You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaed4.c 37 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief \b SLAED4 used by sstedc. Finds a single root of the secular equation. */
  484. /* =========== DOCUMENTATION =========== */
  485. /* Online html documentation available at */
  486. /* http://www.netlib.org/lapack/explore-html/ */
  487. /* > \htmlonly */
  488. /* > Download SLAED4 + dependencies */
  489. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed4.
  490. f"> */
  491. /* > [TGZ]</a> */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed4.
  493. f"> */
  494. /* > [ZIP]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed4.
  496. f"> */
  497. /* > [TXT]</a> */
  498. /* > \endhtmlonly */
  499. /* Definition: */
  500. /* =========== */
  501. /* SUBROUTINE SLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO ) */
  502. /* INTEGER I, INFO, N */
  503. /* REAL DLAM, RHO */
  504. /* REAL D( * ), DELTA( * ), Z( * ) */
  505. /* > \par Purpose: */
  506. /* ============= */
  507. /* > */
  508. /* > \verbatim */
  509. /* > */
  510. /* > This subroutine computes the I-th updated eigenvalue of a symmetric */
  511. /* > rank-one modification to a diagonal matrix whose elements are */
  512. /* > given in the array d, and that */
  513. /* > */
  514. /* > D(i) < D(j) for i < j */
  515. /* > */
  516. /* > and that RHO > 0. This is arranged by the calling routine, and is */
  517. /* > no loss in generality. The rank-one modified system is thus */
  518. /* > */
  519. /* > diag( D ) + RHO * Z * Z_transpose. */
  520. /* > */
  521. /* > where we assume the Euclidean norm of Z is 1. */
  522. /* > */
  523. /* > The method consists of approximating the rational functions in the */
  524. /* > secular equation by simpler interpolating rational functions. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] N */
  529. /* > \verbatim */
  530. /* > N is INTEGER */
  531. /* > The length of all arrays. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] I */
  535. /* > \verbatim */
  536. /* > I is INTEGER */
  537. /* > The index of the eigenvalue to be computed. 1 <= I <= N. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] D */
  541. /* > \verbatim */
  542. /* > D is REAL array, dimension (N) */
  543. /* > The original eigenvalues. It is assumed that they are in */
  544. /* > order, D(I) < D(J) for I < J. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] Z */
  548. /* > \verbatim */
  549. /* > Z is REAL array, dimension (N) */
  550. /* > The components of the updating vector. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[out] DELTA */
  554. /* > \verbatim */
  555. /* > DELTA is REAL array, dimension (N) */
  556. /* > If N > 2, DELTA contains (D(j) - lambda_I) in its j-th */
  557. /* > component. If N = 1, then DELTA(1) = 1. If N = 2, see SLAED5 */
  558. /* > for detail. The vector DELTA contains the information necessary */
  559. /* > to construct the eigenvectors by SLAED3 and SLAED9. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] RHO */
  563. /* > \verbatim */
  564. /* > RHO is REAL */
  565. /* > The scalar in the symmetric updating formula. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[out] DLAM */
  569. /* > \verbatim */
  570. /* > DLAM is REAL */
  571. /* > The computed lambda_I, the I-th updated eigenvalue. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[out] INFO */
  575. /* > \verbatim */
  576. /* > INFO is INTEGER */
  577. /* > = 0: successful exit */
  578. /* > > 0: if INFO = 1, the updating process failed. */
  579. /* > \endverbatim */
  580. /* > \par Internal Parameters: */
  581. /* ========================= */
  582. /* > */
  583. /* > \verbatim */
