You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csyrfs.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {1.f,0.f};
  485. static integer c__1 = 1;
  486. /* > \brief \b CSYRFS */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download CSYRFS + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csyrfs.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csyrfs.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csyrfs.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE CSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, */
  505. /* X, LDX, FERR, BERR, WORK, RWORK, INFO ) */
  506. /* CHARACTER UPLO */
  507. /* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS */
  508. /* INTEGER IPIV( * ) */
  509. /* REAL BERR( * ), FERR( * ), RWORK( * ) */
  510. /* COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
  511. /* $ WORK( * ), X( LDX, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CSYRFS improves the computed solution to a system of linear */
  518. /* > equations when the coefficient matrix is symmetric indefinite, and */
  519. /* > provides error bounds and backward error estimates for the solution. */
  520. /* > \endverbatim */
  521. /* Arguments: */
  522. /* ========== */
  523. /* > \param[in] UPLO */
  524. /* > \verbatim */
  525. /* > UPLO is CHARACTER*1 */
  526. /* > = 'U': Upper triangle of A is stored; */
  527. /* > = 'L': Lower triangle of A is stored. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] N */
  531. /* > \verbatim */
  532. /* > N is INTEGER */
  533. /* > The order of the matrix A. N >= 0. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] NRHS */
  537. /* > \verbatim */
  538. /* > NRHS is INTEGER */
  539. /* > The number of right hand sides, i.e., the number of columns */
  540. /* > of the matrices B and X. NRHS >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] A */
  544. /* > \verbatim */
  545. /* > A is COMPLEX array, dimension (LDA,N) */
  546. /* > The symmetric matrix A. If UPLO = 'U', the leading N-by-N */
  547. /* > upper triangular part of A contains the upper triangular part */
  548. /* > of the matrix A, and the strictly lower triangular part of A */
  549. /* > is not referenced. If UPLO = 'L', the leading N-by-N lower */
  550. /* > triangular part of A contains the lower triangular part of */
  551. /* > the matrix A, and the strictly upper triangular part of A is */
  552. /* > not referenced. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] LDA */
  556. /* > \verbatim */
  557. /* > LDA is INTEGER */
  558. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] AF */
  562. /* > \verbatim */
  563. /* > AF is COMPLEX array, dimension (LDAF,N) */
  564. /* > The factored form of the matrix A. AF contains the block */
  565. /* > diagonal matrix D and the multipliers used to obtain the */
  566. /* > factor U or L from the factorization A = U*D*U**T or */
  567. /* > A = L*D*L**T as computed by CSYTRF. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDAF */
  571. /* > \verbatim */
  572. /* > LDAF is INTEGER */
  573. /* > The leading dimension of the array AF. LDAF >= f2cmax(1,N). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] IPIV */
  577. /* > \verbatim */
  578. /* > IPIV is INTEGER array, dimension (N) */
  579. /* > Details of the interchanges and the block structure of D */
  580. /* > as determined by CSYTRF. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] B */
  584. /* > \verbatim */
  585. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  586. /* > The right hand side matrix B. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] LDB */
  590. /* > \verbatim */
  591. /* > LDB is INTEGER */
  592. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in,out] X */
  596. /* > \verbatim */
  597. /* > X is COMPLEX array, dimension (LDX,NRHS) */
  598. /* > On entry, the solution matrix X, as computed by CSYTRS. */
  599. /* > On exit, the improved solution matrix X. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] LDX */
  603. /* > \verbatim */
  604. /* > LDX is INTEGER */
  605. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] FERR */
  609. /* > \verbatim */
  610. /* > FERR is REAL array, dimension (NRHS) */
  611. /* > The estimated forward error bound for each solution vector */
