You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrsen.c 33 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c_n1 = -1;
  485. /* > \brief \b DTRSEN */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download DTRSEN + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI, */
  504. /* M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO ) */
  505. /* CHARACTER COMPQ, JOB */
  506. /* INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N */
  507. /* DOUBLE PRECISION S, SEP */
  508. /* LOGICAL SELECT( * ) */
  509. /* INTEGER IWORK( * ) */
  510. /* DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ), */
  511. /* $ WR( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > DTRSEN reorders the real Schur factorization of a real matrix */
  518. /* > A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in */
  519. /* > the leading diagonal blocks of the upper quasi-triangular matrix T, */
  520. /* > and the leading columns of Q form an orthonormal basis of the */
  521. /* > corresponding right invariant subspace. */
  522. /* > */
  523. /* > Optionally the routine computes the reciprocal condition numbers of */
  524. /* > the cluster of eigenvalues and/or the invariant subspace. */
  525. /* > */
  526. /* > T must be in Schur canonical form (as returned by DHSEQR), that is, */
  527. /* > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
  528. /* > 2-by-2 diagonal block has its diagonal elements equal and its */
  529. /* > off-diagonal elements of opposite sign. */
  530. /* > \endverbatim */
  531. /* Arguments: */
  532. /* ========== */
  533. /* > \param[in] JOB */
  534. /* > \verbatim */
  535. /* > JOB is CHARACTER*1 */
  536. /* > Specifies whether condition numbers are required for the */
  537. /* > cluster of eigenvalues (S) or the invariant subspace (SEP): */
  538. /* > = 'N': none; */
  539. /* > = 'E': for eigenvalues only (S); */
  540. /* > = 'V': for invariant subspace only (SEP); */
  541. /* > = 'B': for both eigenvalues and invariant subspace (S and */
  542. /* > SEP). */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] COMPQ */
  546. /* > \verbatim */
  547. /* > COMPQ is CHARACTER*1 */
  548. /* > = 'V': update the matrix Q of Schur vectors; */
  549. /* > = 'N': do not update Q. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] SELECT */
  553. /* > \verbatim */
  554. /* > SELECT is LOGICAL array, dimension (N) */
  555. /* > SELECT specifies the eigenvalues in the selected cluster. To */
  556. /* > select a real eigenvalue w(j), SELECT(j) must be set to */
  557. /* > .TRUE.. To select a complex conjugate pair of eigenvalues */
  558. /* > w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
  559. /* > either SELECT(j) or SELECT(j+1) or both must be set to */
  560. /* > .TRUE.; a complex conjugate pair of eigenvalues must be */
  561. /* > either both included in the cluster or both excluded. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] N */
  565. /* > \verbatim */
  566. /* > N is INTEGER */
  567. /* > The order of the matrix T. N >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in,out] T */
  571. /* > \verbatim */
  572. /* > T is DOUBLE PRECISION array, dimension (LDT,N) */
  573. /* > On entry, the upper quasi-triangular matrix T, in Schur */
  574. /* > canonical form. */
  575. /* > On exit, T is overwritten by the reordered matrix T, again in */
  576. /* > Schur canonical form, with the selected eigenvalues in the */
  577. /* > leading diagonal blocks. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDT */
  581. /* > \verbatim */
  582. /* > LDT is INTEGER */
  583. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] Q */
  587. /* > \verbatim */
  588. /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
  589. /* > On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
  590. /* > On exit, if COMPQ = 'V', Q has been postmultiplied by the */
