You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgsvj1.c 40 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__0 = 0;
  486. static doublereal c_b35 = 1.;
  487. /* > \brief \b DGSVJ1 pre-processor for the routine dgesvj, applies Jacobi rotations targeting only particular
  488. pivots. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DGSVJ1 + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgsvj1.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgsvj1.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgsvj1.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV, */
  507. /* EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
  508. /* DOUBLE PRECISION EPS, SFMIN, TOL */
  509. /* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP */
  510. /* CHARACTER*1 JOBV */
  511. /* DOUBLE PRECISION A( LDA, * ), D( N ), SVA( N ), V( LDV, * ), */
  512. /* $ WORK( LWORK ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > DGSVJ1 is called from DGESVJ as a pre-processor and that is its main */
  519. /* > purpose. It applies Jacobi rotations in the same way as DGESVJ does, but */
  520. /* > it targets only particular pivots and it does not check convergence */
  521. /* > (stopping criterion). Few tunning parameters (marked by [TP]) are */
  522. /* > available for the implementer. */
  523. /* > */
  524. /* > Further Details */
  525. /* > ~~~~~~~~~~~~~~~ */
  526. /* > DGSVJ1 applies few sweeps of Jacobi rotations in the column space of */
  527. /* > the input M-by-N matrix A. The pivot pairs are taken from the (1,2) */
  528. /* > off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The */
  529. /* > block-entries (tiles) of the (1,2) off-diagonal block are marked by the */
  530. /* > [x]'s in the following scheme: */
  531. /* > */
  532. /* > | * * * [x] [x] [x]| */
  533. /* > | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. */
  534. /* > | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. */
  535. /* > |[x] [x] [x] * * * | */
  536. /* > |[x] [x] [x] * * * | */
  537. /* > |[x] [x] [x] * * * | */
  538. /* > */
  539. /* > In terms of the columns of A, the first N1 columns are rotated 'against' */
  540. /* > the remaining N-N1 columns, trying to increase the angle between the */
  541. /* > corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is */
  542. /* > tiled using quadratic tiles of side KBL. Here, KBL is a tunning parameter. */
  543. /* > The number of sweeps is given in NSWEEP and the orthogonality threshold */
  544. /* > is given in TOL. */
  545. /* > \endverbatim */
  546. /* Arguments: */
  547. /* ========== */
  548. /* > \param[in] JOBV */
  549. /* > \verbatim */
  550. /* > JOBV is CHARACTER*1 */
  551. /* > Specifies whether the output from this procedure is used */
  552. /* > to compute the matrix V: */
  553. /* > = 'V': the product of the Jacobi rotations is accumulated */
  554. /* > by postmulyiplying the N-by-N array V. */
  555. /* > (See the description of V.) */
  556. /* > = 'A': the product of the Jacobi rotations is accumulated */
  557. /* > by postmulyiplying the MV-by-N array V. */
  558. /* > (See the descriptions of MV and V.) */
  559. /* > = 'N': the Jacobi rotations are not accumulated. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] M */
