. work[*n + i__ + k - *ka] * ab[(i__ + k) * ab_dim1
  1508. + 1];
  1509. ra1 = ra;
  1510. }
  1511. }
  1512. /* Computing MAX */
  1513. i__4 = 1, i__1 = k + i0 - m + 1;
  1514. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  1515. nr = (j2 + *ka - 1) / ka1;
  1516. j1 = j2 - (nr - 1) * ka1;
  1517. if (update) {
  1518. /* Computing MIN */
  1519. i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1520. j2t = f2cmin(i__4,i__1);
  1521. } else {
  1522. j2t = j2;
  1523. }
  1524. nrt = (j2t + *ka - 1) / ka1;
  1525. i__4 = j2t;
  1526. i__1 = ka1;
  1527. for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
  1528. /* create nonzero element a(j-1,j+ka) outside the band */
  1529. /* and store it in WORK(j) */
  1530. work[j] *= ab[(j + *ka - 1) * ab_dim1 + 1];
  1531. ab[(j + *ka - 1) * ab_dim1 + 1] = work[*n + j] * ab[(j + *ka
  1532. - 1) * ab_dim1 + 1];
  1533. /* L570: */
  1534. }
  1535. /* generate rotations in 1st set to annihilate elements which */
  1536. /* have been created outside the band */
  1537. if (nrt > 0) {
  1538. slargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
  1539. &ka1, &work[*n + j1], &ka1);
  1540. }
  1541. if (nr > 0) {
  1542. /* apply rotations in 1st set from the left */
  1543. i__1 = *ka - 1;
  1544. for (l = 1; l <= i__1; ++l) {
  1545. slartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1546. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &work[*n
  1547. + j1], &work[j1], &ka1);
  1548. /* L580: */
  1549. }
  1550. /* apply rotations in 1st set from both sides to diagonal */
  1551. /* blocks */
  1552. slar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1553. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &work[*n +
  1554. j1], &work[j1], &ka1);
  1555. }
  1556. /* start applying rotations in 1st set from the right */
  1557. i__1 = *kb - k + 1;
  1558. for (l = *ka - 1; l >= i__1; --l) {
  1559. nrt = (j2 + l - 1) / ka1;
  1560. j1t = j2 - (nrt - 1) * ka1;
  1561. if (nrt > 0) {
  1562. slartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1563. j1t - 1) * ab_dim1], &inca, &work[*n + j1t], &
  1564. work[j1t], &ka1);
  1565. }
  1566. /* L590: */
  1567. }
  1568. if (wantx) {
  1569. /* post-multiply X by product of rotations in 1st set */
  1570. i__1 = j2;
  1571. i__4 = ka1;
  1572. for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
  1573. srot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1574. + 1], &c__1, &work[*n + j], &work[j]);
  1575. /* L600: */
  1576. }
  1577. }
  1578. /* L610: */
  1579. }
  1580. if (update) {
  1581. if (i2 > 0 && kbt > 0) {
  1582. /* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
  1583. /* band and store it in WORK(m-kb+i+kbt) */
  1584. work[m - *kb + i__ + kbt] = -bb[kb1 - kbt + (i__ + kbt) *
  1585. bb_dim1] * ra1;
  1586. }
  1587. }
  1588. for (k = *kb; k >= 1; --k) {
  1589. if (update) {
  1590. /* Computing MAX */
  1591. i__3 = 2, i__4 = k + i0 - m;
  1592. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1593. } else {
  1594. /* Computing MAX */
  1595. i__3 = 1, i__4 = k + i0 - m;
  1596. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1597. }
  1598. /* finish applying rotations in 2nd set from the right */
  1599. for (l = *kb - k; l >= 1; --l) {
  1600. nrt = (j2 + *ka + l - 1) / ka1;
  1601. j1t = j2 - (nrt - 1) * ka1;
  1602. if (nrt > 0) {
  1603. slartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
  1604. l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &work[*
  1605. n + m - *kb + j1t + *ka], &work[m - *kb + j1t + *
  1606. ka], &ka1);
  1607. }