  584. /* > Logical variable ORGATI (origin-at-i?) is used for distinguishing */
  585. /* > whether D(i) or D(i+1) is treated as the origin. */
  586. /* > */
  587. /* > ORGATI = .true. origin at i */
  588. /* > ORGATI = .false. origin at i+1 */
  589. /* > */
  590. /* > Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
  591. /* > if we are working with THREE poles! */
  592. /* > */
  593. /* > MAXIT is the maximum number of iterations allowed for each */
  594. /* > eigenvalue. */
  595. /* > \endverbatim */
  596. /* Authors: */
  597. /* ======== */
  598. /* > \author Univ. of Tennessee */
  599. /* > \author Univ. of California Berkeley */
  600. /* > \author Univ. of Colorado Denver */
  601. /* > \author NAG Ltd. */
  602. /* > \date December 2016 */
  603. /* > \ingroup auxOTHERcomputational */
  604. /* > \par Contributors: */
  605. /* ================== */
  606. /* > */
  607. /* > Ren-Cang Li, Computer Science Division, University of California */
  608. /* > at Berkeley, USA */
  609. /* > */
  610. /* ===================================================================== */
  611. /* Subroutine */ void slaed4_(integer *n, integer *i__, real *d__, real *z__,
  612. real *delta, real *rho, real *dlam, integer *info)
  613. {
  614. /* System generated locals */
  615. integer i__1;
  616. real r__1;
  617. /* Local variables */
  618. real dphi, dpsi;
  619. integer iter;
  620. real temp, prew, temp1, a, b, c__;
  621. integer j;
  622. real w, dltlb, dltub, midpt;
  623. integer niter;
  624. logical swtch;
  625. extern /* Subroutine */ void slaed5_(integer *, real *, real *, real *,
  626. real *, real *), slaed6_(integer *, logical *, real *, real *,
  627. real *, real *, real *, integer *);
  628. logical swtch3;
  629. integer ii;
  630. real dw;
  631. extern real slamch_(char *);
  632. real zz[3];
  633. logical orgati;
  634. real erretm, rhoinv;
  635. integer ip1;
  636. real del, eta, phi, eps, tau, psi;
  637. integer iim1, iip1;
  638. /* -- LAPACK computational routine (version 3.7.0) -- */
  639. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  640. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  641. /* December 2016 */
  642. /* ===================================================================== */
  643. /* Since this routine is called in an inner loop, we do no argument */
  644. /* checking. */
  645. /* Quick return for N=1 and 2. */
  646. /* Parameter adjustments */
  647. --delta;
  648. --z__;
  649. --d__;
  650. /* Function Body */
  651. *info = 0;
  652. if (*n == 1) {
  653. /* Presumably, I=1 upon entry */
  654. *dlam = d__[1] + *rho * z__[1] * z__[1];
  655. delta[1] = 1.f;
  656. return;
  657. }
  658. if (*n == 2) {
  659. slaed5_(i__, &d__[1], &z__[1], &delta[1], rho, dlam);
  660. return;
  661. }
  662. /* Compute machine epsilon */
  663. eps = slamch_("Epsilon");
  664. rhoinv = 1.f / *rho;
  665. /* The case I = N */
  666. if (*i__ == *n) {
  667. /* Initialize some basic variables */
  668. ii = *n - 1;
  669. niter = 1;
  670. /* Calculate initial guess */
  671. midpt = *rho / 2.f;
  672. /* If ||Z||_2 is not one, then TEMP should be set to */
  673. /* RHO * ||Z||_2^2 / TWO */
  674. i__1 = *n;
  675. for (j = 1; j <= i__1; ++j) {
  676. delta[j] = d__[j] - d__[*i__] - midpt;
  677. /* L10: */
  678. }
  679. psi = 0.f;
  680. i__1 = *n - 2;
  681. for (j = 1; j <= i__1; ++j) {
  682. psi += z__[j] * z__[j] / delta[j];
  683. /* L20: */
  684. }
  685. c__ = rhoinv + psi;
  686. w = c__ + z__[ii] * z__[ii] / delta[ii] + z__[*n] * z__[*n] / delta[*
  687. n];
  688. if (w <= 0.f) {
  689. temp = z__[*n - 1] * z__[*n - 1] / (d__[*n] - d__[*n - 1] + *rho)
  690. + z__[*n] * z__[*n] / *rho;
  691. if (c__ <= temp) {