  563. /* > \verbatim */
  564. /* > M is INTEGER */
  565. /* > The number of rows of the input matrix A. M >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] N */
  569. /* > \verbatim */
  570. /* > N is INTEGER */
  571. /* > The number of columns of the input matrix A. */
  572. /* > M >= N >= 0. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] N1 */
  576. /* > \verbatim */
  577. /* > N1 is INTEGER */
  578. /* > N1 specifies the 2 x 2 block partition, the first N1 columns are */
  579. /* > rotated 'against' the remaining N-N1 columns of A. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in,out] A */
  583. /* > \verbatim */
  584. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  585. /* > On entry, M-by-N matrix A, such that A*diag(D) represents */
  586. /* > the input matrix. */
  587. /* > On exit, */
  588. /* > A_onexit * D_onexit represents the input matrix A*diag(D) */
  589. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  590. /* > rotation threshold and the total number of sweeps are given in */
  591. /* > TOL and NSWEEP, respectively. */
  592. /* > (See the descriptions of N1, D, TOL and NSWEEP.) */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDA */
  596. /* > \verbatim */
  597. /* > LDA is INTEGER */
  598. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in,out] D */
  602. /* > \verbatim */
  603. /* > D is DOUBLE PRECISION array, dimension (N) */
  604. /* > The array D accumulates the scaling factors from the fast scaled */
  605. /* > Jacobi rotations. */
  606. /* > On entry, A*diag(D) represents the input matrix. */
  607. /* > On exit, A_onexit*diag(D_onexit) represents the input matrix */
  608. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  609. /* > rotation threshold and the total number of sweeps are given in */
  610. /* > TOL and NSWEEP, respectively. */
  611. /* > (See the descriptions of N1, A, TOL and NSWEEP.) */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in,out] SVA */
  615. /* > \verbatim */
  616. /* > SVA is DOUBLE PRECISION array, dimension (N) */
  617. /* > On entry, SVA contains the Euclidean norms of the columns of */
  618. /* > the matrix A*diag(D). */
  619. /* > On exit, SVA contains the Euclidean norms of the columns of */
  620. /* > the matrix onexit*diag(D_onexit). */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in] MV */
  624. /* > \verbatim */
  625. /* > MV is INTEGER */
  626. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  627. /* > sequence of Jacobi rotations. */
  628. /* > If JOBV = 'N', then MV is not referenced. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in,out] V */
  632. /* > \verbatim */
  633. /* > V is DOUBLE PRECISION array, dimension (LDV,N) */
  634. /* > If JOBV = 'V', then N rows of V are post-multipled by a */
  635. /* > sequence of Jacobi rotations. */
  636. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  637. /* > sequence of Jacobi rotations. */
  638. /* > If JOBV = 'N', then V is not referenced. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in] LDV */
  642. /* > \verbatim */
  643. /* > LDV is INTEGER */
  644. /* > The leading dimension of the array V, LDV >= 1. */
  645. /* > If JOBV = 'V', LDV >= N. */