  1608. /* L620: */
  1609. }
  1610. nr = (j2 + *ka - 1) / ka1;
  1611. j1 = j2 - (nr - 1) * ka1;
  1612. i__3 = j2;
  1613. i__4 = ka1;
  1614. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1615. work[m - *kb + j] = work[m - *kb + j + *ka];
  1616. work[*n + m - *kb + j] = work[*n + m - *kb + j + *ka];
  1617. /* L630: */
  1618. }
  1619. i__4 = j2;
  1620. i__3 = ka1;
  1621. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1622. /* create nonzero element a(j-1,j+ka) outside the band */
  1623. /* and store it in WORK(m-kb+j) */
  1624. work[m - *kb + j] *= ab[(j + *ka - 1) * ab_dim1 + 1];
  1625. ab[(j + *ka - 1) * ab_dim1 + 1] = work[*n + m - *kb + j] * ab[
  1626. (j + *ka - 1) * ab_dim1 + 1];
  1627. /* L640: */
  1628. }
  1629. if (update) {
  1630. if (i__ + k > ka1 && k <= kbt) {
  1631. work[m - *kb + i__ + k - *ka] = work[m - *kb + i__ + k];
  1632. }
  1633. }
  1634. /* L650: */
  1635. }
  1636. for (k = *kb; k >= 1; --k) {
  1637. /* Computing MAX */
  1638. i__3 = 1, i__4 = k + i0 - m;
  1639. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1640. nr = (j2 + *ka - 1) / ka1;
  1641. j1 = j2 - (nr - 1) * ka1;
  1642. if (nr > 0) {
  1643. /* generate rotations in 2nd set to annihilate elements */
  1644. /* which have been created outside the band */
  1645. slargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
  1646. kb + j1], &ka1, &work[*n + m - *kb + j1], &ka1);
  1647. /* apply rotations in 2nd set from the left */
  1648. i__3 = *ka - 1;
  1649. for (l = 1; l <= i__3; ++l) {
  1650. slartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1651. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &work[*n
  1652. + m - *kb + j1], &work[m - *kb + j1], &ka1);
  1653. /* L660: */
  1654. }
  1655. /* apply rotations in 2nd set from both sides to diagonal */
  1656. /* blocks */
  1657. slar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1658. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &work[*n +
  1659. m - *kb + j1], &work[m - *kb + j1], &ka1);
  1660. }
  1661. /* start applying rotations in 2nd set from the right */
  1662. i__3 = *kb - k + 1;
  1663. for (l = *ka - 1; l >= i__3; --l) {
  1664. nrt = (j2 + l - 1) / ka1;
  1665. j1t = j2 - (nrt - 1) * ka1;
  1666. if (nrt > 0) {
  1667. slartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1668. j1t - 1) * ab_dim1], &inca, &work[*n + m - *kb +
  1669. j1t], &work[m - *kb + j1t], &ka1);
  1670. }
  1671. /* L670: */
  1672. }
  1673. if (wantx) {
  1674. /* post-multiply X by product of rotations in 2nd set */
  1675. i__3 = j2;
  1676. i__4 = ka1;
  1677. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1678. srot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1679. + 1], &c__1, &work[*n + m - *kb + j], &work[m - *
  1680. kb + j]);
  1681. /* L680: */
  1682. }
  1683. }
  1684. /* L690: */
  1685. }
  1686. i__4 = *kb - 1;
  1687. for (k = 1; k <= i__4; ++k) {
  1688. /* Computing MAX */
  1689. i__3 = 1, i__1 = k + i0 - m + 1;
  1690. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  1691. /* finish applying rotations in 1st set from the right */
  1692. for (l = *kb - k; l >= 1; --l) {
  1693. nrt = (j2 + l - 1) / ka1;
  1694. j1t = j2 - (nrt - 1) * ka1;
  1695. if (nrt > 0) {
  1696. slartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1697. j1t - 1) * ab_dim1], &inca, &work[*n + j1t], &
  1698. work[j1t], &ka1);
  1699. }
  1700. /* L700: */
  1701. }
  1702. /* L710: */
  1703. }
  1704. if (*kb > 1) {
  1705. /* Computing MIN */
  1706. i__3 = i__ + *kb;
  1707. i__4 = f2cmin(i__3,m) - (*ka << 1) - 1;
  1708. for (j = 2; j <= i__4; ++j) {
