You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqtr.c 37 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static logical c_false = FALSE_;
  486. static integer c__2 = 2;
  487. static doublereal c_b21 = 1.;
  488. static doublereal c_b25 = 0.;
  489. static logical c_true = TRUE_;
  490. /* > \brief \b DLAQTR solves a real quasi-triangular system of equations, or a complex quasi-triangular system
  491. of special form, in real arithmetic. */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download DLAQTR + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqtr.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqtr.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqtr.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE DLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK, */
  510. /* INFO ) */
  511. /* LOGICAL LREAL, LTRAN */
  512. /* INTEGER INFO, LDT, N */
  513. /* DOUBLE PRECISION SCALE, W */
  514. /* DOUBLE PRECISION B( * ), T( LDT, * ), WORK( * ), X( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DLAQTR solves the real quasi-triangular system */
  521. /* > */
  522. /* > op(T)*p = scale*c, if LREAL = .TRUE. */
  523. /* > */
  524. /* > or the complex quasi-triangular systems */
  525. /* > */
  526. /* > op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE. */
  527. /* > */
  528. /* > in real arithmetic, where T is upper quasi-triangular. */
  529. /* > If LREAL = .FALSE., then the first diagonal block of T must be */
  530. /* > 1 by 1, B is the specially structured matrix */
  531. /* > */
  532. /* > B = [ b(1) b(2) ... b(n) ] */
  533. /* > [ w ] */
  534. /* > [ w ] */
  535. /* > [ . ] */
  536. /* > [ w ] */
  537. /* > */
  538. /* > op(A) = A or A**T, A**T denotes the transpose of */
  539. /* > matrix A. */
  540. /* > */
  541. /* > On input, X = [ c ]. On output, X = [ p ]. */
  542. /* > [ d ] [ q ] */
  543. /* > */
  544. /* > This subroutine is designed for the condition number estimation */
  545. /* > in routine DTRSNA. */
  546. /* > \endverbatim */
  547. /* Arguments: */
  548. /* ========== */
  549. /* > \param[in] LTRAN */
  550. /* > \verbatim */
  551. /* > LTRAN is LOGICAL */
  552. /* > On entry, LTRAN specifies the option of conjugate transpose: */
  553. /* > = .FALSE., op(T+i*B) = T+i*B, */
  554. /* > = .TRUE., op(T+i*B) = (T+i*B)**T. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] LREAL */
  558. /* > \verbatim */
  559. /* > LREAL is LOGICAL */
  560. /* > On entry, LREAL specifies the input matrix structure: */
  561. /* > = .FALSE., the input is complex */
  562. /* > = .TRUE., the input is real */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] N */
  566. /* > \verbatim */
  567. /* > N is INTEGER */
  568. /* > On entry, N specifies the order of T+i*B. N >= 0. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] T */
  572. /* > \verbatim */
  573. /* > T is DOUBLE PRECISION array, dimension (LDT,N) */
  574. /* > On entry, T contains a matrix in Schur canonical form. */
  575. /* > If LREAL = .FALSE., then the first diagonal block of T mu */
  576. /* > be 1 by 1. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] LDT */
  580. /* > \verbatim */
  581. /* > LDT is INTEGER */
  582. /* > The leading dimension of the matrix T. LDT >= f2cmax(1,N). */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] B */
  586. /* > \verbatim */