  646. /* > If JOBV = 'A', LDV >= MV. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[in] EPS */
  650. /* > \verbatim */
  651. /* > EPS is DOUBLE PRECISION */
  652. /* > EPS = DLAMCH('Epsilon') */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[in] SFMIN */
  656. /* > \verbatim */
  657. /* > SFMIN is DOUBLE PRECISION */
  658. /* > SFMIN = DLAMCH('Safe Minimum') */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[in] TOL */
  662. /* > \verbatim */
  663. /* > TOL is DOUBLE PRECISION */
  664. /* > TOL is the threshold for Jacobi rotations. For a pair */
  665. /* > A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
  666. /* > applied only if DABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[in] NSWEEP */
  670. /* > \verbatim */
  671. /* > NSWEEP is INTEGER */
  672. /* > NSWEEP is the number of sweeps of Jacobi rotations to be */
  673. /* > performed. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] WORK */
  677. /* > \verbatim */
  678. /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[in] LWORK */
  682. /* > \verbatim */
  683. /* > LWORK is INTEGER */
  684. /* > LWORK is the dimension of WORK. LWORK >= M. */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] INFO */
  688. /* > \verbatim */
  689. /* > INFO is INTEGER */
  690. /* > = 0: successful exit. */
  691. /* > < 0: if INFO = -i, then the i-th argument had an illegal value */
  692. /* > \endverbatim */
  693. /* Authors: */
  694. /* ======== */
  695. /* > \author Univ. of Tennessee */
  696. /* > \author Univ. of California Berkeley */
  697. /* > \author Univ. of Colorado Denver */
  698. /* > \author NAG Ltd. */
  699. /* > \date June 2016 */
  700. /* > \ingroup doubleOTHERcomputational */
  701. /* > \par Contributors: */
  702. /* ================== */
  703. /* > */
  704. /* > Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */
  705. /* ===================================================================== */
  706. /* Subroutine */ void dgsvj1_(char *jobv, integer *m, integer *n, integer *n1,
  707. doublereal *a, integer *lda, doublereal *d__, doublereal *sva,
  708. integer *mv, doublereal *v, integer *ldv, doublereal *eps, doublereal
  709. *sfmin, doublereal *tol, integer *nsweep, doublereal *work, integer *
  710. lwork, integer *info)
  711. {
  712. /* System generated locals */
  713. integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5,
  714. i__6;
  715. doublereal d__1, d__2;
  716. /* Local variables */
  717. integer nblc;
  718. doublereal aapp, aapq, aaqq;
  719. extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
  720. integer *);
  721. integer nblr, ierr;
  722. doublereal bigtheta;
  723. integer pskipped;
  724. doublereal aapp0;
  725. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  726. doublereal temp1;
  727. integer i__, p, q;
  728. doublereal t, large, apoaq, aqoap;
  729. extern logical lsame_(char *, char *);
  730. doublereal theta, small;
  731. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  732. doublereal *, integer *);
  733. doublereal fastr[5];
  734. extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *,
  735. doublereal *, integer *);
  736. logical applv, rsvec;
  737. extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *,