  591. /* > orthogonal transformation matrix which reorders T; the */
  592. /* > leading M columns of Q form an orthonormal basis for the */
  593. /* > specified invariant subspace. */
  594. /* > If COMPQ = 'N', Q is not referenced. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDQ */
  598. /* > \verbatim */
  599. /* > LDQ is INTEGER */
  600. /* > The leading dimension of the array Q. */
  601. /* > LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] WR */
  605. /* > \verbatim */
  606. /* > WR is DOUBLE PRECISION array, dimension (N) */
  607. /* > \endverbatim */
  608. /* > \param[out] WI */
  609. /* > \verbatim */
  610. /* > WI is DOUBLE PRECISION array, dimension (N) */
  611. /* > */
  612. /* > The real and imaginary parts, respectively, of the reordered */
  613. /* > eigenvalues of T. The eigenvalues are stored in the same */
  614. /* > order as on the diagonal of T, with WR(i) = T(i,i) and, if */
  615. /* > T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and */
  616. /* > WI(i+1) = -WI(i). Note that if a complex eigenvalue is */
  617. /* > sufficiently ill-conditioned, then its value may differ */
  618. /* > significantly from its value before reordering. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] M */
  622. /* > \verbatim */
  623. /* > M is INTEGER */
  624. /* > The dimension of the specified invariant subspace. */
  625. /* > 0 < = M <= N. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] S */
  629. /* > \verbatim */
  630. /* > S is DOUBLE PRECISION */
  631. /* > If JOB = 'E' or 'B', S is a lower bound on the reciprocal */
  632. /* > condition number for the selected cluster of eigenvalues. */
  633. /* > S cannot underestimate the true reciprocal condition number */
  634. /* > by more than a factor of sqrt(N). If M = 0 or N, S = 1. */
  635. /* > If JOB = 'N' or 'V', S is not referenced. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[out] SEP */
  639. /* > \verbatim */
  640. /* > SEP is DOUBLE PRECISION */
  641. /* > If JOB = 'V' or 'B', SEP is the estimated reciprocal */
  642. /* > condition number of the specified invariant subspace. If */
  643. /* > M = 0 or N, SEP = norm(T). */
  644. /* > If JOB = 'N' or 'E', SEP is not referenced. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] WORK */
  648. /* > \verbatim */
  649. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  650. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[in] LWORK */
  654. /* > \verbatim */
  655. /* > LWORK is INTEGER */
  656. /* > The dimension of the array WORK. */
  657. /* > If JOB = 'N', LWORK >= f2cmax(1,N); */
  658. /* > if JOB = 'E', LWORK >= f2cmax(1,M*(N-M)); */
  659. /* > if JOB = 'V' or 'B', LWORK >= f2cmax(1,2*M*(N-M)). */
  660. /* > */
  661. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  662. /* > only calculates the optimal size of the WORK array, returns */
  663. /* > this value as the first entry of the WORK array, and no error */
  664. /* > message related to LWORK is issued by XERBLA. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[out] IWORK */
  668. /* > \verbatim */
  669. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  670. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] LIWORK */
  674. /* > \verbatim */
  675. /* > LIWORK is INTEGER */
  676. /* > The dimension of the array IWORK. */
  677. /* > If JOB = 'N' or 'E', LIWORK >= 1; */
  678. /* > if JOB = 'V' or 'B', LIWORK >= f2cmax(1,M*(N-M)). */
  679. /* > */
  680. /* > If LIWORK = -1, then a workspace query is assumed; the */
  681. /* > routine only calculates the optimal size of the IWORK array, */
  682. /* > returns this value as the first entry of the IWORK array, and */
  683. /* > no error message related to LIWORK is issued by XERBLA. */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[out] INFO */
