You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctprfb.c 48 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {1.f,0.f};
  485. static complex c_b2 = {0.f,0.f};
  486. /* > \brief \b CTPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex
  487. matrix, which is composed of two blocks. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download CTPRFB + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctprfb.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctprfb.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctprfb.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE CTPRFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, */
  506. /* V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK ) */
  507. /* CHARACTER DIRECT, SIDE, STOREV, TRANS */
  508. /* INTEGER K, L, LDA, LDB, LDT, LDV, LDWORK, M, N */
  509. /* COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), */
  510. /* $ V( LDV, * ), WORK( LDWORK, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > CTPRFB applies a complex "triangular-pentagonal" block reflector H or its */
  517. /* > conjugate transpose H**H to a complex matrix C, which is composed of two */
  518. /* > blocks A and B, either from the left or right. */
  519. /* > */
  520. /* > \endverbatim */
  521. /* Arguments: */
  522. /* ========== */
  523. /* > \param[in] SIDE */
  524. /* > \verbatim */
  525. /* > SIDE is CHARACTER*1 */
  526. /* > = 'L': apply H or H**H from the Left */
  527. /* > = 'R': apply H or H**H from the Right */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] TRANS */
  531. /* > \verbatim */
  532. /* > TRANS is CHARACTER*1 */
  533. /* > = 'N': apply H (No transpose) */
  534. /* > = 'C': apply H**H (Conjugate transpose) */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] DIRECT */
  538. /* > \verbatim */
  539. /* > DIRECT is CHARACTER*1 */
  540. /* > Indicates how H is formed from a product of elementary */
  541. /* > reflectors */
  542. /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */
  543. /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] STOREV */
  547. /* > \verbatim */
  548. /* > STOREV is CHARACTER*1 */
  549. /* > Indicates how the vectors which define the elementary */
  550. /* > reflectors are stored: */
  551. /* > = 'C': Columns */
  552. /* > = 'R': Rows */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] M */
  556. /* > \verbatim */
  557. /* > M is INTEGER */
  558. /* > The number of rows of the matrix B. */
  559. /* > M >= 0. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] N */
  563. /* > \verbatim */
  564. /* > N is INTEGER */
  565. /* > The number of columns of the matrix B. */
  566. /* > N >= 0. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] K */
  570. /* > \verbatim */
  571. /* > K is INTEGER */
  572. /* > The order of the matrix T, i.e. the number of elementary */
  573. /* > reflectors whose product defines the block reflector. */
  574. /* > K >= 0. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] L */
  578. /* > \verbatim */
  579. /* > L is INTEGER */
  580. /* > The order of the trapezoidal part of V. */
  581. /* > K >= L >= 0. See Further Details. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] V */
  585. /* > \verbatim */
  586. /* > V is COMPLEX array, dimension */
  587. /* > (LDV,K) if STOREV = 'C' */
  588. /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */
  589. /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */
  590. /* > The pentagonal matrix V, which contains the elementary reflectors */
  591. /* > H(1), H(2), ..., H(K). See Further Details. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDV */
  595. /* > \verbatim */
  596. /* > LDV is INTEGER */
  597. /* > The leading dimension of the array V. */
  598. /* > If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */
  599. /* > if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */
  600. /* > if STOREV = 'R', LDV >= K. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] T */
  604. /* > \verbatim */
  605. /* > T is COMPLEX array, dimension (LDT,K) */
  606. /* > The triangular K-by-K matrix T in the representation of the */
  607. /* > block reflector. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LDT */
  611. /* > \verbatim */
  612. /* > LDT is INTEGER */
  613. /* > The leading dimension of the array T. */
  614. /* > LDT >= K. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in,out] A */
  618. /* > \verbatim */
  619. /* > A is COMPLEX array, dimension */
  620. /* > (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R' */
  621. /* > On entry, the K-by-N or M-by-K matrix A. */
  622. /* > On exit, A is overwritten by the corresponding block of */
