You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgeevx.c 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__0 = 0;
  486. static integer c_n1 = -1;
  487. /* > \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  488. rices</b> */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DGEEVX + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeevx.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeevx.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeevx.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI, */
  507. /* VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, */
  508. /* RCONDE, RCONDV, WORK, LWORK, IWORK, INFO ) */
  509. /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
  510. /* INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N */
  511. /* DOUBLE PRECISION ABNRM */
  512. /* INTEGER IWORK( * ) */
  513. /* DOUBLE PRECISION A( LDA, * ), RCONDE( * ), RCONDV( * ), */
  514. /* $ SCALE( * ), VL( LDVL, * ), VR( LDVR, * ), */
  515. /* $ WI( * ), WORK( * ), WR( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > DGEEVX computes for an N-by-N real nonsymmetric matrix A, the */
  522. /* > eigenvalues and, optionally, the left and/or right eigenvectors. */
  523. /* > */
  524. /* > Optionally also, it computes a balancing transformation to improve */
  525. /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
  526. /* > SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
  527. /* > (RCONDE), and reciprocal condition numbers for the right */
  528. /* > eigenvectors (RCONDV). */
  529. /* > */
  530. /* > The right eigenvector v(j) of A satisfies */
  531. /* > A * v(j) = lambda(j) * v(j) */
  532. /* > where lambda(j) is its eigenvalue. */
  533. /* > The left eigenvector u(j) of A satisfies */
  534. /* > u(j)**H * A = lambda(j) * u(j)**H */
  535. /* > where u(j)**H denotes the conjugate-transpose of u(j). */
  536. /* > */
  537. /* > The computed eigenvectors are normalized to have Euclidean norm */
  538. /* > equal to 1 and largest component real. */
  539. /* > */
  540. /* > Balancing a matrix means permuting the rows and columns to make it */
  541. /* > more nearly upper triangular, and applying a diagonal similarity */
  542. /* > transformation D * A * D**(-1), where D is a diagonal matrix, to */
  543. /* > make its rows and columns closer in norm and the condition numbers */
  544. /* > of its eigenvalues and eigenvectors smaller. The computed */
  545. /* > reciprocal condition numbers correspond to the balanced matrix. */
  546. /* > Permuting rows and columns will not change the condition numbers */
  547. /* > (in exact arithmetic) but diagonal scaling will. For further */
  548. /* > explanation of balancing, see section 4.10.2 of the LAPACK */
  549. /* > Users' Guide. */
  550. /* > \endverbatim */
  551. /* Arguments: */
  552. /* ========== */
  553. /* > \param[in] BALANC */
  554. /* > \verbatim */
  555. /* > BALANC is CHARACTER*1 */
  556. /* > Indicates how the input matrix should be diagonally scaled */
  557. /* > and/or permuted to improve the conditioning of its */
  558. /* > eigenvalues. */
  559. /* > = 'N': Do not diagonally scale or permute; */
  560. /* > = 'P': Perform permutations to make the matrix more nearly */
  561. /* > upper triangular. Do not diagonally scale; */
  562. /* > = 'S': Diagonally scale the matrix, i.e. replace A by */
  563. /* > D*A*D**(-1), where D is a diagonal matrix chosen */
  564. /* > to make the rows and columns of A more equal in */
  565. /* > norm. Do not permute; */
  566. /* > = 'B': Both diagonally scale and permute A. */
  567. /* > */
  568. /* > Computed reciprocal condition numbers will be for the matrix */
  569. /* > after balancing and/or permuting. Permuting does not change */
  570. /* > condition numbers (in exact arithmetic), but balancing does. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] JOBVL */
  574. /* > \verbatim */
  575. /* > JOBVL is CHARACTER*1 */
  576. /* > = 'N': left eigenvectors of A are not computed; */
  577. /* > = 'V': left eigenvectors of A are computed. */