  738. integer *, doublereal *, integer *), drotm_(integer *, doublereal
  739. *, integer *, doublereal *, integer *, doublereal *);
  740. logical rotok;
  741. doublereal rootsfmin, cs, sn;
  742. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  743. doublereal *, doublereal *, integer *, integer *, doublereal *,
  744. integer *, integer *);
  745. extern integer idamax_(integer *, doublereal *, integer *);
  746. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  747. integer ijblsk, swband, blskip;
  748. doublereal mxaapq;
  749. extern /* Subroutine */ void dlassq_(integer *, doublereal *, integer *,
  750. doublereal *, doublereal *);
  751. doublereal thsign, mxsinj;
  752. integer emptsw, notrot, iswrot, jbc;
  753. doublereal big;
  754. integer kbl, igl, ibr, jgl, mvl;
  755. doublereal rootbig, rooteps;
  756. integer rowskip;
  757. doublereal roottol;
  758. /* -- LAPACK computational routine (version 3.8.0) -- */
  759. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  760. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  761. /* June 2016 */
  762. /* ===================================================================== */
  763. /* Test the input parameters. */
  764. /* Parameter adjustments */
  765. --sva;
  766. --d__;
  767. a_dim1 = *lda;
  768. a_offset = 1 + a_dim1 * 1;
  769. a -= a_offset;
  770. v_dim1 = *ldv;
  771. v_offset = 1 + v_dim1 * 1;
  772. v -= v_offset;
  773. --work;
  774. /* Function Body */
  775. applv = lsame_(jobv, "A");
  776. rsvec = lsame_(jobv, "V");
  777. if (! (rsvec || applv || lsame_(jobv, "N"))) {
  778. *info = -1;
  779. } else if (*m < 0) {
  780. *info = -2;
  781. } else if (*n < 0 || *n > *m) {
  782. *info = -3;
  783. } else if (*n1 < 0) {
  784. *info = -4;
  785. } else if (*lda < *m) {
  786. *info = -6;
  787. } else if ((rsvec || applv) && *mv < 0) {
  788. *info = -9;
  789. } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
  790. *info = -11;
  791. } else if (*tol <= *eps) {
  792. *info = -14;
  793. } else if (*nsweep < 0) {
  794. *info = -15;
  795. } else if (*lwork < *m) {
  796. *info = -17;
  797. } else {
  798. *info = 0;
  799. }
  800. /* #:( */
  801. if (*info != 0) {
  802. i__1 = -(*info);
  803. xerbla_("DGSVJ1", &i__1, (ftnlen)6);
  804. return;
  805. }
  806. if (rsvec) {
  807. mvl = *n;
  808. } else if (applv) {
  809. mvl = *mv;
  810. }
  811. rsvec = rsvec || applv;
  812. rooteps = sqrt(*eps);
  813. rootsfmin = sqrt(*sfmin);
  814. small = *sfmin / *eps;
  815. big = 1. / *sfmin;
  816. rootbig = 1. / rootsfmin;
  817. large = big / sqrt((doublereal) (*m * *n));
  818. bigtheta = 1. / rooteps;
  819. roottol = sqrt(*tol);
  820. /* RSVEC = LSAME( JOBV, 'Y' ) */
  821. emptsw = *n1 * (*n - *n1);
  822. notrot = 0;
  823. fastr[0] = 0.;
  824. kbl = f2cmin(8,*n);
  825. nblr = *n1 / kbl;
  826. if (nblr * kbl != *n1) {
  827. ++nblr;
  828. }
  829. nblc = (*n - *n1) / kbl;
  830. if (nblc * kbl != *n - *n1) {
  831. ++nblc;
  832. }
  833. /* Computing 2nd power */
  834. i__1 = kbl;
  835. blskip = i__1 * i__1 + 1;
  836. /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
  837. rowskip = f2cmin(5,kbl);
  838. /* [TP] ROWSKIP is a tuning parameter. */
  839. swband = 0;
  840. /* [TP] SWBAND is a tuning parameter. It is meaningful and effective */