  623. /* > H*C or H**H*C or C*H or C*H**H. See Further Details. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] LDA */
  627. /* > \verbatim */
  628. /* > LDA is INTEGER */
  629. /* > The leading dimension of the array A. */
  630. /* > If SIDE = 'L', LDA >= f2cmax(1,K); */
  631. /* > If SIDE = 'R', LDA >= f2cmax(1,M). */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in,out] B */
  635. /* > \verbatim */
  636. /* > B is COMPLEX array, dimension (LDB,N) */
  637. /* > On entry, the M-by-N matrix B. */
  638. /* > On exit, B is overwritten by the corresponding block of */
  639. /* > H*C or H**H*C or C*H or C*H**H. See Further Details. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] LDB */
  643. /* > \verbatim */
  644. /* > LDB is INTEGER */
  645. /* > The leading dimension of the array B. */
  646. /* > LDB >= f2cmax(1,M). */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] WORK */
  650. /* > \verbatim */
  651. /* > WORK is COMPLEX array, dimension */
  652. /* > (LDWORK,N) if SIDE = 'L', */
  653. /* > (LDWORK,K) if SIDE = 'R'. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[in] LDWORK */
  657. /* > \verbatim */
  658. /* > LDWORK is INTEGER */
  659. /* > The leading dimension of the array WORK. */
  660. /* > If SIDE = 'L', LDWORK >= K; */
  661. /* > if SIDE = 'R', LDWORK >= M. */
  662. /* > \endverbatim */
  663. /* Authors: */
  664. /* ======== */
  665. /* > \author Univ. of Tennessee */
  666. /* > \author Univ. of California Berkeley */
  667. /* > \author Univ. of Colorado Denver */
  668. /* > \author NAG Ltd. */
  669. /* > \date December 2016 */
  670. /* > \ingroup complexOTHERauxiliary */
  671. /* > \par Further Details: */
  672. /* ===================== */
  673. /* > */
  674. /* > \verbatim */
  675. /* > */
  676. /* > The matrix C is a composite matrix formed from blocks A and B. */
  677. /* > The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K, */
  678. /* > and if SIDE = 'L', A is of size K-by-N. */
  679. /* > */
  680. /* > If SIDE = 'R' and DIRECT = 'F', C = [A B]. */
  681. /* > */
  682. /* > If SIDE = 'L' and DIRECT = 'F', C = [A] */
  683. /* > [B]. */
  684. /* > */
  685. /* > If SIDE = 'R' and DIRECT = 'B', C = [B A]. */
  686. /* > */
  687. /* > If SIDE = 'L' and DIRECT = 'B', C = [B] */
  688. /* > [A]. */
  689. /* > */
  690. /* > The pentagonal matrix V is composed of a rectangular block V1 and a */
  691. /* > trapezoidal block V2. The size of the trapezoidal block is determined by */
  692. /* > the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular; */
  693. /* > if L=0, there is no trapezoidal block, thus V = V1 is rectangular. */
  694. /* > */
  695. /* > If DIRECT = 'F' and STOREV = 'C': V = [V1] */
  696. /* > [V2] */
  697. /* > - V2 is upper trapezoidal (first L rows of K-by-K upper triangular) */
  698. /* > */
  699. /* > If DIRECT = 'F' and STOREV = 'R': V = [V1 V2] */
  700. /* > */
  701. /* > - V2 is lower trapezoidal (first L columns of K-by-K lower triangular) */
  702. /* > */
  703. /* > If DIRECT = 'B' and STOREV = 'C': V = [V2] */
  704. /* > [V1] */
  705. /* > - V2 is lower trapezoidal (last L rows of K-by-K lower triangular) */
  706. /* > */
  707. /* > If DIRECT = 'B' and STOREV = 'R': V = [V2 V1] */
  708. /* > */
  709. /* > - V2 is upper trapezoidal (last L columns of K-by-K upper triangular) */
  710. /* > */
  711. /* > If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K. */
  712. /* > */
  713. /* > If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K. */
  714. /* > */
  715. /* > If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L. */
  716. /* > */
  717. /* > If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L. */
  718. /* > \endverbatim */
  719. /* > */
  720. /* ===================================================================== */
  721. /* Subroutine */ void ctprfb_(char *side, char *trans, char *direct, char *
  722. storev, integer *m, integer *n, integer *k, integer *l, complex *v,
  723. integer *ldv, complex *t, integer *ldt, complex *a, integer *lda,
  724. complex *b, integer *ldb, complex *work, integer *ldwork)
  725. {
  726. /* System generated locals */
  727. integer a_dim1, a_offset, b_dim1, b_offset, t_dim1, t_offset, v_dim1,
  728. v_offset, work_dim1, work_offset, i__1, i__2, i__3, i__4, i__5;
  729. complex q__1;
  730. /* Local variables */
  731. logical left, backward;
  732. integer i__, j;
  733. extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
  734. integer *, complex *, complex *, integer *, complex *, integer *,
  735. complex *, complex *, integer *);
  736. extern logical lsame_(char *, char *);
  737. logical right;