  692. tau = *rho;
  693. } else {
  694. del = d__[*n] - d__[*n - 1];
  695. a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]
  696. ;
  697. b = z__[*n] * z__[*n] * del;
  698. if (a < 0.f) {
  699. tau = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
  700. } else {
  701. tau = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
  702. }
  703. }
  704. /* It can be proved that */
  705. /* D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO */
  706. dltlb = midpt;
  707. dltub = *rho;
  708. } else {
  709. del = d__[*n] - d__[*n - 1];
  710. a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
  711. b = z__[*n] * z__[*n] * del;
  712. if (a < 0.f) {
  713. tau = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
  714. } else {
  715. tau = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
  716. }
  717. /* It can be proved that */
  718. /* D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2 */
  719. dltlb = 0.f;
  720. dltub = midpt;
  721. }
  722. i__1 = *n;
  723. for (j = 1; j <= i__1; ++j) {
  724. delta[j] = d__[j] - d__[*i__] - tau;
  725. /* L30: */
  726. }
  727. /* Evaluate PSI and the derivative DPSI */
  728. dpsi = 0.f;
  729. psi = 0.f;
  730. erretm = 0.f;
  731. i__1 = ii;
  732. for (j = 1; j <= i__1; ++j) {
  733. temp = z__[j] / delta[j];
  734. psi += z__[j] * temp;
  735. dpsi += temp * temp;
  736. erretm += psi;
  737. /* L40: */
  738. }
  739. erretm = abs(erretm);
  740. /* Evaluate PHI and the derivative DPHI */
  741. temp = z__[*n] / delta[*n];
  742. phi = z__[*n] * temp;
  743. dphi = temp * temp;
  744. erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + abs(tau) * (
  745. dpsi + dphi);
  746. w = rhoinv + phi + psi;
  747. /* Test for convergence */
  748. if (abs(w) <= eps * erretm) {
  749. *dlam = d__[*i__] + tau;
  750. goto L250;
  751. }
  752. if (w <= 0.f) {
  753. dltlb = f2cmax(dltlb,tau);
  754. } else {
  755. dltub = f2cmin(dltub,tau);
  756. }
  757. /* Calculate the new step */
  758. ++niter;
  759. c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
  760. a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * (
  761. dpsi + dphi);
  762. b = delta[*n - 1] * delta[*n] * w;
  763. if (c__ < 0.f) {
  764. c__ = abs(c__);
  765. }
  766. if (c__ == 0.f) {
  767. /* ETA = B/A */
  768. /* ETA = RHO - TAU */
  769. eta = dltub - tau;
  770. } else if (a >= 0.f) {
  771. eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / (
  772. c__ * 2.f);
  773. } else {
  774. eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)
  775. )));
  776. }
  777. /* Note, eta should be positive if w is negative, and */
  778. /* eta should be negative otherwise. However, */
  779. /* if for some reason caused by roundoff, eta*w > 0, */
  780. /* we simply use one Newton step instead. This way */
  781. /* will guarantee eta*w < 0. */
  782. if (w * eta > 0.f) {
  783. eta = -w / (dpsi + dphi);
  784. }
  785. temp = tau + eta;
  786. if (temp > dltub || temp < dltlb) {
  787. if (w < 0.f) {
  788. eta = (dltub - tau) / 2.f;
  789. } else {
  790. eta = (dltlb - tau) / 2.f;
  791. }
  792. }
  793. i__1 = *n;
  794. for (j = 1; j <= i__1; ++j) {
  795. delta[j] -= eta;
  796. /* L50: */
  797. }
  798. tau += eta;
  799. /* Evaluate PSI and the derivative DPSI */
  800. dpsi = 0.f;
  801. psi = 0.f;
  802. erretm = 0.f;
  803. i__1 = ii;
  804. for (j = 1; j <= i__1; ++j) {
  805. temp = z__[j] / delta[j];
  806. psi += z__[j] * temp;
  807. dpsi += temp * temp;
  808. erretm += psi;
  809. /* L60: */
  810. }
  811. erretm = abs(erretm);
  812. /* Evaluate PHI and the derivative DPHI */
  813. temp = z__[*n] / delta[*n];
  814. phi = z__[*n] * temp;
  815. dphi = temp * temp;