  687. /* > \verbatim */
  688. /* > INFO is INTEGER */
  689. /* > = 0: successful exit */
  690. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  691. /* > = 1: reordering of T failed because some eigenvalues are too */
  692. /* > close to separate (the problem is very ill-conditioned); */
  693. /* > T may have been partially reordered, and WR and WI */
  694. /* > contain the eigenvalues in the same order as in T; S and */
  695. /* > SEP (if requested) are set to zero. */
  696. /* > \endverbatim */
  697. /* Authors: */
  698. /* ======== */
  699. /* > \author Univ. of Tennessee */
  700. /* > \author Univ. of California Berkeley */
  701. /* > \author Univ. of Colorado Denver */
  702. /* > \author NAG Ltd. */
  703. /* > \date April 2012 */
  704. /* > \ingroup doubleOTHERcomputational */
  705. /* > \par Further Details: */
  706. /* ===================== */
  707. /* > */
  708. /* > \verbatim */
  709. /* > */
  710. /* > DTRSEN first collects the selected eigenvalues by computing an */
  711. /* > orthogonal transformation Z to move them to the top left corner of T. */
  712. /* > In other words, the selected eigenvalues are the eigenvalues of T11 */
  713. /* > in: */
  714. /* > */
  715. /* > Z**T * T * Z = ( T11 T12 ) n1 */
  716. /* > ( 0 T22 ) n2 */
  717. /* > n1 n2 */
  718. /* > */
  719. /* > where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns */
  720. /* > of Z span the specified invariant subspace of T. */
  721. /* > */
  722. /* > If T has been obtained from the real Schur factorization of a matrix */
  723. /* > A = Q*T*Q**T, then the reordered real Schur factorization of A is given */
  724. /* > by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span */
  725. /* > the corresponding invariant subspace of A. */
  726. /* > */
  727. /* > The reciprocal condition number of the average of the eigenvalues of */
  728. /* > T11 may be returned in S. S lies between 0 (very badly conditioned) */
  729. /* > and 1 (very well conditioned). It is computed as follows. First we */
  730. /* > compute R so that */
  731. /* > */
  732. /* > P = ( I R ) n1 */
  733. /* > ( 0 0 ) n2 */
  734. /* > n1 n2 */
  735. /* > */
  736. /* > is the projector on the invariant subspace associated with T11. */
  737. /* > R is the solution of the Sylvester equation: */
  738. /* > */
  739. /* > T11*R - R*T22 = T12. */
  740. /* > */
  741. /* > Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */
  742. /* > the two-norm of M. Then S is computed as the lower bound */
  743. /* > */
  744. /* > (1 + F-norm(R)**2)**(-1/2) */
  745. /* > */
  746. /* > on the reciprocal of 2-norm(P), the true reciprocal condition number. */
  747. /* > S cannot underestimate 1 / 2-norm(P) by more than a factor of */
  748. /* > sqrt(N). */
  749. /* > */
  750. /* > An approximate error bound for the computed average of the */
  751. /* > eigenvalues of T11 is */
  752. /* > */
  753. /* > EPS * norm(T) / S */
  754. /* > */
  755. /* > where EPS is the machine precision. */
  756. /* > */
  757. /* > The reciprocal condition number of the right invariant subspace */
  758. /* > spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */
  759. /* > SEP is defined as the separation of T11 and T22: */
  760. /* > */
  761. /* > sep( T11, T22 ) = sigma-f2cmin( C ) */
  762. /* > */
  763. /* > where sigma-f2cmin(C) is the smallest singular value of the */
  764. /* > n1*n2-by-n1*n2 matrix */
  765. /* > */
  766. /* > C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */
  767. /* > */
  768. /* > I(m) is an m by m identity matrix, and kprod denotes the Kronecker */
  769. /* > product. We estimate sigma-f2cmin(C) by the reciprocal of an estimate of */
  770. /* > the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */
  771. /* > cannot differ from sigma-f2cmin(C) by more than a factor of sqrt(n1*n2). */
  772. /* > */