  738. extern /* Subroutine */ void ctrmm_(char *, char *, char *, char *,
  739. integer *, integer *, complex *, complex *, integer *, complex *,
  740. integer *);
  741. integer kp, mp, np;
  742. logical column, row, forward;
  743. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  744. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  745. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  746. /* December 2016 */
  747. /* ========================================================================== */
  748. /* Quick return if possible */
  749. /* Parameter adjustments */
  750. v_dim1 = *ldv;
  751. v_offset = 1 + v_dim1 * 1;
  752. v -= v_offset;
  753. t_dim1 = *ldt;
  754. t_offset = 1 + t_dim1 * 1;
  755. t -= t_offset;
  756. a_dim1 = *lda;
  757. a_offset = 1 + a_dim1 * 1;
  758. a -= a_offset;
  759. b_dim1 = *ldb;
  760. b_offset = 1 + b_dim1 * 1;
  761. b -= b_offset;
  762. work_dim1 = *ldwork;
  763. work_offset = 1 + work_dim1 * 1;
  764. work -= work_offset;
  765. /* Function Body */
  766. if (*m <= 0 || *n <= 0 || *k <= 0 || *l < 0) {
  767. return;
  768. }
  769. if (lsame_(storev, "C")) {
  770. column = TRUE_;
  771. row = FALSE_;
  772. } else if (lsame_(storev, "R")) {
  773. column = FALSE_;
  774. row = TRUE_;
  775. } else {
  776. column = FALSE_;
  777. row = FALSE_;
  778. }
  779. if (lsame_(side, "L")) {
  780. left = TRUE_;
  781. right = FALSE_;
  782. } else if (lsame_(side, "R")) {
  783. left = FALSE_;
  784. right = TRUE_;
  785. } else {
  786. left = FALSE_;
  787. right = FALSE_;
  788. }
  789. if (lsame_(direct, "F")) {
  790. forward = TRUE_;
  791. backward = FALSE_;
  792. } else if (lsame_(direct, "B")) {
  793. forward = FALSE_;
  794. backward = TRUE_;
  795. } else {
  796. forward = FALSE_;
  797. backward = FALSE_;
  798. }
  799. /* --------------------------------------------------------------------------- */
  800. if (column && forward && left) {
  801. /* --------------------------------------------------------------------------- */
  802. /* Let W = [ I ] (K-by-K) */
  803. /* [ V ] (M-by-K) */
  804. /* Form H C or H**H C where C = [ A ] (K-by-N) */
  805. /* [ B ] (M-by-N) */
  806. /* H = I - W T W**H or H**H = I - W T**H W**H */
  807. /* A = A - T (A + V**H B) or A = A - T**H (A + V**H B) */
  808. /* B = B - V T (A + V**H B) or B = B - V T**H (A + V**H B) */
  809. /* --------------------------------------------------------------------------- */
  810. /* Computing MIN */
  811. i__1 = *m - *l + 1;
  812. mp = f2cmin(i__1,*m);
  813. /* Computing MIN */
  814. i__1 = *l + 1;
  815. kp = f2cmin(i__1,*k);
  816. i__1 = *n;
  817. for (j = 1; j <= i__1; ++j) {
  818. i__2 = *l;
  819. for (i__ = 1; i__ <= i__2; ++i__) {
  820. i__3 = i__ + j * work_dim1;
  821. i__4 = *m - *l + i__ + j * b_dim1;
  822. work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
  823. }
  824. }
  825. ctrmm_("L", "U", "C", "N", l, n, &c_b1, &v[mp + v_dim1], ldv, &work[
  826. work_offset], ldwork);
  827. i__1 = *m - *l;
  828. cgemm_("C", "N", l, n, &i__1, &c_b1, &v[v_offset], ldv, &b[b_offset],
  829. ldb, &c_b1, &work[work_offset], ldwork);
  830. i__1 = *k - *l;
  831. cgemm_("C", "N", &i__1, n, m, &c_b1, &v[kp * v_dim1 + 1], ldv, &b[
  832. b_offset], ldb, &c_b2, &work[kp + work_dim1], ldwork);
  833. i__1 = *n;
  834. for (j = 1; j <= i__1; ++j) {
  835. i__2 = *k;
  836. for (i__ = 1; i__ <= i__2; ++i__) {
  837. i__3 = i__ + j * work_dim1;
  838. i__4 = i__ + j * work_dim1;
  839. i__5 = i__ + j * a_dim1;
  840. q__1.r = work[i__4].r + a[i__5].r, q__1.i = work[i__4].i + a[
  841. i__5].i;
  842. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  843. }
  844. }
  845. ctrmm_("L", "U", trans, "N", k, n, &c_b1, &t[t_offset], ldt, &work[
  846. work_offset], ldwork);
  847. i__1 = *n;
  848. for (j = 1; j <= i__1; ++j) {
  849. i__2 = *k;
  850. for (i__ = 1; i__ <= i__2; ++i__) {
  851. i__3 = i__ + j * a_dim1;
  852. i__4 = i__ + j * a_dim1;
  853. i__5 = i__ + j * work_dim1;
  854. q__1.r = a[i__4].r - work[i__5].r, q__1.i = a[i__4].i - work[
  855. i__5].i;
  856. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  857. }
  858. }
  859. i__1 = *m - *l;
  860. q__1.r = -1.f, q__1.i = 0.f;
  861. cgemm_("N", "N", &i__1, n, k, &q__1, &v[v_offset], ldv, &work[
  862. work_offset], ldwork, &c_b1, &b[b_offset], ldb);
  863. i__1 = *k - *l;
  864. q__1.r = -1.f, q__1.i = 0.f;
  865. cgemm_("N", "N", l, n, &i__1, &q__1, &v[mp + kp * v_dim1], ldv, &work[
  866. kp + work_dim1], ldwork, &c_b1, &b[mp + b_dim1], ldb);
  867. ctrmm_("L", "U", "N", "N", l, n, &c_b1, &v[mp + v_dim1], ldv, &work[
  868. work_offset], ldwork);
  869. i__1 = *n;
  870. for (j = 1; j <= i__1; ++j) {
