You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slarfb.c 36 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static real c_b14 = 1.f;
  486. static real c_b25 = -1.f;
  487. /* > \brief \b SLARFB applies a block reflector or its transpose to a general rectangular matrix. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download SLARFB + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfb.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfb.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfb.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */
  506. /* T, LDT, C, LDC, WORK, LDWORK ) */
  507. /* CHARACTER DIRECT, SIDE, STOREV, TRANS */
  508. /* INTEGER K, LDC, LDT, LDV, LDWORK, M, N */
  509. /* REAL C( LDC, * ), T( LDT, * ), V( LDV, * ), */
  510. /* $ WORK( LDWORK, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > SLARFB applies a real block reflector H or its transpose H**T to a */
  517. /* > real m by n matrix C, from either the left or the right. */
  518. /* > \endverbatim */
  519. /* Arguments: */
  520. /* ========== */
  521. /* > \param[in] SIDE */
  522. /* > \verbatim */
  523. /* > SIDE is CHARACTER*1 */
  524. /* > = 'L': apply H or H**T from the Left */
  525. /* > = 'R': apply H or H**T from the Right */
  526. /* > \endverbatim */
  527. /* > */
  528. /* > \param[in] TRANS */
  529. /* > \verbatim */
  530. /* > TRANS is CHARACTER*1 */
  531. /* > = 'N': apply H (No transpose) */
  532. /* > = 'T': apply H**T (Transpose) */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] DIRECT */
  536. /* > \verbatim */
  537. /* > DIRECT is CHARACTER*1 */
  538. /* > Indicates how H is formed from a product of elementary */
  539. /* > reflectors */
  540. /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */
  541. /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] STOREV */
  545. /* > \verbatim */
  546. /* > STOREV is CHARACTER*1 */
  547. /* > Indicates how the vectors which define the elementary */
  548. /* > reflectors are stored: */
  549. /* > = 'C': Columnwise */
  550. /* > = 'R': Rowwise */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] M */
  554. /* > \verbatim */
  555. /* > M is INTEGER */
  556. /* > The number of rows of the matrix C. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] N */
  560. /* > \verbatim */
  561. /* > N is INTEGER */
  562. /* > The number of columns of the matrix C. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] K */
  566. /* > \verbatim */
  567. /* > K is INTEGER */
  568. /* > The order of the matrix T (= the number of elementary */
  569. /* > reflectors whose product defines the block reflector). */
  570. /* > If SIDE = 'L', M >= K >= 0; */
  571. /* > if SIDE = 'R', N >= K >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] V */
  575. /* > \verbatim */
  576. /* > V is REAL array, dimension */
  577. /* > (LDV,K) if STOREV = 'C' */
  578. /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */
  579. /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */
  580. /* > The matrix V. See Further Details. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] LDV */
  584. /* > \verbatim */
  585. /* > LDV is INTEGER */
  586. /* > The leading dimension of the array V. */
  587. /* > If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */
  588. /* > if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */
  589. /* > if STOREV = 'R', LDV >= K. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] T */
  593. /* > \verbatim */
  594. /* > T is REAL array, dimension (LDT,K) */
  595. /* > The triangular k by k matrix T in the representation of the */
  596. /* > block reflector. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDT */
  600. /* > \verbatim */
  601. /* > LDT is INTEGER */
  602. /* > The leading dimension of the array T. LDT >= K. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in,out] C */
  606. /* > \verbatim */
  607. /* > C is REAL array, dimension (LDC,N) */
  608. /* > On entry, the m by n matrix C. */
  609. /* > On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] LDC */
  613. /* > \verbatim */
  614. /* > LDC is INTEGER */
  615. /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] WORK */
  619. /* > \verbatim */
  620. /* > WORK is REAL array, dimension (LDWORK,K) */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in] LDWORK */
  624. /* > \verbatim */
  625. /* > LDWORK is INTEGER */