  773. /* > When SEP is small, small changes in T can cause large changes in */
  774. /* > the invariant subspace. An approximate bound on the maximum angular */
  775. /* > error in the computed right invariant subspace is */
  776. /* > */
  777. /* > EPS * norm(T) / SEP */
  778. /* > \endverbatim */
  779. /* > */
  780. /* ===================================================================== */
  781. /* Subroutine */ void dtrsen_(char *job, char *compq, logical *select, integer
  782. *n, doublereal *t, integer *ldt, doublereal *q, integer *ldq,
  783. doublereal *wr, doublereal *wi, integer *m, doublereal *s, doublereal
  784. *sep, doublereal *work, integer *lwork, integer *iwork, integer *
  785. liwork, integer *info)
  786. {
  787. /* System generated locals */
  788. integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2;
  789. doublereal d__1, d__2;
  790. /* Local variables */
  791. integer kase;
  792. logical pair;
  793. integer ierr;
  794. logical swap;
  795. integer k;
  796. doublereal scale;
  797. extern logical lsame_(char *, char *);
  798. integer isave[3], lwmin;
  799. logical wantq, wants;
  800. doublereal rnorm;
  801. integer n1, n2;
  802. extern /* Subroutine */ void dlacn2_(integer *, doublereal *, doublereal *,
  803. integer *, doublereal *, integer *, integer *);
  804. integer kk;
  805. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  806. integer *, doublereal *);
  807. integer nn, ks;
  808. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  809. doublereal *, integer *, doublereal *, integer *);
  810. extern int xerbla_(char *, integer *, ftnlen);
  811. logical wantbh;
  812. extern /* Subroutine */ void dtrexc_(char *, integer *, doublereal *,
  813. integer *, doublereal *, integer *, integer *, integer *,
  814. doublereal *, integer *);
  815. integer liwmin;
  816. logical wantsp, lquery;
  817. extern /* Subroutine */ void dtrsyl_(char *, char *, integer *, integer *,
  818. integer *, doublereal *, integer *, doublereal *, integer *,
  819. doublereal *, integer *, doublereal *, integer *);
  820. doublereal est;
  821. /* -- LAPACK computational routine (version 3.7.0) -- */
  822. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  823. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  824. /* April 2012 */
  825. /* ===================================================================== */
  826. /* Decode and test the input parameters */
  827. /* Parameter adjustments */
  828. --select;
  829. t_dim1 = *ldt;
  830. t_offset = 1 + t_dim1 * 1;
  831. t -= t_offset;
  832. q_dim1 = *ldq;
  833. q_offset = 1 + q_dim1 * 1;
  834. q -= q_offset;
  835. --wr;
  836. --wi;
  837. --work;
  838. --iwork;
  839. /* Function Body */
  840. wantbh = lsame_(job, "B");
  841. wants = lsame_(job, "E") || wantbh;
  842. wantsp = lsame_(job, "V") || wantbh;
  843. wantq = lsame_(compq, "V");
  844. *info = 0;
  845. lquery = *lwork == -1;
  846. if (! lsame_(job, "N") && ! wants && ! wantsp) {
  847. *info = -1;
  848. } else if (! lsame_(compq, "N") && ! wantq) {
  849. *info = -2;
  850. } else if (*n < 0) {
  851. *info = -4;
  852. } else if (*ldt < f2cmax(1,*n)) {
  853. *info = -6;
  854. } else if (*ldq < 1 || wantq && *ldq < *n) {
  855. *info = -8;
  856. } else {
  857. /* Set M to the dimension of the specified invariant subspace, */
  858. /* and test LWORK and LIWORK. */
  859. *m = 0;
  860. pair = FALSE_;
  861. i__1 = *n;
  862. for (k = 1; k <= i__1; ++k) {
  863. if (pair) {
  864. pair = FALSE_;
  865. } else {
  866. if (k < *n) {
  867. if (t[k + 1 + k * t_dim1] == 0.) {
  868. if (select[k]) {
  869. ++(*m);
  870. }
  871. } else {
  872. pair = TRUE_;
  873. if (select[k] || select[k + 1]) {
  874. *m += 2;
  875. }
  876. }
  877. } else {
  878. if (select[*n]) {
  879. ++(*m);
  880. }
  881. }
  882. }
  883. /* L10: */
  884. }
