You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgeequ.c 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  217. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  218. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  219. #define sig_die(s, kill) { exit(1); }
  220. #define s_stop(s, n) {exit(0);}
  221. #define z_abs(z) (cabs(Cd(z)))
  222. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  223. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  224. #define myexit_() break;
  225. #define mycycle() continue;
  226. #define myceiling(w) {ceil(w)}
  227. #define myhuge(w) {HUGE_VAL}
  228. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  229. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  230. /* -- translated by f2c (version 20000121).
  231. You must link the resulting object file with the libraries:
  232. -lf2c -lm (in that order)
  233. */
  234. /* > \brief \b SGEEQU */
  235. /* =========== DOCUMENTATION =========== */
  236. /* Online html documentation available at */
  237. /* http://www.netlib.org/lapack/explore-html/ */
  238. /* > \htmlonly */
  239. /* > Download SGEEQU + dependencies */
  240. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeequ.
  241. f"> */
  242. /* > [TGZ]</a> */
  243. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeequ.
  244. f"> */
  245. /* > [ZIP]</a> */
  246. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeequ.
  247. f"> */
  248. /* > [TXT]</a> */
  249. /* > \endhtmlonly */
  250. /* Definition: */
  251. /* =========== */
  252. /* SUBROUTINE SGEEQU( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, */
  253. /* INFO ) */
  254. /* INTEGER INFO, LDA, M, N */
  255. /* REAL AMAX, COLCND, ROWCND */
  256. /* REAL A( LDA, * ), C( * ), R( * ) */
  257. /* > \par Purpose: */
  258. /* ============= */
  259. /* > */
  260. /* > \verbatim */
  261. /* > */
  262. /* > SGEEQU computes row and column scalings intended to equilibrate an */
  263. /* > M-by-N matrix A and reduce its condition number. R returns the row */
  264. /* > scale factors and C the column scale factors, chosen to try to make */
  265. /* > the largest element in each row and column of the matrix B with */
  266. /* > elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
  267. /* > */
  268. /* > R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
  269. /* > number and BIGNUM = largest safe number. Use of these scaling */
  270. /* > factors is not guaranteed to reduce the condition number of A but */
  271. /* > works well in practice. */
  272. /* > \endverbatim */
  273. /* Arguments: */
  274. /* ========== */
  275. /* > \param[in] M */
  276. /* > \verbatim */
  277. /* > M is INTEGER */
  278. /* > The number of rows of the matrix A. M >= 0. */
  279. /* > \endverbatim */
  280. /* > */
  281. /* > \param[in] N */
  282. /* > \verbatim */
  283. /* > N is INTEGER */
  284. /* > The number of columns of the matrix A. N >= 0. */
  285. /* > \endverbatim */
  286. /* > */
  287. /* > \param[in] A */
  288. /* > \verbatim */
  289. /* > A is REAL array, dimension (LDA,N) */
  290. /* > The M-by-N matrix whose equilibration factors are */
  291. /* > to be computed. */
  292. /* > \endverbatim */
  293. /* > */
  294. /* > \param[in] LDA */
  295. /* > \verbatim */
  296. /* > LDA is INTEGER */
  297. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  298. /* > \endverbatim */
  299. /* > */
  300. /* > \param[out] R */
  301. /* > \verbatim */