  578. /* > If SENSE = 'E' or 'B', JOBVL must = 'V'. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] JOBVR */
  582. /* > \verbatim */
  583. /* > JOBVR is CHARACTER*1 */
  584. /* > = 'N': right eigenvectors of A are not computed; */
  585. /* > = 'V': right eigenvectors of A are computed. */
  586. /* > If SENSE = 'E' or 'B', JOBVR must = 'V'. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] SENSE */
  590. /* > \verbatim */
  591. /* > SENSE is CHARACTER*1 */
  592. /* > Determines which reciprocal condition numbers are computed. */
  593. /* > = 'N': None are computed; */
  594. /* > = 'E': Computed for eigenvalues only; */
  595. /* > = 'V': Computed for right eigenvectors only; */
  596. /* > = 'B': Computed for eigenvalues and right eigenvectors. */
  597. /* > */
  598. /* > If SENSE = 'E' or 'B', both left and right eigenvectors */
  599. /* > must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] N */
  603. /* > \verbatim */
  604. /* > N is INTEGER */
  605. /* > The order of the matrix A. N >= 0. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in,out] A */
  609. /* > \verbatim */
  610. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  611. /* > On entry, the N-by-N matrix A. */
  612. /* > On exit, A has been overwritten. If JOBVL = 'V' or */
  613. /* > JOBVR = 'V', A contains the real Schur form of the balanced */
  614. /* > version of the input matrix A. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDA */
  618. /* > \verbatim */
  619. /* > LDA is INTEGER */
  620. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] WR */
  624. /* > \verbatim */
  625. /* > WR is DOUBLE PRECISION array, dimension (N) */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] WI */
  629. /* > \verbatim */
  630. /* > WI is DOUBLE PRECISION array, dimension (N) */
  631. /* > WR and WI contain the real and imaginary parts, */
  632. /* > respectively, of the computed eigenvalues. Complex */
  633. /* > conjugate pairs of eigenvalues will appear consecutively */
  634. /* > with the eigenvalue having the positive imaginary part */
  635. /* > first. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[out] VL */
  639. /* > \verbatim */
  640. /* > VL is DOUBLE PRECISION array, dimension (LDVL,N) */
  641. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  642. /* > after another in the columns of VL, in the same order */
  643. /* > as their eigenvalues. */
  644. /* > If JOBVL = 'N', VL is not referenced. */
  645. /* > If the j-th eigenvalue is real, then u(j) = VL(:,j), */
  646. /* > the j-th column of VL. */
  647. /* > If the j-th and (j+1)-st eigenvalues form a complex */
  648. /* > conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
  649. /* > u(j+1) = VL(:,j) - i*VL(:,j+1). */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LDVL */
  653. /* > \verbatim */
  654. /* > LDVL is INTEGER */
  655. /* > The leading dimension of the array VL. LDVL >= 1; if */
  656. /* > JOBVL = 'V', LDVL >= N. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[out] VR */
  660. /* > \verbatim */
  661. /* > VR is DOUBLE PRECISION array, dimension (LDVR,N) */
  662. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  663. /* > after another in the columns of VR, in the same order */
  664. /* > as their eigenvalues. */
  665. /* > If JOBVR = 'N', VR is not referenced. */
  666. /* > If the j-th eigenvalue is real, then v(j) = VR(:,j), */
  667. /* > the j-th column of VR. */
  668. /* > If the j-th and (j+1)-st eigenvalues form a complex */
  669. /* > conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
  670. /* > v(j+1) = VR(:,j) - i*VR(:,j+1). */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] LDVR */
  674. /* > \verbatim */
  675. /* > LDVR is INTEGER */
  676. /* > The leading dimension of the array VR. LDVR >= 1, and if */
  677. /* > JOBVR = 'V', LDVR >= N. */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[out] ILO */
  681. /* > \verbatim */
  682. /* > ILO is INTEGER */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] IHI */
  686. /* > \verbatim */
  687. /* > IHI is INTEGER */