  841. /* if SGESVJ is used as a computational routine in the preconditioned */
  842. /* Jacobi SVD algorithm SGESVJ. */
  843. /* | * * * [x] [x] [x]| */
  844. /* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. */
  845. /* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. */
  846. /* |[x] [x] [x] * * * | */
  847. /* |[x] [x] [x] * * * | */
  848. /* |[x] [x] [x] * * * | */
  849. i__1 = *nsweep;
  850. for (i__ = 1; i__ <= i__1; ++i__) {
  851. mxaapq = 0.;
  852. mxsinj = 0.;
  853. iswrot = 0;
  854. notrot = 0;
  855. pskipped = 0;
  856. i__2 = nblr;
  857. for (ibr = 1; ibr <= i__2; ++ibr) {
  858. igl = (ibr - 1) * kbl + 1;
  859. /* ........................................................ */
  860. /* ... go to the off diagonal blocks */
  861. igl = (ibr - 1) * kbl + 1;
  862. i__3 = nblc;
  863. for (jbc = 1; jbc <= i__3; ++jbc) {
  864. jgl = *n1 + (jbc - 1) * kbl + 1;
  865. /* doing the block at ( ibr, jbc ) */
  866. ijblsk = 0;
  867. /* Computing MIN */
  868. i__5 = igl + kbl - 1;
  869. i__4 = f2cmin(i__5,*n1);
  870. for (p = igl; p <= i__4; ++p) {
  871. aapp = sva[p];
  872. if (aapp > 0.) {
  873. pskipped = 0;
  874. /* Computing MIN */
  875. i__6 = jgl + kbl - 1;
  876. i__5 = f2cmin(i__6,*n);
  877. for (q = jgl; q <= i__5; ++q) {
  878. aaqq = sva[q];
  879. if (aaqq > 0.) {
  880. aapp0 = aapp;
  881. if (aaqq >= 1.) {
  882. if (aapp >= aaqq) {
  883. rotok = small * aapp <= aaqq;
  884. } else {
  885. rotok = small * aaqq <= aapp;
  886. }
  887. if (aapp < big / aaqq) {
  888. aapq = ddot_(m, &a[p * a_dim1 + 1], &
  889. c__1, &a[q * a_dim1 + 1], &
  890. c__1) * d__[p] * d__[q] /
  891. aaqq / aapp;
  892. } else {
  893. dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
  894. work[1], &c__1);
  895. dlascl_("G", &c__0, &c__0, &aapp, &
  896. d__[p], m, &c__1, &work[1],
  897. lda, &ierr);
  898. aapq = ddot_(m, &work[1], &c__1, &a[q
  899. * a_dim1 + 1], &c__1) * d__[q]
  900. / aaqq;
  901. }
  902. } else {
  903. if (aapp >= aaqq) {
  904. rotok = aapp <= aaqq / small;
  905. } else {
  906. rotok = aaqq <= aapp / small;
  907. }
  908. if (aapp > small / aaqq) {
  909. aapq = ddot_(m, &a[p * a_dim1 + 1], &
  910. c__1, &a[q * a_dim1 + 1], &
  911. c__1) * d__[p] * d__[q] /
  912. aaqq / aapp;
  913. } else {
  914. dcopy_(m, &a[q * a_dim1 + 1], &c__1, &
  915. work[1], &c__1);
  916. dlascl_("G", &c__0, &c__0, &aaqq, &
  917. d__[q], m, &c__1, &work[1],
  918. lda, &ierr);
  919. aapq = ddot_(m, &work[1], &c__1, &a[p
  920. * a_dim1 + 1], &c__1) * d__[p]
  921. / aapp;
  922. }
  923. }
  924. /* Computing MAX */
  925. d__1 = mxaapq, d__2 = abs(aapq);
  926. mxaapq = f2cmax(d__1,d__2);
  927. /* TO rotate or NOT to rotate, THAT is the question ... */
  928. if (abs(aapq) > *tol) {
  929. notrot = 0;
  930. /* ROTATED = ROTATED + 1 */
  931. pskipped = 0;
  932. ++iswrot;
  933. if (rotok) {
  934. aqoap = aaqq / aapp;
  935. apoaq = aapp / aaqq;
  936. theta = (d__1 = aqoap - apoaq, abs(
  937. d__1)) * -.5 / aapq;
  938. if (aaqq > aapp0) {
  939. theta = -theta;
  940. }
  941. if (abs(theta) > bigtheta) {
  942. t = .5 / theta;
  943. fastr[2] = t * d__[p] / d__[q];
  944. fastr[3] = -t * d__[q] / d__[p];