  587. /* > B is DOUBLE PRECISION array, dimension (N) */
  588. /* > On entry, B contains the elements to form the matrix */
  589. /* > B as described above. */
  590. /* > If LREAL = .TRUE., B is not referenced. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] W */
  594. /* > \verbatim */
  595. /* > W is DOUBLE PRECISION */
  596. /* > On entry, W is the diagonal element of the matrix B. */
  597. /* > If LREAL = .TRUE., W is not referenced. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[out] SCALE */
  601. /* > \verbatim */
  602. /* > SCALE is DOUBLE PRECISION */
  603. /* > On exit, SCALE is the scale factor. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in,out] X */
  607. /* > \verbatim */
  608. /* > X is DOUBLE PRECISION array, dimension (2*N) */
  609. /* > On entry, X contains the right hand side of the system. */
  610. /* > On exit, X is overwritten by the solution. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] WORK */
  614. /* > \verbatim */
  615. /* > WORK is DOUBLE PRECISION array, dimension (N) */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] INFO */
  619. /* > \verbatim */
  620. /* > INFO is INTEGER */
  621. /* > On exit, INFO is set to */
  622. /* > 0: successful exit. */
  623. /* > 1: the some diagonal 1 by 1 block has been perturbed by */
  624. /* > a small number SMIN to keep nonsingularity. */
  625. /* > 2: the some diagonal 2 by 2 block has been perturbed by */
  626. /* > a small number in DLALN2 to keep nonsingularity. */
  627. /* > NOTE: In the interests of speed, this routine does not */
  628. /* > check the inputs for errors. */
  629. /* > \endverbatim */
  630. /* Authors: */
  631. /* ======== */
  632. /* > \author Univ. of Tennessee */
  633. /* > \author Univ. of California Berkeley */
  634. /* > \author Univ. of Colorado Denver */
  635. /* > \author NAG Ltd. */
  636. /* > \date December 2016 */
  637. /* > \ingroup doubleOTHERauxiliary */
  638. /* ===================================================================== */
  639. /* Subroutine */ void dlaqtr_(logical *ltran, logical *lreal, integer *n,
  640. doublereal *t, integer *ldt, doublereal *b, doublereal *w, doublereal
  641. *scale, doublereal *x, doublereal *work, integer *info)
  642. {
  643. /* System generated locals */
  644. integer t_dim1, t_offset, i__1, i__2;
  645. doublereal d__1, d__2, d__3, d__4, d__5, d__6;
  646. /* Local variables */
  647. extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
  648. integer *);
  649. integer ierr;
  650. doublereal smin, xmax, d__[4] /* was [2][2] */;
  651. integer i__, j, k;
  652. doublereal v[4] /* was [2][2] */, z__;
  653. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  654. integer *);
  655. extern doublereal dasum_(integer *, doublereal *, integer *);
  656. extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *,
  657. integer *, doublereal *, integer *);
  658. integer jnext, j1, j2;
  659. doublereal sminw;
  660. integer n1, n2;
  661. doublereal xnorm;
  662. extern /* Subroutine */ void dlaln2_(logical *, integer *, integer *,
  663. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  664. doublereal *, doublereal *, integer *, doublereal *, doublereal *
  665. , doublereal *, integer *, doublereal *, doublereal *, integer *);
  666. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  667. integer *, doublereal *, integer *, doublereal *);