  871. i__2 = *l;
  872. for (i__ = 1; i__ <= i__2; ++i__) {
  873. i__3 = *m - *l + i__ + j * b_dim1;
  874. i__4 = *m - *l + i__ + j * b_dim1;
  875. i__5 = i__ + j * work_dim1;
  876. q__1.r = b[i__4].r - work[i__5].r, q__1.i = b[i__4].i - work[
  877. i__5].i;
  878. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  879. }
  880. }
  881. /* --------------------------------------------------------------------------- */
  882. } else if (column && forward && right) {
  883. /* --------------------------------------------------------------------------- */
  884. /* Let W = [ I ] (K-by-K) */
  885. /* [ V ] (N-by-K) */
  886. /* Form C H or C H**H where C = [ A B ] (A is M-by-K, B is M-by-N) */
  887. /* H = I - W T W**H or H**H = I - W T**H W**H */
  888. /* A = A - (A + B V) T or A = A - (A + B V) T**H */
  889. /* B = B - (A + B V) T V**H or B = B - (A + B V) T**H V**H */
  890. /* --------------------------------------------------------------------------- */
  891. /* Computing MIN */
  892. i__1 = *n - *l + 1;
  893. np = f2cmin(i__1,*n);
  894. /* Computing MIN */
  895. i__1 = *l + 1;
  896. kp = f2cmin(i__1,*k);
  897. i__1 = *l;
  898. for (j = 1; j <= i__1; ++j) {
  899. i__2 = *m;
  900. for (i__ = 1; i__ <= i__2; ++i__) {
  901. i__3 = i__ + j * work_dim1;
  902. i__4 = i__ + (*n - *l + j) * b_dim1;
  903. work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
  904. }
  905. }
  906. ctrmm_("R", "U", "N", "N", m, l, &c_b1, &v[np + v_dim1], ldv, &work[
  907. work_offset], ldwork);
  908. i__1 = *n - *l;
  909. cgemm_("N", "N", m, l, &i__1, &c_b1, &b[b_offset], ldb, &v[v_offset],
  910. ldv, &c_b1, &work[work_offset], ldwork);
  911. i__1 = *k - *l;
  912. cgemm_("N", "N", m, &i__1, n, &c_b1, &b[b_offset], ldb, &v[kp *
  913. v_dim1 + 1], ldv, &c_b2, &work[kp * work_dim1 + 1], ldwork);
  914. i__1 = *k;
  915. for (j = 1; j <= i__1; ++j) {
  916. i__2 = *m;
  917. for (i__ = 1; i__ <= i__2; ++i__) {
  918. i__3 = i__ + j * work_dim1;
  919. i__4 = i__ + j * work_dim1;
  920. i__5 = i__ + j * a_dim1;
  921. q__1.r = work[i__4].r + a[i__5].r, q__1.i = work[i__4].i + a[
  922. i__5].i;
  923. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  924. }
  925. }
  926. ctrmm_("R", "U", trans, "N", m, k, &c_b1, &t[t_offset], ldt, &work[
  927. work_offset], ldwork);
  928. i__1 = *k;
  929. for (j = 1; j <= i__1; ++j) {
  930. i__2 = *m;
  931. for (i__ = 1; i__ <= i__2; ++i__) {
  932. i__3 = i__ + j * a_dim1;
  933. i__4 = i__ + j * a_dim1;
  934. i__5 = i__ + j * work_dim1;
  935. q__1.r = a[i__4].r - work[i__5].r, q__1.i = a[i__4].i - work[
  936. i__5].i;
  937. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  938. }
  939. }
  940. i__1 = *n - *l;
  941. q__1.r = -1.f, q__1.i = 0.f;
  942. cgemm_("N", "C", m, &i__1, k, &q__1, &work[work_offset], ldwork, &v[
  943. v_offset], ldv, &c_b1, &b[b_offset], ldb);
  944. i__1 = *k - *l;
  945. q__1.r = -1.f, q__1.i = 0.f;
  946. cgemm_("N", "C", m, l, &i__1, &q__1, &work[kp * work_dim1 + 1],
  947. ldwork, &v[np + kp * v_dim1], ldv, &c_b1, &b[np * b_dim1 + 1],
  948. ldb);
  949. ctrmm_("R", "U", "C", "N", m, l, &c_b1, &v[np + v_dim1], ldv, &work[
  950. work_offset], ldwork);
  951. i__1 = *l;
  952. for (j = 1; j <= i__1; ++j) {
  953. i__2 = *m;
  954. for (i__ = 1; i__ <= i__2; ++i__) {
  955. i__3 = i__ + (*n - *l + j) * b_dim1;
  956. i__4 = i__ + (*n - *l + j) * b_dim1;
  957. i__5 = i__ + j * work_dim1;
  958. q__1.r = b[i__4].r - work[i__5].r, q__1.i = b[i__4].i - work[
  959. i__5].i;
  960. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  961. }
  962. }
  963. /* --------------------------------------------------------------------------- */
  964. } else if (column && backward && left) {
  965. /* --------------------------------------------------------------------------- */
  966. /* Let W = [ V ] (M-by-K) */
  967. /* [ I ] (K-by-K) */
  968. /* Form H C or H**H C where C = [ B ] (M-by-N) */
  969. /* [ A ] (K-by-N) */
  970. /* H = I - W T W**H or H**H = I - W T**H W**H */
  971. /* A = A - T (A + V**H B) or A = A - T**H (A + V**H B) */
  972. /* B = B - V T (A + V**H B) or B = B - V T**H (A + V**H B) */
  973. /* --------------------------------------------------------------------------- */
  974. /* Computing MIN */
  975. i__1 = *l + 1;
  976. mp = f2cmin(i__1,*m);
  977. /* Computing MIN */
  978. i__1 = *k - *l + 1;
  979. kp = f2cmin(i__1,*k);
  980. i__1 = *n;
  981. for (j = 1; j <= i__1; ++j) {
  982. i__2 = *l;
  983. for (i__ = 1; i__ <= i__2; ++i__) {
  984. i__3 = *k - *l + i__ + j * work_dim1;
  985. i__4 = i__ + j * b_dim1;
  986. work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
  987. }
  988. }