  945. drotm_(m, &a[p * a_dim1 + 1], &
  946. c__1, &a[q * a_dim1 + 1],
  947. &c__1, fastr);
  948. if (rsvec) {
  949. drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  950. v_dim1 + 1], &c__1, fastr);
  951. }
  952. /* Computing MAX */
  953. d__1 = 0., d__2 = t * apoaq *
  954. aapq + 1.;
  955. sva[q] = aaqq * sqrt((f2cmax(d__1,
  956. d__2)));
  957. /* Computing MAX */
  958. d__1 = 0., d__2 = 1. - t * aqoap *
  959. aapq;
  960. aapp *= sqrt((f2cmax(d__1,d__2)));
  961. /* Computing MAX */
  962. d__1 = mxsinj, d__2 = abs(t);
  963. mxsinj = f2cmax(d__1,d__2);
  964. } else {
  965. thsign = -d_sign(&c_b35, &aapq);
  966. if (aaqq > aapp0) {
  967. thsign = -thsign;
  968. }
  969. t = 1. / (theta + thsign * sqrt(
  970. theta * theta + 1.));
  971. cs = sqrt(1. / (t * t + 1.));
  972. sn = t * cs;
  973. /* Computing MAX */
  974. d__1 = mxsinj, d__2 = abs(sn);
  975. mxsinj = f2cmax(d__1,d__2);
  976. /* Computing MAX */
  977. d__1 = 0., d__2 = t * apoaq *
  978. aapq + 1.;
  979. sva[q] = aaqq * sqrt((f2cmax(d__1,
  980. d__2)));
  981. /* Computing MAX */
  982. d__1 = 0., d__2 = 1. - t * aqoap *
  983. aapq;
  984. aapp *= sqrt((f2cmax(d__1,d__2)));
  985. apoaq = d__[p] / d__[q];
  986. aqoap = d__[q] / d__[p];
  987. if (d__[p] >= 1.) {
  988. if (d__[q] >= 1.) {
  989. fastr[2] = t * apoaq;
  990. fastr[3] = -t * aqoap;
  991. d__[p] *= cs;
  992. d__[q] *= cs;
  993. drotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q *
  994. a_dim1 + 1], &c__1, fastr);
  995. if (rsvec) {
  996. drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
  997. q * v_dim1 + 1], &c__1, fastr);
  998. }
  999. } else {
  1000. d__1 = -t * aqoap;
  1001. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
  1002. p * a_dim1 + 1], &c__1);
  1003. d__1 = cs * sn * apoaq;
  1004. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
  1005. q * a_dim1 + 1], &c__1);
  1006. if (rsvec) {
  1007. d__1 = -t * aqoap;
  1008. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
  1009. c__1, &v[p * v_dim1 + 1], &c__1);
  1010. d__1 = cs * sn * apoaq;
  1011. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
  1012. c__1, &v[q * v_dim1 + 1], &c__1);
  1013. }
  1014. d__[p] *= cs;
  1015. d__[q] /= cs;
  1016. }
  1017. } else {
  1018. if (d__[q] >= 1.) {
  1019. d__1 = t * apoaq;
  1020. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
  1021. q * a_dim1 + 1], &c__1);
  1022. d__1 = -cs * sn * aqoap;
  1023. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
  1024. p * a_dim1 + 1], &c__1);
  1025. if (rsvec) {
  1026. d__1 = t * apoaq;
  1027. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
  1028. c__1, &v[q * v_dim1 + 1], &c__1);
  1029. d__1 = -cs * sn * aqoap;
  1030. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
  1031. c__1, &v[p * v_dim1 + 1], &c__1);
  1032. }
  1033. d__[p] /= cs;
  1034. d__[q] *= cs;
  1035. } else {
  1036. if (d__[p] >= d__[q]) {
  1037. d__1 = -t * aqoap;
  1038. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1,
  1039. &a[p * a_dim1 + 1], &c__1);
  1040. d__1 = cs * sn * apoaq;
  1041. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1,
  1042. &a[q * a_dim1 + 1], &c__1);
  1043. d__[p] *= cs;
  1044. d__[q] /= cs;
  1045. if (rsvec) {
  1046. d__1 = -t * aqoap;