  668. doublereal si, xj;
  669. extern integer idamax_(integer *, doublereal *, integer *);
  670. doublereal scaloc, sr;
  671. extern /* Subroutine */ void dladiv_(doublereal *, doublereal *,
  672. doublereal *, doublereal *, doublereal *, doublereal *);
  673. doublereal bignum;
  674. logical notran;
  675. doublereal smlnum, rec, eps, tjj, tmp;
  676. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  677. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  678. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  679. /* December 2016 */
  680. /* ===================================================================== */
  681. /* Do not test the input parameters for errors */
  682. /* Parameter adjustments */
  683. t_dim1 = *ldt;
  684. t_offset = 1 + t_dim1 * 1;
  685. t -= t_offset;
  686. --b;
  687. --x;
  688. --work;
  689. /* Function Body */
  690. notran = ! (*ltran);
  691. *info = 0;
  692. /* Quick return if possible */
  693. if (*n == 0) {
  694. return;
  695. }
  696. /* Set constants to control overflow */
  697. eps = dlamch_("P");
  698. smlnum = dlamch_("S") / eps;
  699. bignum = 1. / smlnum;
  700. xnorm = dlange_("M", n, n, &t[t_offset], ldt, d__);
  701. if (! (*lreal)) {
  702. /* Computing MAX */
  703. d__1 = xnorm, d__2 = abs(*w), d__1 = f2cmax(d__1,d__2), d__2 = dlange_(
  704. "M", n, &c__1, &b[1], n, d__);
  705. xnorm = f2cmax(d__1,d__2);
  706. }
  707. /* Computing MAX */
  708. d__1 = smlnum, d__2 = eps * xnorm;
  709. smin = f2cmax(d__1,d__2);
  710. /* Compute 1-norm of each column of strictly upper triangular */
  711. /* part of T to control overflow in triangular solver. */
  712. work[1] = 0.;
  713. i__1 = *n;
  714. for (j = 2; j <= i__1; ++j) {
  715. i__2 = j - 1;
  716. work[j] = dasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
  717. /* L10: */
  718. }
  719. if (! (*lreal)) {
  720. i__1 = *n;
  721. for (i__ = 2; i__ <= i__1; ++i__) {
  722. work[i__] += (d__1 = b[i__], abs(d__1));
  723. /* L20: */
  724. }
  725. }
  726. n2 = *n << 1;
  727. n1 = *n;
  728. if (! (*lreal)) {
  729. n1 = n2;
  730. }
  731. k = idamax_(&n1, &x[1], &c__1);
  732. xmax = (d__1 = x[k], abs(d__1));
  733. *scale = 1.;
  734. if (xmax > bignum) {
  735. *scale = bignum / xmax;
  736. dscal_(&n1, scale, &x[1], &c__1);
  737. xmax = bignum;
  738. }
  739. if (*lreal) {
  740. if (notran) {
  741. /* Solve T*p = scale*c */
  742. jnext = *n;
  743. for (j = *n; j >= 1; --j) {
  744. if (j > jnext) {
  745. goto L30;
  746. }
  747. j1 = j;
  748. j2 = j;
  749. jnext = j - 1;
  750. if (j > 1) {
  751. if (t[j + (j - 1) * t_dim1] != 0.) {
  752. j1 = j - 1;
  753. jnext = j - 2;
  754. }
  755. }
  756. if (j1 == j2) {
  757. /* Meet 1 by 1 diagonal block */
  758. /* Scale to avoid overflow when computing */
  759. /* x(j) = b(j)/T(j,j) */
  760. xj = (d__1 = x[j1], abs(d__1));
  761. tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1));
  762. tmp = t[j1 + j1 * t_dim1];
  763. if (tjj < smin) {
  764. tmp = smin;
  765. tjj = smin;
  766. *info = 1;
  767. }
  768. if (xj == 0.) {
  769. goto L30;
  770. }
  771. if (tjj < 1.) {
  772. if (xj > bignum * tjj) {
  773. rec = 1. / xj;
  774. dscal_(n, &rec, &x[1], &c__1);
  775. *scale *= rec;
  776. xmax *= rec;
  777. }
  778. }
  779. x[j1] /= tmp;
  780. xj = (d__1 = x[j1], abs(d__1));