  612. /* > X(j) (the j-th column of the solution matrix X). */
  613. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  614. /* > is an estimated upper bound for the magnitude of the largest */
  615. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  616. /* > largest element in X(j). The estimate is as reliable as */
  617. /* > the estimate for RCOND, and is almost always a slight */
  618. /* > overestimate of the true error. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] BERR */
  622. /* > \verbatim */
  623. /* > BERR is REAL array, dimension (NRHS) */
  624. /* > The componentwise relative backward error of each solution */
  625. /* > vector X(j) (i.e., the smallest relative change in */
  626. /* > any element of A or B that makes X(j) an exact solution). */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] WORK */
  630. /* > \verbatim */
  631. /* > WORK is COMPLEX array, dimension (2*N) */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] RWORK */
  635. /* > \verbatim */
  636. /* > RWORK is REAL array, dimension (N) */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] INFO */
  640. /* > \verbatim */
  641. /* > INFO is INTEGER */
  642. /* > = 0: successful exit */
  643. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  644. /* > \endverbatim */
  645. /* > \par Internal Parameters: */
  646. /* ========================= */
  647. /* > */
  648. /* > \verbatim */
  649. /* > ITMAX is the maximum number of steps of iterative refinement. */
  650. /* > \endverbatim */
  651. /* Authors: */
  652. /* ======== */
  653. /* > \author Univ. of Tennessee */
  654. /* > \author Univ. of California Berkeley */
  655. /* > \author Univ. of Colorado Denver */
  656. /* > \author NAG Ltd. */
  657. /* > \date December 2016 */
  658. /* > \ingroup complexSYcomputational */
  659. /* ===================================================================== */
  660. /* Subroutine */ void csyrfs_(char *uplo, integer *n, integer *nrhs, complex *
  661. a, integer *lda, complex *af, integer *ldaf, integer *ipiv, complex *
  662. b, integer *ldb, complex *x, integer *ldx, real *ferr, real *berr,
  663. complex *work, real *rwork, integer *info)
  664. {
  665. /* System generated locals */
  666. integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
  667. x_offset, i__1, i__2, i__3, i__4, i__5;
  668. real r__1, r__2, r__3, r__4;
  669. complex q__1;
  670. /* Local variables */
  671. integer kase;
  672. real safe1, safe2;
  673. integer i__, j, k;
  674. real s;
  675. extern logical lsame_(char *, char *);
  676. integer isave[3];
  677. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  678. complex *, integer *), caxpy_(integer *, complex *, complex *,
  679. integer *, complex *, integer *);
  680. integer count;
  681. logical upper;
  682. extern /* Subroutine */ void csymv_(char *, integer *, complex *, complex *
  683. , integer *, complex *, integer *, complex *, complex *, integer *
  684. ), clacn2_(integer *, complex *, complex *, real *,
  685. integer *, integer *);
  686. real xk;
  687. extern real slamch_(char *);
  688. integer nz;
  689. real safmin;
  690. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  691. real lstres;
  692. extern /* Subroutine */ void csytrs_(char *, integer *, integer *, complex
  693. *, integer *, integer *, complex *, integer *, integer *);
  694. real eps;
  695. /* -- LAPACK computational routine (version 3.7.0) -- */
  696. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  697. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  698. /* December 2016 */
  699. /* ===================================================================== */
  700. /* Test the input parameters. */
  701. /* Parameter adjustments */
  702. a_dim1 = *lda;
  703. a_offset = 1 + a_dim1 * 1;
  704. a -= a_offset;
  705. af_dim1 = *ldaf;
  706. af_offset = 1 + af_dim1 * 1;
  707. af -= af_offset;
  708. --ipiv;
  709. b_dim1 = *ldb;
  710. b_offset = 1 + b_dim1 * 1;
  711. b -= b_offset;
  712. x_dim1 = *ldx;
  713. x_offset = 1 + x_dim1 * 1;
  714. x -= x_offset;
  715. --ferr;
  716. --berr;
  717. --work;
  718. --rwork;
  719. /* Function Body */
  720. *info = 0;
  721. upper = lsame_(uplo, "U");
  722. if (! upper && ! lsame_(uplo, "L")) {
  723. *info = -1;
  724. } else if (*n < 0) {