  626. /* > The leading dimension of the array WORK. */
  627. /* > If SIDE = 'L', LDWORK >= f2cmax(1,N); */
  628. /* > if SIDE = 'R', LDWORK >= f2cmax(1,M). */
  629. /* > \endverbatim */
  630. /* Authors: */
  631. /* ======== */
  632. /* > \author Univ. of Tennessee */
  633. /* > \author Univ. of California Berkeley */
  634. /* > \author Univ. of Colorado Denver */
  635. /* > \author NAG Ltd. */
  636. /* > \date June 2013 */
  637. /* > \ingroup realOTHERauxiliary */
  638. /* > \par Further Details: */
  639. /* ===================== */
  640. /* > */
  641. /* > \verbatim */
  642. /* > */
  643. /* > The shape of the matrix V and the storage of the vectors which define */
  644. /* > the H(i) is best illustrated by the following example with n = 5 and */
  645. /* > k = 3. The elements equal to 1 are not stored; the corresponding */
  646. /* > array elements are modified but restored on exit. The rest of the */
  647. /* > array is not used. */
  648. /* > */
  649. /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */
  650. /* > */
  651. /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */
  652. /* > ( v1 1 ) ( 1 v2 v2 v2 ) */
  653. /* > ( v1 v2 1 ) ( 1 v3 v3 ) */
  654. /* > ( v1 v2 v3 ) */
  655. /* > ( v1 v2 v3 ) */
  656. /* > */
  657. /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */
  658. /* > */
  659. /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */
  660. /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */
  661. /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */
  662. /* > ( 1 v3 ) */
  663. /* > ( 1 ) */
  664. /* > \endverbatim */
  665. /* > */
  666. /* ===================================================================== */
  667. /* Subroutine */ void slarfb_(char *side, char *trans, char *direct, char *
  668. storev, integer *m, integer *n, integer *k, real *v, integer *ldv,
  669. real *t, integer *ldt, real *c__, integer *ldc, real *work, integer *
  670. ldwork)
  671. {
  672. /* System generated locals */
  673. integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
  674. work_offset, i__1, i__2;
  675. /* Local variables */
  676. integer i__, j;
  677. extern logical lsame_(char *, char *);
  678. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  679. integer *, real *, real *, integer *, real *, integer *, real *,
  680. real *, integer *), scopy_(integer *, real *,
  681. integer *, real *, integer *), strmm_(char *, char *, char *,
  682. char *, integer *, integer *, real *, real *, integer *, real *,
  683. integer *);
  684. char transt[1];
  685. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  686. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  687. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  688. /* June 2013 */
  689. /* ===================================================================== */
  690. /* Quick return if possible */
  691. /* Parameter adjustments */
  692. v_dim1 = *ldv;
  693. v_offset = 1 + v_dim1 * 1;
  694. v -= v_offset;
  695. t_dim1 = *ldt;
  696. t_offset = 1 + t_dim1 * 1;
  697. t -= t_offset;
  698. c_dim1 = *ldc;
  699. c_offset = 1 + c_dim1 * 1;
  700. c__ -= c_offset;
  701. work_dim1 = *ldwork;
  702. work_offset = 1 + work_dim1 * 1;
  703. work -= work_offset;
  704. /* Function Body */
  705. if (*m <= 0 || *n <= 0) {
  706. return;
  707. }
  708. if (lsame_(trans, "N")) {
  709. *(unsigned char *)transt = 'T';
  710. } else {
  711. *(unsigned char *)transt = 'N';
  712. }
  713. if (lsame_(storev, "C")) {
  714. if (lsame_(direct, "F")) {
  715. /* Let V = ( V1 ) (first K rows) */
  716. /* ( V2 ) */
  717. /* where V1 is unit lower triangular. */
  718. if (lsame_(side, "L")) {
  719. /* Form H * C or H**T * C where C = ( C1 ) */
  720. /* ( C2 ) */
  721. /* W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK) */
  722. /* W := C1**T */
  723. i__1 = *k;
  724. for (j = 1; j <= i__1; ++j) {
  725. scopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
  726. &c__1);
  727. /* L10: */
  728. }
  729. /* W := W * V1 */
  730. strmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14,
  731. &v[v_offset], ldv, &work[work_offset], ldwork);
  732. if (*m > *k) {
  733. /* W := W + C2**T * V2 */
  734. i__1 = *m - *k;
  735. sgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, &
  736. c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + v_dim1],