  781. /* Scale x if necessary to avoid overflow when adding a */
  782. /* multiple of column j1 of T. */
  783. if (xj > 1.) {
  784. rec = 1. / xj;
  785. if (work[j1] > (bignum - xmax) * rec) {
  786. dscal_(n, &rec, &x[1], &c__1);
  787. *scale *= rec;
  788. }
  789. }
  790. if (j1 > 1) {
  791. i__1 = j1 - 1;
  792. d__1 = -x[j1];
  793. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  794. , &c__1);
  795. i__1 = j1 - 1;
  796. k = idamax_(&i__1, &x[1], &c__1);
  797. xmax = (d__1 = x[k], abs(d__1));
  798. }
  799. } else {
  800. /* Meet 2 by 2 diagonal block */
  801. /* Call 2 by 2 linear system solve, to take */
  802. /* care of possible overflow by scaling factor. */
  803. d__[0] = x[j1];
  804. d__[1] = x[j2];
  805. dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1
  806. * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
  807. c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
  808. if (ierr != 0) {
  809. *info = 2;
  810. }
  811. if (scaloc != 1.) {
  812. dscal_(n, &scaloc, &x[1], &c__1);
  813. *scale *= scaloc;
  814. }
  815. x[j1] = v[0];
  816. x[j2] = v[1];
  817. /* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) */
  818. /* to avoid overflow in updating right-hand side. */
  819. /* Computing MAX */
  820. d__1 = abs(v[0]), d__2 = abs(v[1]);
  821. xj = f2cmax(d__1,d__2);
  822. if (xj > 1.) {
  823. rec = 1. / xj;
  824. /* Computing MAX */
  825. d__1 = work[j1], d__2 = work[j2];
  826. if (f2cmax(d__1,d__2) > (bignum - xmax) * rec) {
  827. dscal_(n, &rec, &x[1], &c__1);
  828. *scale *= rec;
  829. }
  830. }
  831. /* Update right-hand side */
  832. if (j1 > 1) {
  833. i__1 = j1 - 1;
  834. d__1 = -x[j1];
  835. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  836. , &c__1);
  837. i__1 = j1 - 1;
  838. d__1 = -x[j2];
  839. daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
  840. , &c__1);
  841. i__1 = j1 - 1;
  842. k = idamax_(&i__1, &x[1], &c__1);
  843. xmax = (d__1 = x[k], abs(d__1));
  844. }
  845. }
  846. L30:
  847. ;
  848. }
  849. } else {
  850. /* Solve T**T*p = scale*c */
  851. jnext = 1;
  852. i__1 = *n;
  853. for (j = 1; j <= i__1; ++j) {
  854. if (j < jnext) {
  855. goto L40;
  856. }
  857. j1 = j;
  858. j2 = j;
  859. jnext = j + 1;
  860. if (j < *n) {
  861. if (t[j + 1 + j * t_dim1] != 0.) {
  862. j2 = j + 1;
  863. jnext = j + 2;
  864. }
  865. }
  866. if (j1 == j2) {
  867. /* 1 by 1 diagonal block */
  868. /* Scale if necessary to avoid overflow in forming the */
  869. /* right-hand side element by inner product. */
  870. xj = (d__1 = x[j1], abs(d__1));
  871. if (xmax > 1.) {
  872. rec = 1. / xmax;
  873. if (work[j1] > (bignum - xj) * rec) {
  874. dscal_(n, &rec, &x[1], &c__1);
  875. *scale *= rec;
  876. xmax *= rec;
  877. }
  878. }
  879. i__2 = j1 - 1;
  880. x[j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
  881. c__1);
  882. xj = (d__1 = x[j1], abs(d__1));
  883. tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1));
  884. tmp = t[j1 + j1 * t_dim1];
  885. if (tjj < smin) {
  886. tmp = smin;
  887. tjj = smin;
  888. *info = 1;
  889. }
  890. if (tjj < 1.) {
  891. if (xj > bignum * tjj) {
  892. rec = 1. / xj;
  893. dscal_(n, &rec, &x[1], &c__1);
  894. *scale *= rec;
  895. xmax *= rec;
  896. }
  897. }
  898. x[j1] /= tmp;
  899. /* Computing MAX */