  989. ctrmm_("L", "L", "C", "N", l, n, &c_b1, &v[kp * v_dim1 + 1], ldv, &
  990. work[kp + work_dim1], ldwork);
  991. i__1 = *m - *l;
  992. cgemm_("C", "N", l, n, &i__1, &c_b1, &v[mp + kp * v_dim1], ldv, &b[mp
  993. + b_dim1], ldb, &c_b1, &work[kp + work_dim1], ldwork);
  994. i__1 = *k - *l;
  995. cgemm_("C", "N", &i__1, n, m, &c_b1, &v[v_offset], ldv, &b[b_offset],
  996. ldb, &c_b2, &work[work_offset], ldwork);
  997. i__1 = *n;
  998. for (j = 1; j <= i__1; ++j) {
  999. i__2 = *k;
  1000. for (i__ = 1; i__ <= i__2; ++i__) {
  1001. i__3 = i__ + j * work_dim1;
  1002. i__4 = i__ + j * work_dim1;
  1003. i__5 = i__ + j * a_dim1;
  1004. q__1.r = work[i__4].r + a[i__5].r, q__1.i = work[i__4].i + a[
  1005. i__5].i;
  1006. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1007. }
  1008. }
  1009. ctrmm_("L", "L", trans, "N", k, n, &c_b1, &t[t_offset], ldt, &work[
  1010. work_offset], ldwork);
  1011. i__1 = *n;
  1012. for (j = 1; j <= i__1; ++j) {
  1013. i__2 = *k;
  1014. for (i__ = 1; i__ <= i__2; ++i__) {
  1015. i__3 = i__ + j * a_dim1;
  1016. i__4 = i__ + j * a_dim1;
  1017. i__5 = i__ + j * work_dim1;
  1018. q__1.r = a[i__4].r - work[i__5].r, q__1.i = a[i__4].i - work[
  1019. i__5].i;
  1020. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1021. }
  1022. }
  1023. i__1 = *m - *l;
  1024. q__1.r = -1.f, q__1.i = 0.f;
  1025. cgemm_("N", "N", &i__1, n, k, &q__1, &v[mp + v_dim1], ldv, &work[
  1026. work_offset], ldwork, &c_b1, &b[mp + b_dim1], ldb);
  1027. i__1 = *k - *l;
  1028. q__1.r = -1.f, q__1.i = 0.f;
  1029. cgemm_("N", "N", l, n, &i__1, &q__1, &v[v_offset], ldv, &work[
  1030. work_offset], ldwork, &c_b1, &b[b_offset], ldb);
  1031. ctrmm_("L", "L", "N", "N", l, n, &c_b1, &v[kp * v_dim1 + 1], ldv, &
  1032. work[kp + work_dim1], ldwork);
  1033. i__1 = *n;
  1034. for (j = 1; j <= i__1; ++j) {
  1035. i__2 = *l;
  1036. for (i__ = 1; i__ <= i__2; ++i__) {
  1037. i__3 = i__ + j * b_dim1;
  1038. i__4 = i__ + j * b_dim1;
  1039. i__5 = *k - *l + i__ + j * work_dim1;
  1040. q__1.r = b[i__4].r - work[i__5].r, q__1.i = b[i__4].i - work[
  1041. i__5].i;
  1042. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1043. }
  1044. }
  1045. /* --------------------------------------------------------------------------- */
  1046. } else if (column && backward && right) {
  1047. /* --------------------------------------------------------------------------- */
  1048. /* Let W = [ V ] (N-by-K) */
  1049. /* [ I ] (K-by-K) */
  1050. /* Form C H or C H**H where C = [ B A ] (B is M-by-N, A is M-by-K) */
  1051. /* H = I - W T W**H or H**H = I - W T**H W**H */
  1052. /* A = A - (A + B V) T or A = A - (A + B V) T**H */
  1053. /* B = B - (A + B V) T V**H or B = B - (A + B V) T**H V**H */
  1054. /* --------------------------------------------------------------------------- */
  1055. /* Computing MIN */
  1056. i__1 = *l + 1;
  1057. np = f2cmin(i__1,*n);
  1058. /* Computing MIN */
  1059. i__1 = *k - *l + 1;
  1060. kp = f2cmin(i__1,*k);
  1061. i__1 = *l;
  1062. for (j = 1; j <= i__1; ++j) {
  1063. i__2 = *m;
  1064. for (i__ = 1; i__ <= i__2; ++i__) {
  1065. i__3 = i__ + (*k - *l + j) * work_dim1;
  1066. i__4 = i__ + j * b_dim1;
  1067. work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
  1068. }
  1069. }
  1070. ctrmm_("R", "L", "N", "N", m, l, &c_b1, &v[kp * v_dim1 + 1], ldv, &
  1071. work[kp * work_dim1 + 1], ldwork);
  1072. i__1 = *n - *l;
  1073. cgemm_("N", "N", m, l, &i__1, &c_b1, &b[np * b_dim1 + 1], ldb, &v[np
  1074. + kp * v_dim1], ldv, &c_b1, &work[kp * work_dim1 + 1], ldwork);
  1075. i__1 = *k - *l;
  1076. cgemm_("N", "N", m, &i__1, n, &c_b1, &b[b_offset], ldb, &v[v_offset],
  1077. ldv, &c_b2, &work[work_offset], ldwork);
  1078. i__1 = *k;
  1079. for (j = 1; j <= i__1; ++j) {
  1080. i__2 = *m;
  1081. for (i__ = 1; i__ <= i__2; ++i__) {
  1082. i__3 = i__ + j * work_dim1;
  1083. i__4 = i__ + j * work_dim1;
  1084. i__5 = i__ + j * a_dim1;
  1085. q__1.r = work[i__4].r + a[i__5].r, q__1.i = work[i__4].i + a[
  1086. i__5].i;
  1087. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1088. }
  1089. }
  1090. ctrmm_("R", "L", trans, "N", m, k, &c_b1, &t[t_offset], ldt, &work[
  1091. work_offset], ldwork);
  1092. i__1 = *k;
  1093. for (j = 1; j <= i__1; ++j) {
  1094. i__2 = *m;
  1095. for (i__ = 1; i__ <= i__2; ++i__) {
  1096. i__3 = i__ + j * a_dim1;
  1097. i__4 = i__ + j * a_dim1;
  1098. i__5 = i__ + j * work_dim1;
  1099. q__1.r = a[i__4].r - work[i__5].r, q__1.i = a[i__4].i - work[
  1100. i__5].i;
  1101. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1102. }
  1103. }
  1104. i__1 = *n - *l;
  1105. q__1.r = -1.f, q__1.i = 0.f;
  1106. cgemm_("N", "C", m, &i__1, k, &q__1, &work[work_offset], ldwork, &v[