  737. ldv, &c_b14, &work[work_offset], ldwork);
  738. }
  739. /* W := W * T**T or W * T */
  740. strmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[
  741. t_offset], ldt, &work[work_offset], ldwork);
  742. /* C := C - V * W**T */
  743. if (*m > *k) {
  744. /* C2 := C2 - V2 * W**T */
  745. i__1 = *m - *k;
  746. sgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, &
  747. v[*k + 1 + v_dim1], ldv, &work[work_offset],
  748. ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc);
  749. }
  750. /* W := W * V1**T */
  751. strmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, &
  752. v[v_offset], ldv, &work[work_offset], ldwork);
  753. /* C1 := C1 - W**T */
  754. i__1 = *k;
  755. for (j = 1; j <= i__1; ++j) {
  756. i__2 = *n;
  757. for (i__ = 1; i__ <= i__2; ++i__) {
  758. c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
  759. /* L20: */
  760. }
  761. /* L30: */
  762. }
  763. } else if (lsame_(side, "R")) {
  764. /* Form C * H or C * H**T where C = ( C1 C2 ) */
  765. /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
  766. /* W := C1 */
  767. i__1 = *k;
  768. for (j = 1; j <= i__1; ++j) {
  769. scopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
  770. work_dim1 + 1], &c__1);
  771. /* L40: */
  772. }
  773. /* W := W * V1 */
  774. strmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14,
  775. &v[v_offset], ldv, &work[work_offset], ldwork);
  776. if (*n > *k) {
  777. /* W := W + C2 * V2 */
  778. i__1 = *n - *k;
  779. sgemm_("No transpose", "No transpose", m, k, &i__1, &
  780. c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k +
  781. 1 + v_dim1], ldv, &c_b14, &work[work_offset],
  782. ldwork);
  783. }
  784. /* W := W * T or W * T**T */
  785. strmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[
  786. t_offset], ldt, &work[work_offset], ldwork);
  787. /* C := C - W * V**T */
  788. if (*n > *k) {
  789. /* C2 := C2 - W * V2**T */
  790. i__1 = *n - *k;
  791. sgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, &
  792. work[work_offset], ldwork, &v[*k + 1 + v_dim1],
  793. ldv, &c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc);
  794. }
  795. /* W := W * V1**T */
  796. strmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, &
  797. v[v_offset], ldv, &work[work_offset], ldwork);
  798. /* C1 := C1 - W */
  799. i__1 = *k;
  800. for (j = 1; j <= i__1; ++j) {
  801. i__2 = *m;
  802. for (i__ = 1; i__ <= i__2; ++i__) {
  803. c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
  804. /* L50: */
  805. }
  806. /* L60: */
  807. }
  808. }
  809. } else {
  810. /* Let V = ( V1 ) */
  811. /* ( V2 ) (last K rows) */
  812. /* where V2 is unit upper triangular. */
  813. if (lsame_(side, "L")) {
  814. /* Form H * C or H**T * C where C = ( C1 ) */
  815. /* ( C2 ) */
  816. /* W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK) */
  817. /* W := C2**T */
  818. i__1 = *k;
  819. for (j = 1; j <= i__1; ++j) {
  820. scopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
  821. work_dim1 + 1], &c__1);
  822. /* L70: */
  823. }
  824. /* W := W * V2 */
  825. strmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14,
  826. &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
  827. ldwork);
  828. if (*m > *k) {
  829. /* W := W + C1**T * V1 */
  830. i__1 = *m - *k;
  831. sgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, &
  832. c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
  833. work[work_offset], ldwork);
  834. }
  835. /* W := W * T**T or W * T */
  836. strmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[
  837. t_offset], ldt, &work[work_offset], ldwork);
  838. /* C := C - V * W**T */
  839. if (*m > *k) {
  840. /* C1 := C1 - V1 * W**T */
  841. i__1 = *m - *k;
  842. sgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, &
  843. v[v_offset], ldv, &work[work_offset], ldwork, &
  844. c_b14, &c__[c_offset], ldc)
  845. ;
  846. }
  847. /* W := W * V2**T */
  848. strmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, &
  849. v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
  850. ldwork);
  851. /* C2 := C2 - W**T */
  852. i__1 = *k;
  853. for (j = 1; j <= i__1; ++j) {
  854. i__2 = *n;
  855. for (i__ = 1; i__ <= i__2; ++i__) {
  856. c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
  857. work_dim1];
  858. /* L80: */
  859. }
  860. /* L90: */
  861. }
  862. } else if (lsame_(side, "R")) {