  302. /* > R is REAL array, dimension (M) */
  303. /* > If INFO = 0 or INFO > M, R contains the row scale factors */
  304. /* > for A. */
  305. /* > \endverbatim */
  306. /* > */
  307. /* > \param[out] C */
  308. /* > \verbatim */
  309. /* > C is REAL array, dimension (N) */
  310. /* > If INFO = 0, C contains the column scale factors for A. */
  311. /* > \endverbatim */
  312. /* > */
  313. /* > \param[out] ROWCND */
  314. /* > \verbatim */
  315. /* > ROWCND is REAL */
  316. /* > If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
  317. /* > smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
  318. /* > AMAX is neither too large nor too small, it is not worth */
  319. /* > scaling by R. */
  320. /* > \endverbatim */
  321. /* > */
  322. /* > \param[out] COLCND */
  323. /* > \verbatim */
  324. /* > COLCND is REAL */
  325. /* > If INFO = 0, COLCND contains the ratio of the smallest */
  326. /* > C(i) to the largest C(i). If COLCND >= 0.1, it is not */
  327. /* > worth scaling by C. */
  328. /* > \endverbatim */
  329. /* > */
  330. /* > \param[out] AMAX */
  331. /* > \verbatim */
  332. /* > AMAX is REAL */
  333. /* > Absolute value of largest matrix element. If AMAX is very */
  334. /* > close to overflow or very close to underflow, the matrix */
  335. /* > should be scaled. */
  336. /* > \endverbatim */
  337. /* > */
  338. /* > \param[out] INFO */
  339. /* > \verbatim */
  340. /* > INFO is INTEGER */
  341. /* > = 0: successful exit */
  342. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  343. /* > > 0: if INFO = i, and i is */
  344. /* > <= M: the i-th row of A is exactly zero */
  345. /* > > M: the (i-M)-th column of A is exactly zero */
  346. /* > \endverbatim */
  347. /* Authors: */
  348. /* ======== */
  349. /* > \author Univ. of Tennessee */
  350. /* > \author Univ. of California Berkeley */
  351. /* > \author Univ. of Colorado Denver */
  352. /* > \author NAG Ltd. */
  353. /* > \date December 2016 */
  354. /* > \ingroup realGEcomputational */
  355. /* ===================================================================== */
  356. /* Subroutine */ void sgeequ_(integer *m, integer *n, real *a, integer *lda,
  357. real *r__, real *c__, real *rowcnd, real *colcnd, real *amax, integer
  358. *info)
  359. {
  360. /* System generated locals */
  361. integer a_dim1, a_offset, i__1, i__2;
  362. real r__1, r__2, r__3;
  363. /* Local variables */
  364. integer i__, j;
  365. real rcmin, rcmax;
  366. extern real slamch_(char *);
  367. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  368. real bignum, smlnum;
  369. /* -- LAPACK computational routine (version 3.7.0) -- */
  370. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  371. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  372. /* December 2016 */
  373. /* ===================================================================== */
  374. /* Test the input parameters. */
  375. /* Parameter adjustments */
  376. a_dim1 = *lda;
  377. a_offset = 1 + a_dim1 * 1;
  378. a -= a_offset;
  379. --r__;
  380. --c__;
  381. /* Function Body */
  382. *info = 0;
  383. if (*m < 0) {
  384. *info = -1;
  385. } else if (*n < 0) {
  386. *info = -2;
  387. } else if (*lda < f2cmax(1,*m)) {
  388. *info = -4;
  389. }
  390. if (*info != 0) {
  391. i__1 = -(*info);
  392. xerbla_("SGEEQU", &i__1, (ftnlen)6);
  393. return;
  394. }
  395. /* Quick return if possible */
  396. if (*m == 0 || *n == 0) {