  688. /* > ILO and IHI are integer values determined when A was */
  689. /* > balanced. The balanced A(i,j) = 0 if I > J and */
  690. /* > J = 1,...,ILO-1 or I = IHI+1,...,N. */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[out] SCALE */
  694. /* > \verbatim */
  695. /* > SCALE is DOUBLE PRECISION array, dimension (N) */
  696. /* > Details of the permutations and scaling factors applied */
  697. /* > when balancing A. If P(j) is the index of the row and column */
  698. /* > interchanged with row and column j, and D(j) is the scaling */
  699. /* > factor applied to row and column j, then */
  700. /* > SCALE(J) = P(J), for J = 1,...,ILO-1 */
  701. /* > = D(J), for J = ILO,...,IHI */
  702. /* > = P(J) for J = IHI+1,...,N. */
  703. /* > The order in which the interchanges are made is N to IHI+1, */
  704. /* > then 1 to ILO-1. */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[out] ABNRM */
  708. /* > \verbatim */
  709. /* > ABNRM is DOUBLE PRECISION */
  710. /* > The one-norm of the balanced matrix (the maximum */
  711. /* > of the sum of absolute values of elements of any column). */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[out] RCONDE */
  715. /* > \verbatim */
  716. /* > RCONDE is DOUBLE PRECISION array, dimension (N) */
  717. /* > RCONDE(j) is the reciprocal condition number of the j-th */
  718. /* > eigenvalue. */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[out] RCONDV */
  722. /* > \verbatim */
  723. /* > RCONDV is DOUBLE PRECISION array, dimension (N) */
  724. /* > RCONDV(j) is the reciprocal condition number of the j-th */
  725. /* > right eigenvector. */
  726. /* > \endverbatim */
  727. /* > */
  728. /* > \param[out] WORK */
  729. /* > \verbatim */
  730. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  731. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  732. /* > \endverbatim */
  733. /* > */
  734. /* > \param[in] LWORK */
  735. /* > \verbatim */
  736. /* > LWORK is INTEGER */
  737. /* > The dimension of the array WORK. If SENSE = 'N' or 'E', */
  738. /* > LWORK >= f2cmax(1,2*N), and if JOBVL = 'V' or JOBVR = 'V', */
  739. /* > LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6). */
  740. /* > For good performance, LWORK must generally be larger. */
  741. /* > */
  742. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  743. /* > only calculates the optimal size of the WORK array, returns */
  744. /* > this value as the first entry of the WORK array, and no error */
  745. /* > message related to LWORK is issued by XERBLA. */
  746. /* > \endverbatim */
  747. /* > */
  748. /* > \param[out] IWORK */
  749. /* > \verbatim */
  750. /* > IWORK is INTEGER array, dimension (2*N-2) */
  751. /* > If SENSE = 'N' or 'E', not referenced. */
  752. /* > \endverbatim */
  753. /* > */
  754. /* > \param[out] INFO */
  755. /* > \verbatim */
  756. /* > INFO is INTEGER */
  757. /* > = 0: successful exit */
  758. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  759. /* > > 0: if INFO = i, the QR algorithm failed to compute all the */
  760. /* > eigenvalues, and no eigenvectors or condition numbers */
  761. /* > have been computed; elements 1:ILO-1 and i+1:N of WR */
  762. /* > and WI contain eigenvalues which have converged. */
  763. /* > \endverbatim */
  764. /* Authors: */
  765. /* ======== */
  766. /* > \author Univ. of Tennessee */
  767. /* > \author Univ. of California Berkeley */
  768. /* > \author Univ. of Colorado Denver */
  769. /* > \author NAG Ltd. */
  770. /* > \date June 2016 */
  771. /* @precisions fortran d -> s */
  772. /* > \ingroup doubleGEeigen */
  773. /* ===================================================================== */
  774. /* Subroutine */ void dgeevx_(char *balanc, char *jobvl, char *jobvr, char *
  775. sense, integer *n, doublereal *a, integer *lda, doublereal *wr,
  776. doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr,
  777. integer *ldvr, integer *ilo, integer *ihi, doublereal *scale,
  778. doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublereal
  779. *work, integer *lwork, integer *iwork, integer *info)