  1709. work[*n + j] = work[*n + j + *ka];
  1710. work[j] = work[j + *ka];
  1711. /* L720: */
  1712. }
  1713. }
  1714. } else {
  1715. /* Transform A, working with the lower triangle */
  1716. if (update) {
  1717. /* Form inv(S(i))**T * A * inv(S(i)) */
  1718. bii = bb[i__ * bb_dim1 + 1];
  1719. i__4 = i__;
  1720. for (j = i1; j <= i__4; ++j) {
  1721. ab[i__ - j + 1 + j * ab_dim1] /= bii;
  1722. /* L730: */
  1723. }
  1724. /* Computing MIN */
  1725. i__3 = *n, i__1 = i__ + *ka;
  1726. i__4 = f2cmin(i__3,i__1);
  1727. for (j = i__; j <= i__4; ++j) {
  1728. ab[j - i__ + 1 + i__ * ab_dim1] /= bii;
  1729. /* L740: */
  1730. }
  1731. i__4 = i__ + kbt;
  1732. for (k = i__ + 1; k <= i__4; ++k) {
  1733. i__3 = i__ + kbt;
  1734. for (j = k; j <= i__3; ++j) {
  1735. ab[j - k + 1 + k * ab_dim1] = ab[j - k + 1 + k * ab_dim1]
  1736. - bb[j - i__ + 1 + i__ * bb_dim1] * ab[k - i__ +
  1737. 1 + i__ * ab_dim1] - bb[k - i__ + 1 + i__ *
  1738. bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1] + ab[
  1739. i__ * ab_dim1 + 1] * bb[j - i__ + 1 + i__ *
  1740. bb_dim1] * bb[k - i__ + 1 + i__ * bb_dim1];
  1741. /* L750: */
  1742. }
  1743. /* Computing MIN */
  1744. i__1 = *n, i__2 = i__ + *ka;
  1745. i__3 = f2cmin(i__1,i__2);
  1746. for (j = i__ + kbt + 1; j <= i__3; ++j) {
  1747. ab[j - k + 1 + k * ab_dim1] -= bb[k - i__ + 1 + i__ *
  1748. bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1];
  1749. /* L760: */
  1750. }
  1751. /* L770: */
  1752. }
  1753. i__4 = i__;
  1754. for (j = i1; j <= i__4; ++j) {
  1755. /* Computing MIN */
  1756. i__1 = j + *ka, i__2 = i__ + kbt;
  1757. i__3 = f2cmin(i__1,i__2);
  1758. for (k = i__ + 1; k <= i__3; ++k) {
  1759. ab[k - j + 1 + j * ab_dim1] -= bb[k - i__ + 1 + i__ *
  1760. bb_dim1] * ab[i__ - j + 1 + j * ab_dim1];
  1761. /* L780: */
  1762. }
  1763. /* L790: */
  1764. }
  1765. if (wantx) {
  1766. /* post-multiply X by inv(S(i)) */
  1767. r__1 = 1.f / bii;
  1768. sscal_(&nx, &r__1, &x[i__ * x_dim1 + 1], &c__1);
  1769. if (kbt > 0) {
  1770. sger_(&nx, &kbt, &c_b20, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1771. i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
  1772. + 1], ldx);
  1773. }
  1774. }
  1775. /* store a(i,i1) in RA1 for use in next loop over K */
  1776. ra1 = ab[i__ - i1 + 1 + i1 * ab_dim1];
  1777. }
  1778. /* Generate and apply vectors of rotations to chase all the */
  1779. /* existing bulges KA positions up toward the top of the band */
  1780. i__4 = *kb - 1;
  1781. for (k = 1; k <= i__4; ++k) {
  1782. if (update) {
  1783. /* Determine the rotations which would annihilate the bulge */
  1784. /* which has in theory just been created */
  1785. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1786. /* generate rotation to annihilate a(i,i+k-ka-1) */
  1787. slartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
  1788. work[*n + i__ + k - *ka], &work[i__ + k - *ka], &
  1789. ra);
  1790. /* create nonzero element a(i+k,i+k-ka-1) outside the */
  1791. /* band and store it in WORK(m-kb+i+k) */
  1792. t = -bb[k + 1 + i__ * bb_dim1] * ra1;
  1793. work[m - *kb + i__ + k] = work[*n + i__ + k - *ka] * t -
  1794. work[i__ + k - *ka] * ab[ka1 + (i__ + k - *ka) *
  1795. ab_dim1];
  1796. ab[ka1 + (i__ + k - *ka) * ab_dim1] = work[i__ + k - *ka]
  1797. * t + work[*n + i__ + k - *ka] * ab[ka1 + (i__ +
  1798. k - *ka) * ab_dim1];
  1799. ra1 = ra;
  1800. }
  1801. }
  1802. /* Computing MAX */
  1803. i__3 = 1, i__1 = k + i0 - m + 1;
  1804. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  1805. nr = (j2 + *ka - 1) / ka1;