  397. *rowcnd = 1.f;
  398. *colcnd = 1.f;
  399. *amax = 0.f;
  400. return;
  401. }
  402. /* Get machine constants. */
  403. smlnum = slamch_("S");
  404. bignum = 1.f / smlnum;
  405. /* Compute row scale factors. */
  406. i__1 = *m;
  407. for (i__ = 1; i__ <= i__1; ++i__) {
  408. r__[i__] = 0.f;
  409. /* L10: */
  410. }
  411. /* Find the maximum element in each row. */
  412. i__1 = *n;
  413. for (j = 1; j <= i__1; ++j) {
  414. i__2 = *m;
  415. for (i__ = 1; i__ <= i__2; ++i__) {
  416. /* Computing MAX */
  417. r__2 = r__[i__], r__3 = (r__1 = a[i__ + j * a_dim1], abs(r__1));
  418. r__[i__] = f2cmax(r__2,r__3);
  419. /* L20: */
  420. }
  421. /* L30: */
  422. }
  423. /* Find the maximum and minimum scale factors. */
  424. rcmin = bignum;
  425. rcmax = 0.f;
  426. i__1 = *m;
  427. for (i__ = 1; i__ <= i__1; ++i__) {
  428. /* Computing MAX */
  429. r__1 = rcmax, r__2 = r__[i__];
  430. rcmax = f2cmax(r__1,r__2);
  431. /* Computing MIN */
  432. r__1 = rcmin, r__2 = r__[i__];
  433. rcmin = f2cmin(r__1,r__2);
  434. /* L40: */
  435. }
  436. *amax = rcmax;
  437. if (rcmin == 0.f) {
  438. /* Find the first zero scale factor and return an error code. */
  439. i__1 = *m;
  440. for (i__ = 1; i__ <= i__1; ++i__) {
  441. if (r__[i__] == 0.f) {
  442. *info = i__;
  443. return;
  444. }
  445. /* L50: */
  446. }
  447. } else {
  448. /* Invert the scale factors. */
  449. i__1 = *m;
  450. for (i__ = 1; i__ <= i__1; ++i__) {
  451. /* Computing MIN */
  452. /* Computing MAX */
  453. r__2 = r__[i__];
  454. r__1 = f2cmax(r__2,smlnum);
  455. r__[i__] = 1.f / f2cmin(r__1,bignum);
  456. /* L60: */
  457. }
  458. /* Compute ROWCND = f2cmin(R(I)) / f2cmax(R(I)) */
  459. *rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  460. }
  461. /* Compute column scale factors */
  462. i__1 = *n;
  463. for (j = 1; j <= i__1; ++j) {
  464. c__[j] = 0.f;
  465. /* L70: */
  466. }
  467. /* Find the maximum element in each column, */
  468. /* assuming the row scaling computed above. */
  469. i__1 = *n;
  470. for (j = 1; j <= i__1; ++j) {
  471. i__2 = *m;
  472. for (i__ = 1; i__ <= i__2; ++i__) {
  473. /* Computing MAX */
  474. r__2 = c__[j], r__3 = (r__1 = a[i__ + j * a_dim1], abs(r__1)) *
  475. r__[i__];
  476. c__[j] = f2cmax(r__2,r__3);
  477. /* L80: */
  478. }
  479. /* L90: */
  480. }
  481. /* Find the maximum and minimum scale factors. */
  482. rcmin = bignum;
  483. rcmax = 0.f;
  484. i__1 = *n;
  485. for (j = 1; j <= i__1; ++j) {
  486. /* Computing MIN */
  487. r__1 = rcmin, r__2 = c__[j];
  488. rcmin = f2cmin(r__1,r__2);
  489. /* Computing MAX */
  490. r__1 = rcmax, r__2 = c__[j];
  491. rcmax = f2cmax(r__1,r__2);
  492. /* L100: */
  493. }
  494. if (rcmin == 0.f) {
  495. /* Find the first zero scale factor and return an error code. */
  496. i__1 = *n;
  497. for (j = 1; j <= i__1; ++j) {
  498. if (c__[j] == 0.f) {
  499. *info = *m + j;
  500. return;
  501. }
  502. /* L110: */
  503. }
  504. } else {
  505. /* Invert the scale factors. */
  506. i__1 = *n;
  507. for (j = 1; j <= i__1; ++j) {
  508. /* Computing MIN */
  509. /* Computing MAX */
  510. r__2 = c__[j];
  511. r__1 = f2cmax(r__2,smlnum);
  512. c__[j] = 1.f / f2cmin(r__1,bignum);
  513. /* L120: */
  514. }
  515. /* Compute COLCND = f2cmin(C(J)) / f2cmax(C(J)) */
  516. *colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  517. }
  518. return;
  519. /* End of SGEEQU */
  520. } /* sgeequ_ */