  885. n1 = *m;
  886. n2 = *n - *m;
  887. nn = n1 * n2;
  888. if (wantsp) {
  889. /* Computing MAX */
  890. i__1 = 1, i__2 = nn << 1;
  891. lwmin = f2cmax(i__1,i__2);
  892. liwmin = f2cmax(1,nn);
  893. } else if (lsame_(job, "N")) {
  894. lwmin = f2cmax(1,*n);
  895. liwmin = 1;
  896. } else if (lsame_(job, "E")) {
  897. lwmin = f2cmax(1,nn);
  898. liwmin = 1;
  899. }
  900. if (*lwork < lwmin && ! lquery) {
  901. *info = -15;
  902. } else if (*liwork < liwmin && ! lquery) {
  903. *info = -17;
  904. }
  905. }
  906. if (*info == 0) {
  907. work[1] = (doublereal) lwmin;
  908. iwork[1] = liwmin;
  909. }
  910. if (*info != 0) {
  911. i__1 = -(*info);
  912. xerbla_("DTRSEN", &i__1, (ftnlen)6);
  913. return;
  914. } else if (lquery) {
  915. return;
  916. }
  917. /* Quick return if possible. */
  918. if (*m == *n || *m == 0) {
  919. if (wants) {
  920. *s = 1.;
  921. }
  922. if (wantsp) {
  923. *sep = dlange_("1", n, n, &t[t_offset], ldt, &work[1]);
  924. }
  925. goto L40;
  926. }
  927. /* Collect the selected blocks at the top-left corner of T. */
  928. ks = 0;
  929. pair = FALSE_;
  930. i__1 = *n;
  931. for (k = 1; k <= i__1; ++k) {
  932. if (pair) {
  933. pair = FALSE_;
  934. } else {
  935. swap = select[k];
  936. if (k < *n) {
  937. if (t[k + 1 + k * t_dim1] != 0.) {
  938. pair = TRUE_;
  939. swap = swap || select[k + 1];
  940. }
  941. }
  942. if (swap) {
  943. ++ks;
  944. /* Swap the K-th block to position KS. */
  945. ierr = 0;
  946. kk = k;
  947. if (k != ks) {
  948. dtrexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
  949. kk, &ks, &work[1], &ierr);
  950. }
  951. if (ierr == 1 || ierr == 2) {
  952. /* Blocks too close to swap: exit. */
  953. *info = 1;
  954. if (wants) {
  955. *s = 0.;
  956. }
  957. if (wantsp) {
  958. *sep = 0.;
  959. }
  960. goto L40;
  961. }
  962. if (pair) {
  963. ++ks;
  964. }
  965. }
  966. }
  967. /* L20: */
  968. }
  969. if (wants) {
  970. /* Solve Sylvester equation for R: */
  971. /* T11*R - R*T22 = scale*T12 */
  972. dlacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1);
  973. dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1
  974. + 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr);
  975. /* Estimate the reciprocal of the condition number of the cluster */
  976. /* of eigenvalues. */
  977. rnorm = dlange_("F", &n1, &n2, &work[1], &n1, &work[1]);
  978. if (rnorm == 0.) {
  979. *s = 1.;
  980. } else {
  981. *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
  982. }
  983. }
  984. if (wantsp) {
  985. /* Estimate sep(T11,T22). */
  986. est = 0.;
  987. kase = 0;
  988. L30:
  989. dlacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave);
  990. if (kase != 0) {
  991. if (kase == 1) {
  992. /* Solve T11*R - R*T22 = scale*X. */
  993. dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
  994. 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
  995. ierr);
  996. } else {
  997. /* Solve T11**T*R - R*T22**T = scale*X. */
  998. dtrsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
  999. 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
  1000. ierr);
  1001. }
  1002. goto L30;
  1003. }
  1004. *sep = scale / est;
  1005. }
  1006. L40:
  1007. /* Store the output eigenvalues in WR and WI. */
  1008. i__1 = *n;
  1009. for (k = 1; k <= i__1; ++k) {
  1010. wr[k] = t[k + k * t_dim1];
  1011. wi[k] = 0.;
  1012. /* L50: */
  1013. }
  1014. i__1 = *n - 1;
  1015. for (k = 1; k <= i__1; ++k) {
  1016. if (t[k + 1 + k * t_dim1] != 0.) {
  1017. wi[k] = sqrt((d__1 = t[k + (k + 1) * t_dim1], abs(d__1))) * sqrt((
  1018. d__2 = t[k + 1 + k * t_dim1], abs(d__2)));
  1019. wi[k + 1] = -wi[k];
  1020. }
  1021. /* L60: */
  1022. }
  1023. work[1] = (doublereal) lwmin;
  1024. iwork[1] = liwmin;
  1025. return;
  1026. /* End of DTRSEN */
  1027. } /* dtrsen_ */