  1806. j1 = j2 - (nr - 1) * ka1;
  1807. if (update) {
  1808. /* Computing MIN */
  1809. i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1810. j2t = f2cmin(i__3,i__1);
  1811. } else {
  1812. j2t = j2;
  1813. }
  1814. nrt = (j2t + *ka - 1) / ka1;
  1815. i__3 = j2t;
  1816. i__1 = ka1;
  1817. for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1818. /* create nonzero element a(j+ka,j-1) outside the band */
  1819. /* and store it in WORK(j) */
  1820. work[j] *= ab[ka1 + (j - 1) * ab_dim1];
  1821. ab[ka1 + (j - 1) * ab_dim1] = work[*n + j] * ab[ka1 + (j - 1)
  1822. * ab_dim1];
  1823. /* L800: */
  1824. }
  1825. /* generate rotations in 1st set to annihilate elements which */
  1826. /* have been created outside the band */
  1827. if (nrt > 0) {
  1828. slargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
  1829. &work[*n + j1], &ka1);
  1830. }
  1831. if (nr > 0) {
  1832. /* apply rotations in 1st set from the right */
  1833. i__1 = *ka - 1;
  1834. for (l = 1; l <= i__1; ++l) {
  1835. slartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  1836. + (j1 - 1) * ab_dim1], &inca, &work[*n + j1], &
  1837. work[j1], &ka1);
  1838. /* L810: */
  1839. }
  1840. /* apply rotations in 1st set from both sides to diagonal */
  1841. /* blocks */
  1842. slar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  1843. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &work[*n + j1]
  1844. , &work[j1], &ka1);
  1845. }
  1846. /* start applying rotations in 1st set from the left */
  1847. i__1 = *kb - k + 1;
  1848. for (l = *ka - 1; l >= i__1; --l) {
  1849. nrt = (j2 + l - 1) / ka1;
  1850. j1t = j2 - (nrt - 1) * ka1;
  1851. if (nrt > 0) {
  1852. slartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  1853. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  1854. &inca, &work[*n + j1t], &work[j1t], &ka1);
  1855. }
  1856. /* L820: */
  1857. }
  1858. if (wantx) {
  1859. /* post-multiply X by product of rotations in 1st set */
  1860. i__1 = j2;
  1861. i__3 = ka1;
  1862. for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1863. srot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1864. + 1], &c__1, &work[*n + j], &work[j]);
  1865. /* L830: */
  1866. }
  1867. }
  1868. /* L840: */
  1869. }
  1870. if (update) {
  1871. if (i2 > 0 && kbt > 0) {
  1872. /* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
  1873. /* band and store it in WORK(m-kb+i+kbt) */
  1874. work[m - *kb + i__ + kbt] = -bb[kbt + 1 + i__ * bb_dim1] *
  1875. ra1;
  1876. }
  1877. }
  1878. for (k = *kb; k >= 1; --k) {
  1879. if (update) {
  1880. /* Computing MAX */
  1881. i__4 = 2, i__3 = k + i0 - m;
  1882. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  1883. } else {
  1884. /* Computing MAX */
  1885. i__4 = 1, i__3 = k + i0 - m;
  1886. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  1887. }
  1888. /* finish applying rotations in 2nd set from the left */
  1889. for (l = *kb - k; l >= 1; --l) {
  1890. nrt = (j2 + *ka + l - 1) / ka1;
  1891. j1t = j2 - (nrt - 1) * ka1;
  1892. if (nrt > 0) {
  1893. slartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
  1894. &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
  1895. inca, &work[*n + m - *kb + j1t + *ka], &work[m - *
  1896. kb + j1t + *ka], &ka1);
  1897. }
  1898. /* L850: */
  1899. }
  1900. nr = (j2 + *ka - 1) / ka1;
  1901. j1 = j2 - (nr - 1) * ka1;
  1902. i__4 = j2;
  1903. i__3 = ka1;
  1904. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1905. work[m - *kb + j] = work[m - *kb + j + *ka];