  1107. np + v_dim1], ldv, &c_b1, &b[np * b_dim1 + 1], ldb);
  1108. i__1 = *k - *l;
  1109. q__1.r = -1.f, q__1.i = 0.f;
  1110. cgemm_("N", "C", m, l, &i__1, &q__1, &work[work_offset], ldwork, &v[
  1111. v_offset], ldv, &c_b1, &b[b_offset], ldb);
  1112. ctrmm_("R", "L", "C", "N", m, l, &c_b1, &v[kp * v_dim1 + 1], ldv, &
  1113. work[kp * work_dim1 + 1], ldwork);
  1114. i__1 = *l;
  1115. for (j = 1; j <= i__1; ++j) {
  1116. i__2 = *m;
  1117. for (i__ = 1; i__ <= i__2; ++i__) {
  1118. i__3 = i__ + j * b_dim1;
  1119. i__4 = i__ + j * b_dim1;
  1120. i__5 = i__ + (*k - *l + j) * work_dim1;
  1121. q__1.r = b[i__4].r - work[i__5].r, q__1.i = b[i__4].i - work[
  1122. i__5].i;
  1123. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1124. }
  1125. }
  1126. /* --------------------------------------------------------------------------- */
  1127. } else if (row && forward && left) {
  1128. /* --------------------------------------------------------------------------- */
  1129. /* Let W = [ I V ] ( I is K-by-K, V is K-by-M ) */
  1130. /* Form H C or H**H C where C = [ A ] (K-by-N) */
  1131. /* [ B ] (M-by-N) */
  1132. /* H = I - W**H T W or H**H = I - W**H T**H W */
  1133. /* A = A - T (A + V B) or A = A - T**H (A + V B) */
  1134. /* B = B - V**H T (A + V B) or B = B - V**H T**H (A + V B) */
  1135. /* --------------------------------------------------------------------------- */
  1136. /* Computing MIN */
  1137. i__1 = *m - *l + 1;
  1138. mp = f2cmin(i__1,*m);
  1139. /* Computing MIN */
  1140. i__1 = *l + 1;
  1141. kp = f2cmin(i__1,*k);
  1142. i__1 = *n;
  1143. for (j = 1; j <= i__1; ++j) {
  1144. i__2 = *l;
  1145. for (i__ = 1; i__ <= i__2; ++i__) {
  1146. i__3 = i__ + j * work_dim1;
  1147. i__4 = *m - *l + i__ + j * b_dim1;
  1148. work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
  1149. }
  1150. }
  1151. ctrmm_("L", "L", "N", "N", l, n, &c_b1, &v[mp * v_dim1 + 1], ldv, &
  1152. work[work_offset], ldb);
  1153. i__1 = *m - *l;
  1154. cgemm_("N", "N", l, n, &i__1, &c_b1, &v[v_offset], ldv, &b[b_offset],
  1155. ldb, &c_b1, &work[work_offset], ldwork);
  1156. i__1 = *k - *l;
  1157. cgemm_("N", "N", &i__1, n, m, &c_b1, &v[kp + v_dim1], ldv, &b[
  1158. b_offset], ldb, &c_b2, &work[kp + work_dim1], ldwork);
  1159. i__1 = *n;
  1160. for (j = 1; j <= i__1; ++j) {
  1161. i__2 = *k;
  1162. for (i__ = 1; i__ <= i__2; ++i__) {
  1163. i__3 = i__ + j * work_dim1;
  1164. i__4 = i__ + j * work_dim1;
  1165. i__5 = i__ + j * a_dim1;
  1166. q__1.r = work[i__4].r + a[i__5].r, q__1.i = work[i__4].i + a[
  1167. i__5].i;
  1168. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1169. }
  1170. }
  1171. ctrmm_("L", "U", trans, "N", k, n, &c_b1, &t[t_offset], ldt, &work[
  1172. work_offset], ldwork);
  1173. i__1 = *n;
  1174. for (j = 1; j <= i__1; ++j) {
  1175. i__2 = *k;
  1176. for (i__ = 1; i__ <= i__2; ++i__) {
  1177. i__3 = i__ + j * a_dim1;
  1178. i__4 = i__ + j * a_dim1;
  1179. i__5 = i__ + j * work_dim1;
  1180. q__1.r = a[i__4].r - work[i__5].r, q__1.i = a[i__4].i - work[
  1181. i__5].i;
  1182. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1183. }
  1184. }
  1185. i__1 = *m - *l;
  1186. q__1.r = -1.f, q__1.i = 0.f;
  1187. cgemm_("C", "N", &i__1, n, k, &q__1, &v[v_offset], ldv, &work[
  1188. work_offset], ldwork, &c_b1, &b[b_offset], ldb);
  1189. i__1 = *k - *l;
  1190. q__1.r = -1.f, q__1.i = 0.f;
  1191. cgemm_("C", "N", l, n, &i__1, &q__1, &v[kp + mp * v_dim1], ldv, &work[
  1192. kp + work_dim1], ldwork, &c_b1, &b[mp + b_dim1], ldb);
  1193. ctrmm_("L", "L", "C", "N", l, n, &c_b1, &v[mp * v_dim1 + 1], ldv, &
  1194. work[work_offset], ldwork);
  1195. i__1 = *n;
  1196. for (j = 1; j <= i__1; ++j) {
  1197. i__2 = *l;
  1198. for (i__ = 1; i__ <= i__2; ++i__) {
  1199. i__3 = *m - *l + i__ + j * b_dim1;
  1200. i__4 = *m - *l + i__ + j * b_dim1;
  1201. i__5 = i__ + j * work_dim1;
  1202. q__1.r = b[i__4].r - work[i__5].r, q__1.i = b[i__4].i - work[
  1203. i__5].i;
  1204. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1205. }
  1206. }
  1207. /* --------------------------------------------------------------------------- */
  1208. } else if (row && forward && right) {
  1209. /* --------------------------------------------------------------------------- */
  1210. /* Let W = [ I V ] ( I is K-by-K, V is K-by-N ) */
  1211. /* Form C H or C H**H where C = [ A B ] (A is M-by-K, B is M-by-N) */
  1212. /* H = I - W**H T W or H**H = I - W**H T**H W */
  1213. /* A = A - (A + B V**H) T or A = A - (A + B V**H) T**H */
  1214. /* B = B - (A + B V**H) T V or B = B - (A + B V**H) T**H V */
  1215. /* --------------------------------------------------------------------------- */