  900. d__2 = xmax, d__3 = (d__1 = x[j1], abs(d__1));
  901. xmax = f2cmax(d__2,d__3);
  902. } else {
  903. /* 2 by 2 diagonal block */
  904. /* Scale if necessary to avoid overflow in forming the */
  905. /* right-hand side elements by inner product. */
  906. /* Computing MAX */
  907. d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2],
  908. abs(d__2));
  909. xj = f2cmax(d__3,d__4);
  910. if (xmax > 1.) {
  911. rec = 1. / xmax;
  912. /* Computing MAX */
  913. d__1 = work[j2], d__2 = work[j1];
  914. if (f2cmax(d__1,d__2) > (bignum - xj) * rec) {
  915. dscal_(n, &rec, &x[1], &c__1);
  916. *scale *= rec;
  917. xmax *= rec;
  918. }
  919. }
  920. i__2 = j1 - 1;
  921. d__[0] = x[j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
  922. &x[1], &c__1);
  923. i__2 = j1 - 1;
  924. d__[1] = x[j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
  925. &x[1], &c__1);
  926. dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 *
  927. t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25,
  928. &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
  929. if (ierr != 0) {
  930. *info = 2;
  931. }
  932. if (scaloc != 1.) {
  933. dscal_(n, &scaloc, &x[1], &c__1);
  934. *scale *= scaloc;
  935. }
  936. x[j1] = v[0];
  937. x[j2] = v[1];
  938. /* Computing MAX */
  939. d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2],
  940. abs(d__2)), d__3 = f2cmax(d__3,d__4);
  941. xmax = f2cmax(d__3,xmax);
  942. }
  943. L40:
  944. ;
  945. }
  946. }
  947. } else {
  948. /* Computing MAX */
  949. d__1 = eps * abs(*w);
  950. sminw = f2cmax(d__1,smin);
  951. if (notran) {
  952. /* Solve (T + iB)*(p+iq) = c+id */
  953. jnext = *n;
  954. for (j = *n; j >= 1; --j) {
  955. if (j > jnext) {
  956. goto L70;
  957. }
  958. j1 = j;
  959. j2 = j;
  960. jnext = j - 1;
  961. if (j > 1) {
  962. if (t[j + (j - 1) * t_dim1] != 0.) {
  963. j1 = j - 1;
  964. jnext = j - 2;
  965. }
  966. }
  967. if (j1 == j2) {
  968. /* 1 by 1 diagonal block */
  969. /* Scale if necessary to avoid overflow in division */
  970. z__ = *w;
  971. if (j1 == 1) {
  972. z__ = b[1];
  973. }
  974. xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(
  975. d__2));
  976. tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__);
  977. tmp = t[j1 + j1 * t_dim1];
  978. if (tjj < sminw) {
  979. tmp = sminw;
  980. tjj = sminw;
  981. *info = 1;
  982. }
  983. if (xj == 0.) {
  984. goto L70;
  985. }
  986. if (tjj < 1.) {
  987. if (xj > bignum * tjj) {
  988. rec = 1. / xj;
  989. dscal_(&n2, &rec, &x[1], &c__1);
  990. *scale *= rec;
  991. xmax *= rec;
  992. }
  993. }
  994. dladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si);
  995. x[j1] = sr;
  996. x[*n + j1] = si;
  997. xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(
  998. d__2));
  999. /* Scale x if necessary to avoid overflow when adding a */
  1000. /* multiple of column j1 of T. */
  1001. if (xj > 1.) {
  1002. rec = 1. / xj;
  1003. if (work[j1] > (bignum - xmax) * rec) {
  1004. dscal_(&n2, &rec, &x[1], &c__1);
  1005. *scale *= rec;
  1006. }
  1007. }
  1008. if (j1 > 1) {
  1009. i__1 = j1 - 1;
  1010. d__1 = -x[j1];
  1011. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  1012. , &c__1);
  1013. i__1 = j1 - 1;
  1014. d__1 = -x[*n + j1];
  1015. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
  1016. n + 1], &c__1);