  863. /* Form C * H or C * H' where C = ( C1 C2 ) */
  864. /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
  865. /* W := C2 */
  866. i__1 = *k;
  867. for (j = 1; j <= i__1; ++j) {
  868. scopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
  869. j * work_dim1 + 1], &c__1);
  870. /* L100: */
  871. }
  872. /* W := W * V2 */
  873. strmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14,
  874. &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
  875. ldwork);
  876. if (*n > *k) {
  877. /* W := W + C1 * V1 */
  878. i__1 = *n - *k;
  879. sgemm_("No transpose", "No transpose", m, k, &i__1, &
  880. c_b14, &c__[c_offset], ldc, &v[v_offset], ldv, &
  881. c_b14, &work[work_offset], ldwork);
  882. }
  883. /* W := W * T or W * T**T */
  884. strmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[
  885. t_offset], ldt, &work[work_offset], ldwork);
  886. /* C := C - W * V**T */
  887. if (*n > *k) {
  888. /* C1 := C1 - W * V1**T */
  889. i__1 = *n - *k;
  890. sgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, &
  891. work[work_offset], ldwork, &v[v_offset], ldv, &
  892. c_b14, &c__[c_offset], ldc)
  893. ;
  894. }
  895. /* W := W * V2**T */
  896. strmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, &
  897. v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
  898. ldwork);
  899. /* C2 := C2 - W */
  900. i__1 = *k;
  901. for (j = 1; j <= i__1; ++j) {
  902. i__2 = *m;
  903. for (i__ = 1; i__ <= i__2; ++i__) {
  904. c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
  905. work_dim1];
  906. /* L110: */
  907. }
  908. /* L120: */
  909. }
  910. }
  911. }
  912. } else if (lsame_(storev, "R")) {
  913. if (lsame_(direct, "F")) {
  914. /* Let V = ( V1 V2 ) (V1: first K columns) */
  915. /* where V1 is unit upper triangular. */
  916. if (lsame_(side, "L")) {
  917. /* Form H * C or H**T * C where C = ( C1 ) */
  918. /* ( C2 ) */
  919. /* W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */
  920. /* W := C1**T */
  921. i__1 = *k;
  922. for (j = 1; j <= i__1; ++j) {
  923. scopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
  924. &c__1);
  925. /* L130: */
  926. }
  927. /* W := W * V1**T */
  928. strmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, &
  929. v[v_offset], ldv, &work[work_offset], ldwork);
  930. if (*m > *k) {
  931. /* W := W + C2**T * V2**T */
  932. i__1 = *m - *k;
  933. sgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, &
  934. c__[*k + 1 + c_dim1], ldc, &v[(*k + 1) * v_dim1 +
  935. 1], ldv, &c_b14, &work[work_offset], ldwork);
  936. }
  937. /* W := W * T**T or W * T */
  938. strmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[
  939. t_offset], ldt, &work[work_offset], ldwork);
  940. /* C := C - V**T * W**T */
  941. if (*m > *k) {
  942. /* C2 := C2 - V2**T * W**T */
  943. i__1 = *m - *k;
  944. sgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[(
  945. *k + 1) * v_dim1 + 1], ldv, &work[work_offset],
  946. ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc);
  947. }
  948. /* W := W * V1 */
  949. strmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14,
  950. &v[v_offset], ldv, &work[work_offset], ldwork);
  951. /* C1 := C1 - W**T */
  952. i__1 = *k;
  953. for (j = 1; j <= i__1; ++j) {
  954. i__2 = *n;
  955. for (i__ = 1; i__ <= i__2; ++i__) {
  956. c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
  957. /* L140: */
  958. }
  959. /* L150: */
  960. }
  961. } else if (lsame_(side, "R")) {
  962. /* Form C * H or C * H**T where C = ( C1 C2 ) */
  963. /* W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK) */
  964. /* W := C1 */
  965. i__1 = *k;
  966. for (j = 1; j <= i__1; ++j) {
  967. scopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
  968. work_dim1 + 1], &c__1);
  969. /* L160: */
  970. }
  971. /* W := W * V1**T */
  972. strmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, &
  973. v[v_offset], ldv, &work[work_offset], ldwork);
  974. if (*n > *k) {
  975. /* W := W + C2 * V2**T */
  976. i__1 = *n - *k;
  977. sgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, &
  978. c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + 1) *
  979. v_dim1 + 1], ldv, &c_b14, &work[work_offset],
  980. ldwork);
  981. }
  982. /* W := W * T or W * T**T */
  983. strmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[
  984. t_offset], ldt, &work[work_offset], ldwork);