  1216. /* Computing MIN */
  1217. i__1 = *n - *l + 1;
  1218. np = f2cmin(i__1,*n);
  1219. /* Computing MIN */
  1220. i__1 = *l + 1;
  1221. kp = f2cmin(i__1,*k);
  1222. i__1 = *l;
  1223. for (j = 1; j <= i__1; ++j) {
  1224. i__2 = *m;
  1225. for (i__ = 1; i__ <= i__2; ++i__) {
  1226. i__3 = i__ + j * work_dim1;
  1227. i__4 = i__ + (*n - *l + j) * b_dim1;
  1228. work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
  1229. }
  1230. }
  1231. ctrmm_("R", "L", "C", "N", m, l, &c_b1, &v[np * v_dim1 + 1], ldv, &
  1232. work[work_offset], ldwork);
  1233. i__1 = *n - *l;
  1234. cgemm_("N", "C", m, l, &i__1, &c_b1, &b[b_offset], ldb, &v[v_offset],
  1235. ldv, &c_b1, &work[work_offset], ldwork);
  1236. i__1 = *k - *l;
  1237. cgemm_("N", "C", m, &i__1, n, &c_b1, &b[b_offset], ldb, &v[kp +
  1238. v_dim1], ldv, &c_b2, &work[kp * work_dim1 + 1], ldwork);
  1239. i__1 = *k;
  1240. for (j = 1; j <= i__1; ++j) {
  1241. i__2 = *m;
  1242. for (i__ = 1; i__ <= i__2; ++i__) {
  1243. i__3 = i__ + j * work_dim1;
  1244. i__4 = i__ + j * work_dim1;
  1245. i__5 = i__ + j * a_dim1;
  1246. q__1.r = work[i__4].r + a[i__5].r, q__1.i = work[i__4].i + a[
  1247. i__5].i;
  1248. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1249. }
  1250. }
  1251. ctrmm_("R", "U", trans, "N", m, k, &c_b1, &t[t_offset], ldt, &work[
  1252. work_offset], ldwork);
  1253. i__1 = *k;
  1254. for (j = 1; j <= i__1; ++j) {
  1255. i__2 = *m;
  1256. for (i__ = 1; i__ <= i__2; ++i__) {
  1257. i__3 = i__ + j * a_dim1;
  1258. i__4 = i__ + j * a_dim1;
  1259. i__5 = i__ + j * work_dim1;
  1260. q__1.r = a[i__4].r - work[i__5].r, q__1.i = a[i__4].i - work[
  1261. i__5].i;
  1262. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1263. }
  1264. }
  1265. i__1 = *n - *l;
  1266. q__1.r = -1.f, q__1.i = 0.f;
  1267. cgemm_("N", "N", m, &i__1, k, &q__1, &work[work_offset], ldwork, &v[
  1268. v_offset], ldv, &c_b1, &b[b_offset], ldb);
  1269. i__1 = *k - *l;
  1270. q__1.r = -1.f, q__1.i = 0.f;
  1271. cgemm_("N", "N", m, l, &i__1, &q__1, &work[kp * work_dim1 + 1],
  1272. ldwork, &v[kp + np * v_dim1], ldv, &c_b1, &b[np * b_dim1 + 1],
  1273. ldb);
  1274. ctrmm_("R", "L", "N", "N", m, l, &c_b1, &v[np * v_dim1 + 1], ldv, &
  1275. work[work_offset], ldwork);
  1276. i__1 = *l;
  1277. for (j = 1; j <= i__1; ++j) {
  1278. i__2 = *m;
  1279. for (i__ = 1; i__ <= i__2; ++i__) {
  1280. i__3 = i__ + (*n - *l + j) * b_dim1;
  1281. i__4 = i__ + (*n - *l + j) * b_dim1;
  1282. i__5 = i__ + j * work_dim1;
  1283. q__1.r = b[i__4].r - work[i__5].r, q__1.i = b[i__4].i - work[
  1284. i__5].i;
  1285. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1286. }
  1287. }
  1288. /* --------------------------------------------------------------------------- */
  1289. } else if (row && backward && left) {
  1290. /* --------------------------------------------------------------------------- */
  1291. /* Let W = [ V I ] ( I is K-by-K, V is K-by-M ) */
  1292. /* Form H C or H**H C where C = [ B ] (M-by-N) */
  1293. /* [ A ] (K-by-N) */
  1294. /* H = I - W**H T W or H**H = I - W**H T**H W */
  1295. /* A = A - T (A + V B) or A = A - T**H (A + V B) */
  1296. /* B = B - V**H T (A + V B) or B = B - V**H T**H (A + V B) */
  1297. /* --------------------------------------------------------------------------- */
  1298. /* Computing MIN */
  1299. i__1 = *l + 1;
  1300. mp = f2cmin(i__1,*m);
  1301. /* Computing MIN */
  1302. i__1 = *k - *l + 1;
  1303. kp = f2cmin(i__1,*k);
  1304. i__1 = *n;
  1305. for (j = 1; j <= i__1; ++j) {
  1306. i__2 = *l;
  1307. for (i__ = 1; i__ <= i__2; ++i__) {
  1308. i__3 = *k - *l + i__ + j * work_dim1;
  1309. i__4 = i__ + j * b_dim1;
  1310. work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
  1311. }
  1312. }
  1313. ctrmm_("L", "U", "N", "N", l, n, &c_b1, &v[kp + v_dim1], ldv, &work[
  1314. kp + work_dim1], ldwork);
  1315. i__1 = *m - *l;
  1316. cgemm_("N", "N", l, n, &i__1, &c_b1, &v[kp + mp * v_dim1], ldv, &b[mp
  1317. + b_dim1], ldb, &c_b1, &work[kp + work_dim1], ldwork);
  1318. i__1 = *k - *l;
  1319. cgemm_("N", "N", &i__1, n, m, &c_b1, &v[v_offset], ldv, &b[b_offset],
  1320. ldb, &c_b2, &work[work_offset], ldwork);
  1321. i__1 = *n;
  1322. for (j = 1; j <= i__1; ++j) {
  1323. i__2 = *k;
  1324. for (i__ = 1; i__ <= i__2; ++i__) {
  1325. i__3 = i__ + j * work_dim1;
  1326. i__4 = i__ + j * work_dim1;
  1327. i__5 = i__ + j * a_dim1;
  1328. q__1.r = work[i__4].r + a[i__5].r, q__1.i = work[i__4].i + a[
  1329. i__5].i;
  1330. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1331. }
  1332. }
  1333. ctrmm_("L", "L ", trans, "N", k, n, &c_b1, &t[t_offset], ldt, &work[