  816. erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + abs(tau) * (
  817. dpsi + dphi);
  818. w = rhoinv + phi + psi;
  819. /* Main loop to update the values of the array DELTA */
  820. iter = niter + 1;
  821. for (niter = iter; niter <= 30; ++niter) {
  822. /* Test for convergence */
  823. if (abs(w) <= eps * erretm) {
  824. *dlam = d__[*i__] + tau;
  825. goto L250;
  826. }
  827. if (w <= 0.f) {
  828. dltlb = f2cmax(dltlb,tau);
  829. } else {
  830. dltub = f2cmin(dltub,tau);
  831. }
  832. /* Calculate the new step */
  833. c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
  834. a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] *
  835. (dpsi + dphi);
  836. b = delta[*n - 1] * delta[*n] * w;
  837. if (a >= 0.f) {
  838. eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) /
  839. (c__ * 2.f);
  840. } else {
  841. eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(
  842. r__1))));
  843. }
  844. /* Note, eta should be positive if w is negative, and */
  845. /* eta should be negative otherwise. However, */
  846. /* if for some reason caused by roundoff, eta*w > 0, */
  847. /* we simply use one Newton step instead. This way */
  848. /* will guarantee eta*w < 0. */
  849. if (w * eta > 0.f) {
  850. eta = -w / (dpsi + dphi);
  851. }
  852. temp = tau + eta;
  853. if (temp > dltub || temp < dltlb) {
  854. if (w < 0.f) {
  855. eta = (dltub - tau) / 2.f;
  856. } else {
  857. eta = (dltlb - tau) / 2.f;
  858. }
  859. }
  860. i__1 = *n;
  861. for (j = 1; j <= i__1; ++j) {
  862. delta[j] -= eta;
  863. /* L70: */
  864. }
  865. tau += eta;
  866. /* Evaluate PSI and the derivative DPSI */
  867. dpsi = 0.f;
  868. psi = 0.f;
  869. erretm = 0.f;
  870. i__1 = ii;
  871. for (j = 1; j <= i__1; ++j) {
  872. temp = z__[j] / delta[j];
  873. psi += z__[j] * temp;
  874. dpsi += temp * temp;
  875. erretm += psi;
  876. /* L80: */
  877. }
  878. erretm = abs(erretm);
  879. /* Evaluate PHI and the derivative DPHI */
  880. temp = z__[*n] / delta[*n];
  881. phi = z__[*n] * temp;
  882. dphi = temp * temp;
  883. erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + abs(tau) * (
  884. dpsi + dphi);
  885. w = rhoinv + phi + psi;
  886. /* L90: */
  887. }
  888. /* Return with INFO = 1, NITER = MAXIT and not converged */
  889. *info = 1;
  890. *dlam = d__[*i__] + tau;
  891. goto L250;
  892. /* End for the case I = N */
  893. } else {
  894. /* The case for I < N */
  895. niter = 1;
  896. ip1 = *i__ + 1;
  897. /* Calculate initial guess */
  898. del = d__[ip1] - d__[*i__];
  899. midpt = del / 2.f;
  900. i__1 = *n;
  901. for (j = 1; j <= i__1; ++j) {
  902. delta[j] = d__[j] - d__[*i__] - midpt;
  903. /* L100: */
  904. }
  905. psi = 0.f;
  906. i__1 = *i__ - 1;
  907. for (j = 1; j <= i__1; ++j) {
  908. psi += z__[j] * z__[j] / delta[j];
  909. /* L110: */
  910. }
  911. phi = 0.f;
  912. i__1 = *i__ + 2;
  913. for (j = *n; j >= i__1; --j) {
  914. phi += z__[j] * z__[j] / delta[j];
  915. /* L120: */
  916. }
  917. c__ = rhoinv + psi + phi;
  918. w = c__ + z__[*i__] * z__[*i__] / delta[*i__] + z__[ip1] * z__[ip1] /
  919. delta[ip1];
  920. if (w > 0.f) {
  921. /* d(i)< the ith eigenvalue < (d(i)+d(i+1))/2 */
  922. /* We choose d(i) as origin. */
  923. orgati = TRUE_;
  924. a = c__ * del + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
  925. b = z__[*i__] * z__[*i__] * del;
  926. if (a > 0.f) {
  927. tau = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(
  928. r__1))));
  929. } else {
  930. tau = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) /
  931. (c__ * 2.f);
  932. }
  933. dltlb = 0.f;
  934. dltub = midpt;
  935. } else {
  936. /* (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1) */