  1017. x[1] += b[j1] * x[*n + j1];
  1018. x[*n + 1] -= b[j1] * x[j1];
  1019. xmax = 0.;
  1020. i__1 = j1 - 1;
  1021. for (k = 1; k <= i__1; ++k) {
  1022. /* Computing MAX */
  1023. d__3 = xmax, d__4 = (d__1 = x[k], abs(d__1)) + (
  1024. d__2 = x[k + *n], abs(d__2));
  1025. xmax = f2cmax(d__3,d__4);
  1026. /* L50: */
  1027. }
  1028. }
  1029. } else {
  1030. /* Meet 2 by 2 diagonal block */
  1031. d__[0] = x[j1];
  1032. d__[1] = x[j2];
  1033. d__[2] = x[*n + j1];
  1034. d__[3] = x[*n + j2];
  1035. d__1 = -(*w);
  1036. dlaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 +
  1037. j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
  1038. c_b25, &d__1, v, &c__2, &scaloc, &xnorm, &ierr);
  1039. if (ierr != 0) {
  1040. *info = 2;
  1041. }
  1042. if (scaloc != 1.) {
  1043. i__1 = *n << 1;
  1044. dscal_(&i__1, &scaloc, &x[1], &c__1);
  1045. *scale = scaloc * *scale;
  1046. }
  1047. x[j1] = v[0];
  1048. x[j2] = v[1];
  1049. x[*n + j1] = v[2];
  1050. x[*n + j2] = v[3];
  1051. /* Scale X(J1), .... to avoid overflow in */
  1052. /* updating right hand side. */
  1053. /* Computing MAX */
  1054. d__1 = abs(v[0]) + abs(v[2]), d__2 = abs(v[1]) + abs(v[3])
  1055. ;
  1056. xj = f2cmax(d__1,d__2);
  1057. if (xj > 1.) {
  1058. rec = 1. / xj;
  1059. /* Computing MAX */
  1060. d__1 = work[j1], d__2 = work[j2];
  1061. if (f2cmax(d__1,d__2) > (bignum - xmax) * rec) {
  1062. dscal_(&n2, &rec, &x[1], &c__1);
  1063. *scale *= rec;
  1064. }
  1065. }
  1066. /* Update the right-hand side. */
  1067. if (j1 > 1) {
  1068. i__1 = j1 - 1;
  1069. d__1 = -x[j1];
  1070. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  1071. , &c__1);
  1072. i__1 = j1 - 1;
  1073. d__1 = -x[j2];
  1074. daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
  1075. , &c__1);
  1076. i__1 = j1 - 1;
  1077. d__1 = -x[*n + j1];
  1078. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
  1079. n + 1], &c__1);
  1080. i__1 = j1 - 1;
  1081. d__1 = -x[*n + j2];
  1082. daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[*
  1083. n + 1], &c__1);
  1084. x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2];
  1085. x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2];
  1086. xmax = 0.;
  1087. i__1 = j1 - 1;
  1088. for (k = 1; k <= i__1; ++k) {
  1089. /* Computing MAX */
  1090. d__3 = (d__1 = x[k], abs(d__1)) + (d__2 = x[k + *
  1091. n], abs(d__2));
  1092. xmax = f2cmax(d__3,xmax);
  1093. /* L60: */
  1094. }
  1095. }
  1096. }
  1097. L70:
  1098. ;
  1099. }
  1100. } else {
  1101. /* Solve (T + iB)**T*(p+iq) = c+id */
  1102. jnext = 1;
  1103. i__1 = *n;
  1104. for (j = 1; j <= i__1; ++j) {
  1105. if (j < jnext) {
  1106. goto L80;
  1107. }
  1108. j1 = j;
  1109. j2 = j;
  1110. jnext = j + 1;
  1111. if (j < *n) {
  1112. if (t[j + 1 + j * t_dim1] != 0.) {
  1113. j2 = j + 1;
  1114. jnext = j + 2;
  1115. }
  1116. }
  1117. if (j1 == j2) {
  1118. /* 1 by 1 diagonal block */
  1119. /* Scale if necessary to avoid overflow in forming the */
  1120. /* right-hand side element by inner product. */
  1121. xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(
  1122. d__2));
  1123. if (xmax > 1.) {
  1124. rec = 1. / xmax;
  1125. if (work[j1] > (bignum - xj) * rec) {
  1126. dscal_(&n2, &rec, &x[1], &c__1);
  1127. *scale *= rec;
  1128. xmax *= rec;
  1129. }
  1130. }
  1131. i__2 = j1 - 1;