  1906. work[*n + m - *kb + j] = work[*n + m - *kb + j + *ka];
  1907. /* L860: */
  1908. }
  1909. i__3 = j2;
  1910. i__4 = ka1;
  1911. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1912. /* create nonzero element a(j+ka,j-1) outside the band */
  1913. /* and store it in WORK(m-kb+j) */
  1914. work[m - *kb + j] *= ab[ka1 + (j - 1) * ab_dim1];
  1915. ab[ka1 + (j - 1) * ab_dim1] = work[*n + m - *kb + j] * ab[ka1
  1916. + (j - 1) * ab_dim1];
  1917. /* L870: */
  1918. }
  1919. if (update) {
  1920. if (i__ + k > ka1 && k <= kbt) {
  1921. work[m - *kb + i__ + k - *ka] = work[m - *kb + i__ + k];
  1922. }
  1923. }
  1924. /* L880: */
  1925. }
  1926. for (k = *kb; k >= 1; --k) {
  1927. /* Computing MAX */
  1928. i__4 = 1, i__3 = k + i0 - m;
  1929. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  1930. nr = (j2 + *ka - 1) / ka1;
  1931. j1 = j2 - (nr - 1) * ka1;
  1932. if (nr > 0) {
  1933. /* generate rotations in 2nd set to annihilate elements */
  1934. /* which have been created outside the band */
  1935. slargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
  1936. j1], &ka1, &work[*n + m - *kb + j1], &ka1);
  1937. /* apply rotations in 2nd set from the right */
  1938. i__4 = *ka - 1;
  1939. for (l = 1; l <= i__4; ++l) {
  1940. slartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  1941. + (j1 - 1) * ab_dim1], &inca, &work[*n + m - *kb
  1942. + j1], &work[m - *kb + j1], &ka1);
  1943. /* L890: */
  1944. }
  1945. /* apply rotations in 2nd set from both sides to diagonal */
  1946. /* blocks */
  1947. slar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  1948. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &work[*n + m
  1949. - *kb + j1], &work[m - *kb + j1], &ka1);
  1950. }
  1951. /* start applying rotations in 2nd set from the left */
  1952. i__4 = *kb - k + 1;
  1953. for (l = *ka - 1; l >= i__4; --l) {
  1954. nrt = (j2 + l - 1) / ka1;
  1955. j1t = j2 - (nrt - 1) * ka1;
  1956. if (nrt > 0) {
  1957. slartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  1958. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  1959. &inca, &work[*n + m - *kb + j1t], &work[m - *kb
  1960. + j1t], &ka1);
  1961. }
  1962. /* L900: */
  1963. }
  1964. if (wantx) {
  1965. /* post-multiply X by product of rotations in 2nd set */
  1966. i__4 = j2;
  1967. i__3 = ka1;
  1968. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1969. srot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1970. + 1], &c__1, &work[*n + m - *kb + j], &work[m - *
  1971. kb + j]);
  1972. /* L910: */
  1973. }
  1974. }
  1975. /* L920: */
  1976. }
  1977. i__3 = *kb - 1;
  1978. for (k = 1; k <= i__3; ++k) {
  1979. /* Computing MAX */
  1980. i__4 = 1, i__1 = k + i0 - m + 1;
  1981. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  1982. /* finish applying rotations in 1st set from the left */
  1983. for (l = *kb - k; l >= 1; --l) {
  1984. nrt = (j2 + l - 1) / ka1;
  1985. j1t = j2 - (nrt - 1) * ka1;
  1986. if (nrt > 0) {
  1987. slartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  1988. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  1989. &inca, &work[*n + j1t], &work[j1t], &ka1);
  1990. }
  1991. /* L930: */
  1992. }
  1993. /* L940: */
  1994. }
  1995. if (*kb > 1) {
  1996. /* Computing MIN */
  1997. i__4 = i__ + *kb;
  1998. i__3 = f2cmin(i__4,m) - (*ka << 1) - 1;
  1999. for (j = 2; j <= i__3; ++j) {
  2000. work[*n + j] = work[*n + j + *ka];
  2001. work[j] = work[j + *ka];
  2002. /* L950: */
  2003. }
  2004. }
  2005. }
  2006. goto L490;
  2007. /* End of SSBGST */
  2008. } /* ssbgst_ */