  937. /* We choose d(i+1) as origin. */
  938. orgati = FALSE_;
  939. a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
  940. b = z__[ip1] * z__[ip1] * del;
  941. if (a < 0.f) {
  942. tau = b * 2.f / (a - sqrt((r__1 = a * a + b * 4.f * c__, abs(
  943. r__1))));
  944. } else {
  945. tau = -(a + sqrt((r__1 = a * a + b * 4.f * c__, abs(r__1)))) /
  946. (c__ * 2.f);
  947. }
  948. dltlb = -midpt;
  949. dltub = 0.f;
  950. }
  951. if (orgati) {
  952. i__1 = *n;
  953. for (j = 1; j <= i__1; ++j) {
  954. delta[j] = d__[j] - d__[*i__] - tau;
  955. /* L130: */
  956. }
  957. } else {
  958. i__1 = *n;
  959. for (j = 1; j <= i__1; ++j) {
  960. delta[j] = d__[j] - d__[ip1] - tau;
  961. /* L140: */
  962. }
  963. }
  964. if (orgati) {
  965. ii = *i__;
  966. } else {
  967. ii = *i__ + 1;
  968. }
  969. iim1 = ii - 1;
  970. iip1 = ii + 1;
  971. /* Evaluate PSI and the derivative DPSI */
  972. dpsi = 0.f;
  973. psi = 0.f;
  974. erretm = 0.f;
  975. i__1 = iim1;
  976. for (j = 1; j <= i__1; ++j) {
  977. temp = z__[j] / delta[j];
  978. psi += z__[j] * temp;
  979. dpsi += temp * temp;
  980. erretm += psi;
  981. /* L150: */
  982. }
  983. erretm = abs(erretm);
  984. /* Evaluate PHI and the derivative DPHI */
  985. dphi = 0.f;
  986. phi = 0.f;
  987. i__1 = iip1;
  988. for (j = *n; j >= i__1; --j) {
  989. temp = z__[j] / delta[j];
  990. phi += z__[j] * temp;
  991. dphi += temp * temp;
  992. erretm += phi;
  993. /* L160: */
  994. }
  995. w = rhoinv + phi + psi;
  996. /* W is the value of the secular function with */
  997. /* its ii-th element removed. */
  998. swtch3 = FALSE_;
  999. if (orgati) {
  1000. if (w < 0.f) {
  1001. swtch3 = TRUE_;
  1002. }
  1003. } else {
  1004. if (w > 0.f) {
  1005. swtch3 = TRUE_;
  1006. }
  1007. }
  1008. if (ii == 1 || ii == *n) {
  1009. swtch3 = FALSE_;
  1010. }
  1011. temp = z__[ii] / delta[ii];
  1012. dw = dpsi + dphi + temp * temp;
  1013. temp = z__[ii] * temp;
  1014. w += temp;
  1015. erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) * 3.f
  1016. + abs(tau) * dw;
  1017. /* Test for convergence */
  1018. if (abs(w) <= eps * erretm) {
  1019. if (orgati) {
  1020. *dlam = d__[*i__] + tau;
  1021. } else {
  1022. *dlam = d__[ip1] + tau;
  1023. }
  1024. goto L250;
  1025. }
  1026. if (w <= 0.f) {
  1027. dltlb = f2cmax(dltlb,tau);
  1028. } else {
  1029. dltub = f2cmin(dltub,tau);
  1030. }
  1031. /* Calculate the new step */
  1032. ++niter;
  1033. if (! swtch3) {
  1034. if (orgati) {
  1035. /* Computing 2nd power */
  1036. r__1 = z__[*i__] / delta[*i__];
  1037. c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (r__1 *
  1038. r__1);
  1039. } else {
  1040. /* Computing 2nd power */
  1041. r__1 = z__[ip1] / delta[ip1];
  1042. c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (r__1 *
  1043. r__1);
  1044. }
  1045. a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] *
  1046. dw;
  1047. b = delta[*i__] * delta[ip1] * w;
  1048. if (c__ == 0.f) {
  1049. if (a == 0.f) {
  1050. if (orgati) {
  1051. a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] *
  1052. (dpsi + dphi);
  1053. } else {
  1054. a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] *
  1055. (dpsi + dphi);
  1056. }
  1057. }
  1058. eta = b / a;
  1059. } else if (a <= 0.f) {
  1060. eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) /
  1061. (c__ * 2.f);
  1062. } else {
  1063. eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(
  1064. r__1))));
  1065. }
  1066. } else {
  1067. /* Interpolation using THREE most relevant poles */
  1068. temp = rhoinv + psi + phi;
  1069. if (orgati) {
  1070. temp1 = z__[iim1] / delta[iim1];
  1071. temp1 *= temp1;