  780. {
  781. /* System generated locals */
  782. integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  783. i__2, i__3;
  784. doublereal d__1, d__2;
  785. /* Local variables */
  786. char side[1];
  787. doublereal anrm;
  788. integer ierr, itau;
  789. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  790. doublereal *, integer *, doublereal *, doublereal *);
  791. integer iwrk, nout;
  792. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  793. integer i__, k;
  794. doublereal r__;
  795. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  796. integer *);
  797. integer icond;
  798. extern logical lsame_(char *, char *);
  799. extern doublereal dlapy2_(doublereal *, doublereal *);
  800. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *), dgebak_(
  801. char *, char *, integer *, integer *, integer *, doublereal *,
  802. integer *, doublereal *, integer *, integer *),
  803. dgebal_(char *, integer *, doublereal *, integer *, integer *,
  804. integer *, doublereal *, integer *);
  805. doublereal cs;
  806. logical scalea;
  807. extern doublereal dlamch_(char *);
  808. doublereal cscale;
  809. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  810. integer *, doublereal *);
  811. extern /* Subroutine */ void dgehrd_(integer *, integer *, integer *,
  812. doublereal *, integer *, doublereal *, doublereal *, integer *,
  813. integer *);
  814. doublereal sn;
  815. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  816. doublereal *, doublereal *, integer *, integer *, doublereal *,
  817. integer *, integer *);
  818. extern integer idamax_(integer *, doublereal *, integer *);
  819. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  820. doublereal *, integer *, doublereal *, integer *),
  821. dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  822. doublereal *);
  823. extern int xerbla_(char *, integer *, ftnlen);
  824. logical select[1];
  825. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  826. integer *, integer *, ftnlen, ftnlen);
  827. doublereal bignum;
  828. extern /* Subroutine */ void dorghr_(integer *, integer *, integer *,
  829. doublereal *, integer *, doublereal *, doublereal *, integer *,
  830. integer *), dhseqr_(char *, char *, integer *, integer *, integer
  831. *, doublereal *, integer *, doublereal *, doublereal *,
  832. doublereal *, integer *, doublereal *, integer *, integer *), dtrsna_(char *, char *, logical *, integer *,
  833. doublereal *, integer *, doublereal *, integer *, doublereal *,
  834. integer *, doublereal *, doublereal *, integer *, integer *,
  835. doublereal *, integer *, integer *, integer *);
  836. integer minwrk, maxwrk;
  837. logical wantvl, wntsnb;
  838. integer hswork;
  839. logical wntsne;
  840. doublereal smlnum;
  841. logical lquery, wantvr, wntsnn, wntsnv;
  842. extern /* Subroutine */ void dtrevc3_(char *, char *, logical *, integer *,
  843. doublereal *, integer *, doublereal *, integer *, doublereal *,
  844. integer *, integer *, integer *, doublereal *, integer *, integer
  845. *);
  846. char job[1];
  847. doublereal scl, dum[1], eps;
  848. integer lwork_trevc__;
  849. /* -- LAPACK driver routine (version 3.7.0) -- */
  850. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  851. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  852. /* June 2016 */
  853. /* ===================================================================== */
  854. /* Test the input arguments */
  855. /* Parameter adjustments */
  856. a_dim1 = *lda;
  857. a_offset = 1 + a_dim1 * 1;
  858. a -= a_offset;
  859. --wr;
  860. --wi;
  861. vl_dim1 = *ldvl;
  862. vl_offset = 1 + vl_dim1 * 1;
  863. vl -= vl_offset;
  864. vr_dim1 = *ldvr;
  865. vr_offset = 1 + vr_dim1 * 1;
  866. vr -= vr_offset;
  867. --scale;
  868. --rconde;
  869. --rcondv;
  870. --work;
  871. --iwork;
  872. /* Function Body */
  873. *info = 0;
  874. lquery = *lwork == -1;
  875. wantvl = lsame_(jobvl, "V");
  876. wantvr = lsame_(jobvr, "V");
  877. wntsnn = lsame_(sense, "N");
  878. wntsne = lsame_(sense, "E");