  1132. x[j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
  1133. c__1);
  1134. i__2 = j1 - 1;
  1135. x[*n + j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[
  1136. *n + 1], &c__1);
  1137. if (j1 > 1) {
  1138. x[j1] -= b[j1] * x[*n + 1];
  1139. x[*n + j1] += b[j1] * x[1];
  1140. }
  1141. xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(
  1142. d__2));
  1143. z__ = *w;
  1144. if (j1 == 1) {
  1145. z__ = b[1];
  1146. }
  1147. /* Scale if necessary to avoid overflow in */
  1148. /* complex division */
  1149. tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__);
  1150. tmp = t[j1 + j1 * t_dim1];
  1151. if (tjj < sminw) {
  1152. tmp = sminw;
  1153. tjj = sminw;
  1154. *info = 1;
  1155. }
  1156. if (tjj < 1.) {
  1157. if (xj > bignum * tjj) {
  1158. rec = 1. / xj;
  1159. dscal_(&n2, &rec, &x[1], &c__1);
  1160. *scale *= rec;
  1161. xmax *= rec;
  1162. }
  1163. }
  1164. d__1 = -z__;
  1165. dladiv_(&x[j1], &x[*n + j1], &tmp, &d__1, &sr, &si);
  1166. x[j1] = sr;
  1167. x[j1 + *n] = si;
  1168. /* Computing MAX */
  1169. d__3 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n],
  1170. abs(d__2));
  1171. xmax = f2cmax(d__3,xmax);
  1172. } else {
  1173. /* 2 by 2 diagonal block */
  1174. /* Scale if necessary to avoid overflow in forming the */
  1175. /* right-hand side element by inner product. */
  1176. /* Computing MAX */
  1177. d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1],
  1178. abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + (
  1179. d__4 = x[*n + j2], abs(d__4));
  1180. xj = f2cmax(d__5,d__6);
  1181. if (xmax > 1.) {
  1182. rec = 1. / xmax;
  1183. /* Computing MAX */
  1184. d__1 = work[j1], d__2 = work[j2];
  1185. if (f2cmax(d__1,d__2) > (bignum - xj) / xmax) {
  1186. dscal_(&n2, &rec, &x[1], &c__1);
  1187. *scale *= rec;
  1188. xmax *= rec;
  1189. }
  1190. }
  1191. i__2 = j1 - 1;
  1192. d__[0] = x[j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
  1193. &x[1], &c__1);
  1194. i__2 = j1 - 1;
  1195. d__[1] = x[j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
  1196. &x[1], &c__1);
  1197. i__2 = j1 - 1;
  1198. d__[2] = x[*n + j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &
  1199. c__1, &x[*n + 1], &c__1);
  1200. i__2 = j1 - 1;
  1201. d__[3] = x[*n + j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &
  1202. c__1, &x[*n + 1], &c__1);
  1203. d__[0] -= b[j1] * x[*n + 1];
  1204. d__[1] -= b[j2] * x[*n + 1];
  1205. d__[2] += b[j1] * x[1];
  1206. d__[3] += b[j2] * x[1];
  1207. dlaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1
  1208. * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
  1209. c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr);
  1210. if (ierr != 0) {
  1211. *info = 2;
  1212. }
  1213. if (scaloc != 1.) {
  1214. dscal_(&n2, &scaloc, &x[1], &c__1);
  1215. *scale = scaloc * *scale;
  1216. }
  1217. x[j1] = v[0];
  1218. x[j2] = v[1];
  1219. x[*n + j1] = v[2];
  1220. x[*n + j2] = v[3];
  1221. /* Computing MAX */
  1222. d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1],
  1223. abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + (
  1224. d__4 = x[*n + j2], abs(d__4)), d__5 = f2cmax(d__5,
  1225. d__6);
  1226. xmax = f2cmax(d__5,xmax);
  1227. }
  1228. L80:
  1229. ;
  1230. }
  1231. }
  1232. }
  1233. return;
  1234. /* End of DLAQTR */
  1235. } /* dlaqtr_ */