  1072. c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[
  1073. iip1]) * temp1;
  1074. zz[0] = z__[iim1] * z__[iim1];
  1075. zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi);
  1076. } else {
  1077. temp1 = z__[iip1] / delta[iip1];
  1078. temp1 *= temp1;
  1079. c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[
  1080. iim1]) * temp1;
  1081. zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1));
  1082. zz[2] = z__[iip1] * z__[iip1];
  1083. }
  1084. zz[1] = z__[ii] * z__[ii];
  1085. slaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info);
  1086. if (*info != 0) {
  1087. goto L250;
  1088. }
  1089. }
  1090. /* Note, eta should be positive if w is negative, and */
  1091. /* eta should be negative otherwise. However, */
  1092. /* if for some reason caused by roundoff, eta*w > 0, */
  1093. /* we simply use one Newton step instead. This way */
  1094. /* will guarantee eta*w < 0. */
  1095. if (w * eta >= 0.f) {
  1096. eta = -w / dw;
  1097. }
  1098. temp = tau + eta;
  1099. if (temp > dltub || temp < dltlb) {
  1100. if (w < 0.f) {
  1101. eta = (dltub - tau) / 2.f;
  1102. } else {
  1103. eta = (dltlb - tau) / 2.f;
  1104. }
  1105. }
  1106. prew = w;
  1107. i__1 = *n;
  1108. for (j = 1; j <= i__1; ++j) {
  1109. delta[j] -= eta;
  1110. /* L180: */
  1111. }
  1112. /* Evaluate PSI and the derivative DPSI */
  1113. dpsi = 0.f;
  1114. psi = 0.f;
  1115. erretm = 0.f;
  1116. i__1 = iim1;
  1117. for (j = 1; j <= i__1; ++j) {
  1118. temp = z__[j] / delta[j];
  1119. psi += z__[j] * temp;
  1120. dpsi += temp * temp;
  1121. erretm += psi;
  1122. /* L190: */
  1123. }
  1124. erretm = abs(erretm);
  1125. /* Evaluate PHI and the derivative DPHI */
  1126. dphi = 0.f;
  1127. phi = 0.f;
  1128. i__1 = iip1;
  1129. for (j = *n; j >= i__1; --j) {
  1130. temp = z__[j] / delta[j];
  1131. phi += z__[j] * temp;
  1132. dphi += temp * temp;
  1133. erretm += phi;
  1134. /* L200: */
  1135. }
  1136. temp = z__[ii] / delta[ii];
  1137. dw = dpsi + dphi + temp * temp;
  1138. temp = z__[ii] * temp;
  1139. w = rhoinv + phi + psi + temp;
  1140. erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) * 3.f
  1141. + (r__1 = tau + eta, abs(r__1)) * dw;
  1142. swtch = FALSE_;
  1143. if (orgati) {
  1144. if (-w > abs(prew) / 10.f) {
  1145. swtch = TRUE_;
  1146. }
  1147. } else {
  1148. if (w > abs(prew) / 10.f) {
  1149. swtch = TRUE_;
  1150. }
  1151. }
  1152. tau += eta;
  1153. /* Main loop to update the values of the array DELTA */
  1154. iter = niter + 1;
  1155. for (niter = iter; niter <= 30; ++niter) {
  1156. /* Test for convergence */
  1157. if (abs(w) <= eps * erretm) {
  1158. if (orgati) {
  1159. *dlam = d__[*i__] + tau;
  1160. } else {
  1161. *dlam = d__[ip1] + tau;
  1162. }
  1163. goto L250;
  1164. }
  1165. if (w <= 0.f) {
  1166. dltlb = f2cmax(dltlb,tau);
  1167. } else {
  1168. dltub = f2cmin(dltub,tau);
  1169. }
  1170. /* Calculate the new step */
  1171. if (! swtch3) {
  1172. if (! swtch) {
  1173. if (orgati) {
  1174. /* Computing 2nd power */
  1175. r__1 = z__[*i__] / delta[*i__];
  1176. c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (
  1177. r__1 * r__1);
  1178. } else {
  1179. /* Computing 2nd power */
  1180. r__1 = z__[ip1] / delta[ip1];
  1181. c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) *
  1182. (r__1 * r__1);
  1183. }
  1184. } else {
  1185. temp = z__[ii] / delta[ii];
  1186. if (orgati) {
  1187. dpsi += temp * temp;
  1188. } else {
  1189. dphi += temp * temp;
  1190. }
  1191. c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi;
  1192. }
  1193. a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1]
  1194. * dw;
  1195. b = delta[*i__] * delta[ip1] * w;