  879. wntsnv = lsame_(sense, "V");
  880. wntsnb = lsame_(sense, "B");
  881. if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
  882. || lsame_(balanc, "B"))) {
  883. *info = -1;
  884. } else if (! wantvl && ! lsame_(jobvl, "N")) {
  885. *info = -2;
  886. } else if (! wantvr && ! lsame_(jobvr, "N")) {
  887. *info = -3;
  888. } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
  889. && ! (wantvl && wantvr)) {
  890. *info = -4;
  891. } else if (*n < 0) {
  892. *info = -5;
  893. } else if (*lda < f2cmax(1,*n)) {
  894. *info = -7;
  895. } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
  896. *info = -11;
  897. } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
  898. *info = -13;
  899. }
  900. /* Compute workspace */
  901. /* (Note: Comments in the code beginning "Workspace:" describe the */
  902. /* minimal amount of workspace needed at that point in the code, */
  903. /* as well as the preferred amount for good performance. */
  904. /* NB refers to the optimal block size for the immediately */
  905. /* following subroutine, as returned by ILAENV. */
  906. /* HSWORK refers to the workspace preferred by DHSEQR, as */
  907. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  908. /* the worst case.) */
  909. if (*info == 0) {
  910. if (*n == 0) {
  911. minwrk = 1;
  912. maxwrk = 1;
  913. } else {
  914. maxwrk = *n + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1, n, &
  915. c__0, (ftnlen)6, (ftnlen)1);
  916. if (wantvl) {
  917. dtrevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
  918. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  919. work[1], &c_n1, &ierr);
  920. lwork_trevc__ = (integer) work[1];
  921. /* Computing MAX */
  922. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  923. maxwrk = f2cmax(i__1,i__2);
  924. dhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  925. 1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
  926. } else if (wantvr) {
  927. dtrevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
  928. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  929. work[1], &c_n1, &ierr);
  930. lwork_trevc__ = (integer) work[1];
  931. /* Computing MAX */
  932. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  933. maxwrk = f2cmax(i__1,i__2);
  934. dhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  935. 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
  936. } else {
  937. if (wntsnn) {
  938. dhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1],
  939. &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1,
  940. info);
  941. } else {
  942. dhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1],
  943. &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1,
  944. info);
  945. }
  946. }
  947. hswork = (integer) work[1];
  948. if (! wantvl && ! wantvr) {
  949. minwrk = *n << 1;
  950. if (! wntsnn) {
  951. /* Computing MAX */
  952. i__1 = minwrk, i__2 = *n * *n + *n * 6;
  953. minwrk = f2cmax(i__1,i__2);
  954. }
  955. maxwrk = f2cmax(maxwrk,hswork);
  956. if (! wntsnn) {
  957. /* Computing MAX */
  958. i__1 = maxwrk, i__2 = *n * *n + *n * 6;
  959. maxwrk = f2cmax(i__1,i__2);
  960. }
  961. } else {
  962. minwrk = *n * 3;
  963. if (! wntsnn && ! wntsne) {
  964. /* Computing MAX */
  965. i__1 = minwrk, i__2 = *n * *n + *n * 6;
  966. minwrk = f2cmax(i__1,i__2);
  967. }
  968. maxwrk = f2cmax(maxwrk,hswork);
  969. /* Computing MAX */
  970. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "DORGHR",
  971. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  972. maxwrk = f2cmax(i__1,i__2);
  973. if (! wntsnn && ! wntsne) {
  974. /* Computing MAX */
  975. i__1 = maxwrk, i__2 = *n * *n + *n * 6;
  976. maxwrk = f2cmax(i__1,i__2);
  977. }
  978. /* Computing MAX */
  979. i__1 = maxwrk, i__2 = *n * 3;
  980. maxwrk = f2cmax(i__1,i__2);
  981. }
  982. maxwrk = f2cmax(maxwrk,minwrk);
  983. }
  984. work[1] = (doublereal) maxwrk;
  985. if (*lwork < minwrk && ! lquery) {
  986. *info = -21;
  987. }
  988. }
  989. if (*info != 0) {
  990. i__1 = -(*info);
  991. xerbla_("DGEEVX", &i__1, (ftnlen)6);