  985. /* C := C - W * V */
  986. if (*n > *k) {
  987. /* C2 := C2 - W * V2 */
  988. i__1 = *n - *k;
  989. sgemm_("No transpose", "No transpose", m, &i__1, k, &
  990. c_b25, &work[work_offset], ldwork, &v[(*k + 1) *
  991. v_dim1 + 1], ldv, &c_b14, &c__[(*k + 1) * c_dim1
  992. + 1], ldc);
  993. }
  994. /* W := W * V1 */
  995. strmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14,
  996. &v[v_offset], ldv, &work[work_offset], ldwork);
  997. /* C1 := C1 - W */
  998. i__1 = *k;
  999. for (j = 1; j <= i__1; ++j) {
  1000. i__2 = *m;
  1001. for (i__ = 1; i__ <= i__2; ++i__) {
  1002. c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
  1003. /* L170: */
  1004. }
  1005. /* L180: */
  1006. }
  1007. }
  1008. } else {
  1009. /* Let V = ( V1 V2 ) (V2: last K columns) */
  1010. /* where V2 is unit lower triangular. */
  1011. if (lsame_(side, "L")) {
  1012. /* Form H * C or H**T * C where C = ( C1 ) */
  1013. /* ( C2 ) */
  1014. /* W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */
  1015. /* W := C2**T */
  1016. i__1 = *k;
  1017. for (j = 1; j <= i__1; ++j) {
  1018. scopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
  1019. work_dim1 + 1], &c__1);
  1020. /* L190: */
  1021. }
  1022. /* W := W * V2**T */
  1023. strmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, &
  1024. v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
  1025. , ldwork);
  1026. if (*m > *k) {
  1027. /* W := W + C1**T * V1**T */
  1028. i__1 = *m - *k;
  1029. sgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, &
  1030. c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
  1031. work[work_offset], ldwork);
  1032. }
  1033. /* W := W * T**T or W * T */
  1034. strmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[
  1035. t_offset], ldt, &work[work_offset], ldwork);
  1036. /* C := C - V**T * W**T */
  1037. if (*m > *k) {
  1038. /* C1 := C1 - V1**T * W**T */
  1039. i__1 = *m - *k;
  1040. sgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[
  1041. v_offset], ldv, &work[work_offset], ldwork, &
  1042. c_b14, &c__[c_offset], ldc);
  1043. }
  1044. /* W := W * V2 */
  1045. strmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14,
  1046. &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
  1047. work_offset], ldwork);
  1048. /* C2 := C2 - W**T */
  1049. i__1 = *k;
  1050. for (j = 1; j <= i__1; ++j) {
  1051. i__2 = *n;
  1052. for (i__ = 1; i__ <= i__2; ++i__) {
  1053. c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
  1054. work_dim1];
  1055. /* L200: */
  1056. }
  1057. /* L210: */
  1058. }
  1059. } else if (lsame_(side, "R")) {
  1060. /* Form C * H or C * H**T where C = ( C1 C2 ) */
  1061. /* W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK) */
  1062. /* W := C2 */
  1063. i__1 = *k;
  1064. for (j = 1; j <= i__1; ++j) {
  1065. scopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
  1066. j * work_dim1 + 1], &c__1);
  1067. /* L220: */
  1068. }
  1069. /* W := W * V2**T */
  1070. strmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, &
  1071. v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
  1072. , ldwork);
  1073. if (*n > *k) {
  1074. /* W := W + C1 * V1**T */
  1075. i__1 = *n - *k;
  1076. sgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, &
  1077. c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
  1078. work[work_offset], ldwork);
  1079. }
  1080. /* W := W * T or W * T**T */
  1081. strmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[
  1082. t_offset], ldt, &work[work_offset], ldwork);
  1083. /* C := C - W * V */
  1084. if (*n > *k) {
  1085. /* C1 := C1 - W * V1 */
  1086. i__1 = *n - *k;
  1087. sgemm_("No transpose", "No transpose", m, &i__1, k, &
  1088. c_b25, &work[work_offset], ldwork, &v[v_offset],
  1089. ldv, &c_b14, &c__[c_offset], ldc);
  1090. }
  1091. /* W := W * V2 */
  1092. strmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14,
  1093. &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
  1094. work_offset], ldwork);
  1095. /* C1 := C1 - W */
  1096. i__1 = *k;
  1097. for (j = 1; j <= i__1; ++j) {
  1098. i__2 = *m;
  1099. for (i__ = 1; i__ <= i__2; ++i__) {
  1100. c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
  1101. work_dim1];
  1102. /* L230: */
  1103. }
  1104. /* L240: */
  1105. }
  1106. }
  1107. }
  1108. }
  1109. return;
  1110. /* End of SLARFB */
  1111. } /* slarfb_ */