  1196. if (c__ == 0.f) {
  1197. if (a == 0.f) {
  1198. if (! swtch) {
  1199. if (orgati) {
  1200. a = z__[*i__] * z__[*i__] + delta[ip1] *
  1201. delta[ip1] * (dpsi + dphi);
  1202. } else {
  1203. a = z__[ip1] * z__[ip1] + delta[*i__] * delta[
  1204. *i__] * (dpsi + dphi);
  1205. }
  1206. } else {
  1207. a = delta[*i__] * delta[*i__] * dpsi + delta[ip1]
  1208. * delta[ip1] * dphi;
  1209. }
  1210. }
  1211. eta = b / a;
  1212. } else if (a <= 0.f) {
  1213. eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))
  1214. ) / (c__ * 2.f);
  1215. } else {
  1216. eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__,
  1217. abs(r__1))));
  1218. }
  1219. } else {
  1220. /* Interpolation using THREE most relevant poles */
  1221. temp = rhoinv + psi + phi;
  1222. if (swtch) {
  1223. c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi;
  1224. zz[0] = delta[iim1] * delta[iim1] * dpsi;
  1225. zz[2] = delta[iip1] * delta[iip1] * dphi;
  1226. } else {
  1227. if (orgati) {
  1228. temp1 = z__[iim1] / delta[iim1];
  1229. temp1 *= temp1;
  1230. c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1]
  1231. - d__[iip1]) * temp1;
  1232. zz[0] = z__[iim1] * z__[iim1];
  1233. zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 +
  1234. dphi);
  1235. } else {
  1236. temp1 = z__[iip1] / delta[iip1];
  1237. temp1 *= temp1;
  1238. c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1]
  1239. - d__[iim1]) * temp1;
  1240. zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi -
  1241. temp1));
  1242. zz[2] = z__[iip1] * z__[iip1];
  1243. }
  1244. }
  1245. slaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta,
  1246. info);
  1247. if (*info != 0) {
  1248. goto L250;
  1249. }
  1250. }
  1251. /* Note, eta should be positive if w is negative, and */
  1252. /* eta should be negative otherwise. However, */
  1253. /* if for some reason caused by roundoff, eta*w > 0, */
  1254. /* we simply use one Newton step instead. This way */
  1255. /* will guarantee eta*w < 0. */
  1256. if (w * eta >= 0.f) {
  1257. eta = -w / dw;
  1258. }
  1259. temp = tau + eta;
  1260. if (temp > dltub || temp < dltlb) {
  1261. if (w < 0.f) {
  1262. eta = (dltub - tau) / 2.f;
  1263. } else {
  1264. eta = (dltlb - tau) / 2.f;
  1265. }
  1266. }
  1267. i__1 = *n;
  1268. for (j = 1; j <= i__1; ++j) {
  1269. delta[j] -= eta;
  1270. /* L210: */
  1271. }
  1272. tau += eta;
  1273. prew = w;
  1274. /* Evaluate PSI and the derivative DPSI */
  1275. dpsi = 0.f;
  1276. psi = 0.f;
  1277. erretm = 0.f;
  1278. i__1 = iim1;
  1279. for (j = 1; j <= i__1; ++j) {
  1280. temp = z__[j] / delta[j];
  1281. psi += z__[j] * temp;
  1282. dpsi += temp * temp;
  1283. erretm += psi;
  1284. /* L220: */
  1285. }
  1286. erretm = abs(erretm);
  1287. /* Evaluate PHI and the derivative DPHI */
  1288. dphi = 0.f;
  1289. phi = 0.f;
  1290. i__1 = iip1;
  1291. for (j = *n; j >= i__1; --j) {
  1292. temp = z__[j] / delta[j];
  1293. phi += z__[j] * temp;
  1294. dphi += temp * temp;
  1295. erretm += phi;
  1296. /* L230: */
  1297. }
  1298. temp = z__[ii] / delta[ii];
  1299. dw = dpsi + dphi + temp * temp;
  1300. temp = z__[ii] * temp;
  1301. w = rhoinv + phi + psi + temp;
  1302. erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) *
  1303. 3.f + abs(tau) * dw;
  1304. if (w * prew > 0.f && abs(w) > abs(prew) / 10.f) {
  1305. swtch = ! swtch;
  1306. }
  1307. /* L240: */
  1308. }
  1309. /* Return with INFO = 1, NITER = MAXIT and not converged */
  1310. *info = 1;
  1311. if (orgati) {
  1312. *dlam = d__[*i__] + tau;
  1313. } else {
  1314. *dlam = d__[ip1] + tau;
  1315. }
  1316. }
  1317. L250:
  1318. return;
  1319. /* End of SLAED4 */
  1320. } /* slaed4_ */