  992. return;
  993. } else if (lquery) {
  994. return;
  995. }
  996. /* Quick return if possible */
  997. if (*n == 0) {
  998. return;
  999. }
  1000. /* Get machine constants */
  1001. eps = dlamch_("P");
  1002. smlnum = dlamch_("S");
  1003. bignum = 1. / smlnum;
  1004. dlabad_(&smlnum, &bignum);
  1005. smlnum = sqrt(smlnum) / eps;
  1006. bignum = 1. / smlnum;
  1007. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1008. icond = 0;
  1009. anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
  1010. scalea = FALSE_;
  1011. if (anrm > 0. && anrm < smlnum) {
  1012. scalea = TRUE_;
  1013. cscale = smlnum;
  1014. } else if (anrm > bignum) {
  1015. scalea = TRUE_;
  1016. cscale = bignum;
  1017. }
  1018. if (scalea) {
  1019. dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  1020. ierr);
  1021. }
  1022. /* Balance the matrix and compute ABNRM */
  1023. dgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
  1024. *abnrm = dlange_("1", n, n, &a[a_offset], lda, dum);
  1025. if (scalea) {
  1026. dum[0] = *abnrm;
  1027. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
  1028. ierr);
  1029. *abnrm = dum[0];
  1030. }
  1031. /* Reduce to upper Hessenberg form */
  1032. /* (Workspace: need 2*N, prefer N+N*NB) */
  1033. itau = 1;
  1034. iwrk = itau + *n;
  1035. i__1 = *lwork - iwrk + 1;
  1036. dgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
  1037. ierr);
  1038. if (wantvl) {
  1039. /* Want left eigenvectors */
  1040. /* Copy Householder vectors to VL */
  1041. *(unsigned char *)side = 'L';
  1042. dlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
  1043. ;
  1044. /* Generate orthogonal matrix in VL */
  1045. /* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
  1046. i__1 = *lwork - iwrk + 1;
  1047. dorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
  1048. i__1, &ierr);
  1049. /* Perform QR iteration, accumulating Schur vectors in VL */
  1050. /* (Workspace: need 1, prefer HSWORK (see comments) ) */
  1051. iwrk = itau;
  1052. i__1 = *lwork - iwrk + 1;
  1053. dhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[
  1054. vl_offset], ldvl, &work[iwrk], &i__1, info);
  1055. if (wantvr) {
  1056. /* Want left and right eigenvectors */
  1057. /* Copy Schur vectors to VR */
  1058. *(unsigned char *)side = 'B';
  1059. dlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
  1060. }
  1061. } else if (wantvr) {
  1062. /* Want right eigenvectors */
  1063. /* Copy Householder vectors to VR */
  1064. *(unsigned char *)side = 'R';
  1065. dlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
  1066. ;
  1067. /* Generate orthogonal matrix in VR */
  1068. /* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
  1069. i__1 = *lwork - iwrk + 1;
  1070. dorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
  1071. i__1, &ierr);
  1072. /* Perform QR iteration, accumulating Schur vectors in VR */
  1073. /* (Workspace: need 1, prefer HSWORK (see comments) ) */
  1074. iwrk = itau;
  1075. i__1 = *lwork - iwrk + 1;
  1076. dhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
  1077. vr_offset], ldvr, &work[iwrk], &i__1, info);
  1078. } else {
  1079. /* Compute eigenvalues only */
  1080. /* If condition numbers desired, compute Schur form */
  1081. if (wntsnn) {
  1082. *(unsigned char *)job = 'E';
  1083. } else {
  1084. *(unsigned char *)job = 'S';
  1085. }
  1086. /* (Workspace: need 1, prefer HSWORK (see comments) ) */
  1087. iwrk = itau;
  1088. i__1 = *lwork - iwrk + 1;
  1089. dhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
  1090. vr_offset], ldvr, &work[iwrk], &i__1, info);
  1091. }
  1092. /* If INFO .NE. 0 from DHSEQR, then quit */
  1093. if (*info != 0) {
  1094. goto L50;
  1095. }
  1096. if (wantvl || wantvr) {
  1097. /* Compute left and/or right eigenvectors */
  1098. /* (Workspace: need 3*N, prefer N + 2*N*NB) */
  1099. i__1 = *lwork - iwrk + 1;
  1100. dtrevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset],
  1101. ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
  1102. ierr);
  1103. }