  1047. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1],
  1048. &c__1, &v[p * v_dim1 + 1], &
  1049. c__1);
  1050. d__1 = cs * sn * apoaq;
  1051. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1],
  1052. &c__1, &v[q * v_dim1 + 1], &
  1053. c__1);
  1054. }
  1055. } else {
  1056. d__1 = t * apoaq;
  1057. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1,
  1058. &a[q * a_dim1 + 1], &c__1);
  1059. d__1 = -cs * sn * aqoap;
  1060. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1,
  1061. &a[p * a_dim1 + 1], &c__1);
  1062. d__[p] /= cs;
  1063. d__[q] *= cs;
  1064. if (rsvec) {
  1065. d__1 = t * apoaq;
  1066. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1],
  1067. &c__1, &v[q * v_dim1 + 1], &
  1068. c__1);
  1069. d__1 = -cs * sn * aqoap;
  1070. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1],
  1071. &c__1, &v[p * v_dim1 + 1], &
  1072. c__1);
  1073. }
  1074. }
  1075. }
  1076. }
  1077. }
  1078. } else {
  1079. if (aapp > aaqq) {
  1080. dcopy_(m, &a[p * a_dim1 + 1], &
  1081. c__1, &work[1], &c__1);
  1082. dlascl_("G", &c__0, &c__0, &aapp,
  1083. &c_b35, m, &c__1, &work[1]
  1084. , lda, &ierr);
  1085. dlascl_("G", &c__0, &c__0, &aaqq,
  1086. &c_b35, m, &c__1, &a[q *
  1087. a_dim1 + 1], lda, &ierr);
  1088. temp1 = -aapq * d__[p] / d__[q];
  1089. daxpy_(m, &temp1, &work[1], &c__1,
  1090. &a[q * a_dim1 + 1], &
  1091. c__1);
  1092. dlascl_("G", &c__0, &c__0, &c_b35,
  1093. &aaqq, m, &c__1, &a[q *
  1094. a_dim1 + 1], lda, &ierr);
  1095. /* Computing MAX */
  1096. d__1 = 0., d__2 = 1. - aapq *
  1097. aapq;
  1098. sva[q] = aaqq * sqrt((f2cmax(d__1,
  1099. d__2)));
  1100. mxsinj = f2cmax(mxsinj,*sfmin);
  1101. } else {
  1102. dcopy_(m, &a[q * a_dim1 + 1], &
  1103. c__1, &work[1], &c__1);
  1104. dlascl_("G", &c__0, &c__0, &aaqq,
  1105. &c_b35, m, &c__1, &work[1]
  1106. , lda, &ierr);
  1107. dlascl_("G", &c__0, &c__0, &aapp,
  1108. &c_b35, m, &c__1, &a[p *
  1109. a_dim1 + 1], lda, &ierr);
  1110. temp1 = -aapq * d__[q] / d__[p];
  1111. daxpy_(m, &temp1, &work[1], &c__1,
  1112. &a[p * a_dim1 + 1], &
  1113. c__1);
  1114. dlascl_("G", &c__0, &c__0, &c_b35,
  1115. &aapp, m, &c__1, &a[p *
  1116. a_dim1 + 1], lda, &ierr);
  1117. /* Computing MAX */
  1118. d__1 = 0., d__2 = 1. - aapq *
  1119. aapq;
  1120. sva[p] = aapp * sqrt((f2cmax(d__1,
  1121. d__2)));
  1122. mxsinj = f2cmax(mxsinj,*sfmin);
  1123. }
  1124. }
  1125. /* END IF ROTOK THEN ... ELSE */
  1126. /* In the case of cancellation in updating SVA(q) */
  1127. /* Computing 2nd power */
  1128. d__1 = sva[q] / aaqq;
  1129. if (d__1 * d__1 <= rooteps) {
  1130. if (aaqq < rootbig && aaqq >
  1131. rootsfmin) {
  1132. sva[q] = dnrm2_(m, &a[q * a_dim1
  1133. + 1], &c__1) * d__[q];
  1134. } else {
  1135. t = 0.;
  1136. aaqq = 1.;
  1137. dlassq_(m, &a[q * a_dim1 + 1], &
  1138. c__1, &t, &aaqq);
  1139. sva[q] = t * sqrt(aaqq) * d__[q];
  1140. }
  1141. }
  1142. /* Computing 2nd power */
  1143. d__1 = aapp / aapp0;
  1144. if (d__1 * d__1 <= rooteps) {
  1145. if (aapp < rootbig && aapp >
  1146. rootsfmin) {
  1147. aapp = dnrm2_(m, &a[p * a_dim1 +
  1148. 1], &c__1) * d__[p];
  1149. } else {
  1150. t = 0.;
  1151. aapp = 1.;
  1152. dlassq_(m, &a[p * a_dim1 + 1], &
  1153. c__1, &t, &aapp);