  1334. work_offset], ldwork);
  1335. i__1 = *n;
  1336. for (j = 1; j <= i__1; ++j) {
  1337. i__2 = *k;
  1338. for (i__ = 1; i__ <= i__2; ++i__) {
  1339. i__3 = i__ + j * a_dim1;
  1340. i__4 = i__ + j * a_dim1;
  1341. i__5 = i__ + j * work_dim1;
  1342. q__1.r = a[i__4].r - work[i__5].r, q__1.i = a[i__4].i - work[
  1343. i__5].i;
  1344. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1345. }
  1346. }
  1347. i__1 = *m - *l;
  1348. q__1.r = -1.f, q__1.i = 0.f;
  1349. cgemm_("C", "N", &i__1, n, k, &q__1, &v[mp * v_dim1 + 1], ldv, &work[
  1350. work_offset], ldwork, &c_b1, &b[mp + b_dim1], ldb);
  1351. i__1 = *k - *l;
  1352. q__1.r = -1.f, q__1.i = 0.f;
  1353. cgemm_("C", "N", l, n, &i__1, &q__1, &v[v_offset], ldv, &work[
  1354. work_offset], ldwork, &c_b1, &b[b_offset], ldb);
  1355. ctrmm_("L", "U", "C", "N", l, n, &c_b1, &v[kp + v_dim1], ldv, &work[
  1356. kp + work_dim1], ldwork);
  1357. i__1 = *n;
  1358. for (j = 1; j <= i__1; ++j) {
  1359. i__2 = *l;
  1360. for (i__ = 1; i__ <= i__2; ++i__) {
  1361. i__3 = i__ + j * b_dim1;
  1362. i__4 = i__ + j * b_dim1;
  1363. i__5 = *k - *l + i__ + j * work_dim1;
  1364. q__1.r = b[i__4].r - work[i__5].r, q__1.i = b[i__4].i - work[
  1365. i__5].i;
  1366. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1367. }
  1368. }
  1369. /* --------------------------------------------------------------------------- */
  1370. } else if (row && backward && right) {
  1371. /* --------------------------------------------------------------------------- */
  1372. /* Let W = [ V I ] ( I is K-by-K, V is K-by-N ) */
  1373. /* Form C H or C H**H where C = [ B A ] (A is M-by-K, B is M-by-N) */
  1374. /* H = I - W**H T W or H**H = I - W**H T**H W */
  1375. /* A = A - (A + B V**H) T or A = A - (A + B V**H) T**H */
  1376. /* B = B - (A + B V**H) T V or B = B - (A + B V**H) T**H V */
  1377. /* --------------------------------------------------------------------------- */
  1378. /* Computing MIN */
  1379. i__1 = *l + 1;
  1380. np = f2cmin(i__1,*n);
  1381. /* Computing MIN */
  1382. i__1 = *k - *l + 1;
  1383. kp = f2cmin(i__1,*k);
  1384. i__1 = *l;
  1385. for (j = 1; j <= i__1; ++j) {
  1386. i__2 = *m;
  1387. for (i__ = 1; i__ <= i__2; ++i__) {
  1388. i__3 = i__ + (*k - *l + j) * work_dim1;
  1389. i__4 = i__ + j * b_dim1;
  1390. work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
  1391. }
  1392. }
  1393. ctrmm_("R", "U", "C", "N", m, l, &c_b1, &v[kp + v_dim1], ldv, &work[
  1394. kp * work_dim1 + 1], ldwork);
  1395. i__1 = *n - *l;
  1396. cgemm_("N", "C", m, l, &i__1, &c_b1, &b[np * b_dim1 + 1], ldb, &v[kp
  1397. + np * v_dim1], ldv, &c_b1, &work[kp * work_dim1 + 1], ldwork);
  1398. i__1 = *k - *l;
  1399. cgemm_("N", "C", m, &i__1, n, &c_b1, &b[b_offset], ldb, &v[v_offset],
  1400. ldv, &c_b2, &work[work_offset], ldwork);
  1401. i__1 = *k;
  1402. for (j = 1; j <= i__1; ++j) {
  1403. i__2 = *m;
  1404. for (i__ = 1; i__ <= i__2; ++i__) {
  1405. i__3 = i__ + j * work_dim1;
  1406. i__4 = i__ + j * work_dim1;
  1407. i__5 = i__ + j * a_dim1;
  1408. q__1.r = work[i__4].r + a[i__5].r, q__1.i = work[i__4].i + a[
  1409. i__5].i;
  1410. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1411. }
  1412. }
  1413. ctrmm_("R", "L", trans, "N", m, k, &c_b1, &t[t_offset], ldt, &work[
  1414. work_offset], ldwork);
  1415. i__1 = *k;
  1416. for (j = 1; j <= i__1; ++j) {
  1417. i__2 = *m;
  1418. for (i__ = 1; i__ <= i__2; ++i__) {
  1419. i__3 = i__ + j * a_dim1;
  1420. i__4 = i__ + j * a_dim1;
  1421. i__5 = i__ + j * work_dim1;
  1422. q__1.r = a[i__4].r - work[i__5].r, q__1.i = a[i__4].i - work[
  1423. i__5].i;
  1424. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1425. }
  1426. }
  1427. i__1 = *n - *l;
  1428. q__1.r = -1.f, q__1.i = 0.f;
  1429. cgemm_("N", "N", m, &i__1, k, &q__1, &work[work_offset], ldwork, &v[
  1430. np * v_dim1 + 1], ldv, &c_b1, &b[np * b_dim1 + 1], ldb);
  1431. i__1 = *k - *l;
  1432. q__1.r = -1.f, q__1.i = 0.f;
  1433. cgemm_("N", "N", m, l, &i__1, &q__1, &work[work_offset], ldwork, &v[
  1434. v_offset], ldv, &c_b1, &b[b_offset], ldb);
  1435. ctrmm_("R", "U", "N", "N", m, l, &c_b1, &v[kp + v_dim1], ldv, &work[
  1436. kp * work_dim1 + 1], ldwork);
  1437. i__1 = *l;
  1438. for (j = 1; j <= i__1; ++j) {
  1439. i__2 = *m;
  1440. for (i__ = 1; i__ <= i__2; ++i__) {
  1441. i__3 = i__ + j * b_dim1;
  1442. i__4 = i__ + j * b_dim1;
  1443. i__5 = i__ + (*k - *l + j) * work_dim1;
  1444. q__1.r = b[i__4].r - work[i__5].r, q__1.i = b[i__4].i - work[
  1445. i__5].i;
  1446. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1447. }
  1448. }
  1449. }
  1450. return;
  1451. /* End of CTPRFB */
  1452. } /* ctprfb_ */