  1104. /* Compute condition numbers if desired */
  1105. /* (Workspace: need N*N+6*N unless SENSE = 'E') */
  1106. if (! wntsnn) {
  1107. dtrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset],
  1108. ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout,
  1109. &work[iwrk], n, &iwork[1], &icond);
  1110. }
  1111. if (wantvl) {
  1112. /* Undo balancing of left eigenvectors */
  1113. dgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl,
  1114. &ierr);
  1115. /* Normalize left eigenvectors and make largest component real */
  1116. i__1 = *n;
  1117. for (i__ = 1; i__ <= i__1; ++i__) {
  1118. if (wi[i__] == 0.) {
  1119. scl = 1. / dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  1120. dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  1121. } else if (wi[i__] > 0.) {
  1122. d__1 = dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  1123. d__2 = dnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
  1124. scl = 1. / dlapy2_(&d__1, &d__2);
  1125. dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  1126. dscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
  1127. i__2 = *n;
  1128. for (k = 1; k <= i__2; ++k) {
  1129. /* Computing 2nd power */
  1130. d__1 = vl[k + i__ * vl_dim1];
  1131. /* Computing 2nd power */
  1132. d__2 = vl[k + (i__ + 1) * vl_dim1];
  1133. work[k] = d__1 * d__1 + d__2 * d__2;
  1134. /* L10: */
  1135. }
  1136. k = idamax_(n, &work[1], &c__1);
  1137. dlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
  1138. &cs, &sn, &r__);
  1139. drot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
  1140. vl_dim1 + 1], &c__1, &cs, &sn);
  1141. vl[k + (i__ + 1) * vl_dim1] = 0.;
  1142. }
  1143. /* L20: */
  1144. }
  1145. }
  1146. if (wantvr) {
  1147. /* Undo balancing of right eigenvectors */
  1148. dgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr,
  1149. &ierr);
  1150. /* Normalize right eigenvectors and make largest component real */
  1151. i__1 = *n;
  1152. for (i__ = 1; i__ <= i__1; ++i__) {
  1153. if (wi[i__] == 0.) {
  1154. scl = 1. / dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  1155. dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  1156. } else if (wi[i__] > 0.) {
  1157. d__1 = dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  1158. d__2 = dnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
  1159. scl = 1. / dlapy2_(&d__1, &d__2);
  1160. dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  1161. dscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
  1162. i__2 = *n;
  1163. for (k = 1; k <= i__2; ++k) {
  1164. /* Computing 2nd power */
  1165. d__1 = vr[k + i__ * vr_dim1];
  1166. /* Computing 2nd power */
  1167. d__2 = vr[k + (i__ + 1) * vr_dim1];
  1168. work[k] = d__1 * d__1 + d__2 * d__2;
  1169. /* L30: */
  1170. }
  1171. k = idamax_(n, &work[1], &c__1);
  1172. dlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
  1173. &cs, &sn, &r__);
  1174. drot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
  1175. vr_dim1 + 1], &c__1, &cs, &sn);
  1176. vr[k + (i__ + 1) * vr_dim1] = 0.;
  1177. }
  1178. /* L40: */
  1179. }
  1180. }
  1181. /* Undo scaling if necessary */
  1182. L50:
  1183. if (scalea) {
  1184. i__1 = *n - *info;
  1185. /* Computing MAX */
  1186. i__3 = *n - *info;
  1187. i__2 = f2cmax(i__3,1);
  1188. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
  1189. 1], &i__2, &ierr);
  1190. i__1 = *n - *info;
  1191. /* Computing MAX */
  1192. i__3 = *n - *info;
  1193. i__2 = f2cmax(i__3,1);
  1194. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
  1195. 1], &i__2, &ierr);
  1196. if (*info == 0) {
  1197. if ((wntsnv || wntsnb) && icond == 0) {
  1198. dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
  1199. 1], n, &ierr);
  1200. }
  1201. } else {
  1202. i__1 = *ilo - 1;
  1203. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
  1204. n, &ierr);
  1205. i__1 = *ilo - 1;
  1206. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
  1207. n, &ierr);
  1208. }
  1209. }
  1210. work[1] = (doublereal) maxwrk;
  1211. return;
  1212. /* End of DGEEVX */
  1213. } /* dgeevx_ */