  1154. aapp = t * sqrt(aapp) * d__[p];
  1155. }
  1156. sva[p] = aapp;
  1157. }
  1158. /* end of OK rotation */
  1159. } else {
  1160. ++notrot;
  1161. /* SKIPPED = SKIPPED + 1 */
  1162. ++pskipped;
  1163. ++ijblsk;
  1164. }
  1165. } else {
  1166. ++notrot;
  1167. ++pskipped;
  1168. ++ijblsk;
  1169. }
  1170. /* IF ( NOTROT .GE. EMPTSW ) GO TO 2011 */
  1171. if (i__ <= swband && ijblsk >= blskip) {
  1172. sva[p] = aapp;
  1173. notrot = 0;
  1174. goto L2011;
  1175. }
  1176. if (i__ <= swband && pskipped > rowskip) {
  1177. aapp = -aapp;
  1178. notrot = 0;
  1179. goto L2203;
  1180. }
  1181. /* L2200: */
  1182. }
  1183. /* end of the q-loop */
  1184. L2203:
  1185. sva[p] = aapp;
  1186. } else {
  1187. if (aapp == 0.) {
  1188. /* Computing MIN */
  1189. i__5 = jgl + kbl - 1;
  1190. notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
  1191. }
  1192. if (aapp < 0.) {
  1193. notrot = 0;
  1194. }
  1195. /* ** IF ( NOTROT .GE. EMPTSW ) GO TO 2011 */
  1196. }
  1197. /* L2100: */
  1198. }
  1199. /* end of the p-loop */
  1200. /* L2010: */
  1201. }
  1202. /* end of the jbc-loop */
  1203. L2011:
  1204. /* 2011 bailed out of the jbc-loop */
  1205. /* Computing MIN */
  1206. i__4 = igl + kbl - 1;
  1207. i__3 = f2cmin(i__4,*n);
  1208. for (p = igl; p <= i__3; ++p) {
  1209. sva[p] = (d__1 = sva[p], abs(d__1));
  1210. /* L2012: */
  1211. }
  1212. /* ** IF ( NOTROT .GE. EMPTSW ) GO TO 1994 */
  1213. /* L2000: */
  1214. }
  1215. /* 2000 :: end of the ibr-loop */
  1216. if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
  1217. sva[*n] = dnrm2_(m, &a[*n * a_dim1 + 1], &c__1) * d__[*n];
  1218. } else {
  1219. t = 0.;
  1220. aapp = 1.;
  1221. dlassq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
  1222. sva[*n] = t * sqrt(aapp) * d__[*n];
  1223. }
  1224. /* Additional steering devices */
  1225. if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
  1226. swband = i__;
  1227. }
  1228. if (i__ > swband + 1 && mxaapq < (doublereal) (*n) * *tol && (
  1229. doublereal) (*n) * mxaapq * mxsinj < *tol) {
  1230. goto L1994;
  1231. }
  1232. if (notrot >= emptsw) {
  1233. goto L1994;
  1234. }
  1235. /* L1993: */
  1236. }
  1237. /* end i=1:NSWEEP loop */
  1238. /* #:) Reaching this point means that the procedure has completed the given */
  1239. /* number of sweeps. */
  1240. *info = *nsweep - 1;
  1241. goto L1995;
  1242. L1994:
  1243. /* #:) Reaching this point means that during the i-th sweep all pivots were */
  1244. /* below the given threshold, causing early exit. */
  1245. *info = 0;
  1246. /* #:) INFO = 0 confirms successful iterations. */
  1247. L1995:
  1248. /* Sort the vector D */
  1249. i__1 = *n - 1;
  1250. for (p = 1; p <= i__1; ++p) {
  1251. i__2 = *n - p + 1;
  1252. q = idamax_(&i__2, &sva[p], &c__1) + p - 1;
  1253. if (p != q) {
  1254. temp1 = sva[p];
  1255. sva[p] = sva[q];
  1256. sva[q] = temp1;
  1257. temp1 = d__[p];
  1258. d__[p] = d__[q];
  1259. d__[q] = temp1;
  1260. dswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
  1261. if (rsvec) {
  1262. dswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
  1263. c__1);
  1264. }
  1265. }
  1266. /* L5991: */
  1267. }
  1268. return;
  1269. } /* dgsvj1_ */