  725. *info = -2;
  726. } else if (*nrhs < 0) {
  727. *info = -3;
  728. } else if (*lda < f2cmax(1,*n)) {
  729. *info = -5;
  730. } else if (*ldaf < f2cmax(1,*n)) {
  731. *info = -7;
  732. } else if (*ldb < f2cmax(1,*n)) {
  733. *info = -10;
  734. } else if (*ldx < f2cmax(1,*n)) {
  735. *info = -12;
  736. }
  737. if (*info != 0) {
  738. i__1 = -(*info);
  739. xerbla_("CSYRFS", &i__1, (ftnlen)6);
  740. return;
  741. }
  742. /* Quick return if possible */
  743. if (*n == 0 || *nrhs == 0) {
  744. i__1 = *nrhs;
  745. for (j = 1; j <= i__1; ++j) {
  746. ferr[j] = 0.f;
  747. berr[j] = 0.f;
  748. /* L10: */
  749. }
  750. return;
  751. }
  752. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  753. nz = *n + 1;
  754. eps = slamch_("Epsilon");
  755. safmin = slamch_("Safe minimum");
  756. safe1 = nz * safmin;
  757. safe2 = safe1 / eps;
  758. /* Do for each right hand side */
  759. i__1 = *nrhs;
  760. for (j = 1; j <= i__1; ++j) {
  761. count = 1;
  762. lstres = 3.f;
  763. L20:
  764. /* Loop until stopping criterion is satisfied. */
  765. /* Compute residual R = B - A * X */
  766. ccopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
  767. q__1.r = -1.f, q__1.i = 0.f;
  768. csymv_(uplo, n, &q__1, &a[a_offset], lda, &x[j * x_dim1 + 1], &c__1, &
  769. c_b1, &work[1], &c__1);
  770. /* Compute componentwise relative backward error from formula */
  771. /* f2cmax(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
  772. /* where abs(Z) is the componentwise absolute value of the matrix */
  773. /* or vector Z. If the i-th component of the denominator is less */
  774. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  775. /* numerator and denominator before dividing. */
  776. i__2 = *n;
  777. for (i__ = 1; i__ <= i__2; ++i__) {
  778. i__3 = i__ + j * b_dim1;
  779. rwork[i__] = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[
  780. i__ + j * b_dim1]), abs(r__2));
  781. /* L30: */
  782. }
  783. /* Compute abs(A)*abs(X) + abs(B). */
  784. if (upper) {
  785. i__2 = *n;
  786. for (k = 1; k <= i__2; ++k) {
  787. s = 0.f;
  788. i__3 = k + j * x_dim1;
  789. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[k + j *
  790. x_dim1]), abs(r__2));
  791. i__3 = k - 1;
  792. for (i__ = 1; i__ <= i__3; ++i__) {
  793. i__4 = i__ + k * a_dim1;
  794. rwork[i__] += ((r__1 = a[i__4].r, abs(r__1)) + (r__2 =
  795. r_imag(&a[i__ + k * a_dim1]), abs(r__2))) * xk;
  796. i__4 = i__ + k * a_dim1;
  797. i__5 = i__ + j * x_dim1;
  798. s += ((r__1 = a[i__4].r, abs(r__1)) + (r__2 = r_imag(&a[
  799. i__ + k * a_dim1]), abs(r__2))) * ((r__3 = x[i__5]
  800. .r, abs(r__3)) + (r__4 = r_imag(&x[i__ + j *
  801. x_dim1]), abs(r__4)));
  802. /* L40: */
  803. }
  804. i__3 = k + k * a_dim1;
  805. rwork[k] = rwork[k] + ((r__1 = a[i__3].r, abs(r__1)) + (r__2 =
  806. r_imag(&a[k + k * a_dim1]), abs(r__2))) * xk + s;
  807. /* L50: */
  808. }
  809. } else {
  810. i__2 = *n;
  811. for (k = 1; k <= i__2; ++k) {
  812. s = 0.f;
  813. i__3 = k + j * x_dim1;
  814. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[k + j *
  815. x_dim1]), abs(r__2));
  816. i__3 = k + k * a_dim1;
  817. rwork[k] += ((r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&
  818. a[k + k * a_dim1]), abs(r__2))) * xk;
  819. i__3 = *n;
  820. for (i__ = k + 1; i__ <= i__3; ++i__) {
  821. i__4 = i__ + k * a_dim1;
  822. rwork[i__] += ((r__1 = a[i__4].r, abs(r__1)) + (r__2 =
  823. r_imag(&a[i__ + k * a_dim1]), abs(r__2))) * xk;
  824. i__4 = i__ + k * a_dim1;
  825. i__5 = i__ + j * x_dim1;
  826. s += ((r__1 = a[i__4].r, abs(r__1)) + (r__2 = r_imag(&a[
  827. i__ + k * a_dim1]), abs(r__2))) * ((r__3 = x[i__5]
  828. .r, abs(r__3)) + (r__4 = r_imag(&x[i__ + j *
  829. x_dim1]), abs(r__4)));
  830. /* L60: */
  831. }
  832. rwork[k] += s;
  833. /* L70: */
  834. }
  835. }
  836. s = 0.f;
  837. i__2 = *n;
  838. for (i__ = 1; i__ <= i__2; ++i__) {
  839. if (rwork[i__] > safe2) {
  840. /* Computing MAX */
  841. i__3 = i__;
  842. r__3 = s, r__4 = ((r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  843. r_imag(&work[i__]), abs(r__2))) / rwork[i__];
  844. s = f2cmax(r__3,r__4);
  845. } else {
  846. /* Computing MAX */
  847. i__3 = i__;
  848. r__3 = s, r__4 = ((r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  849. r_imag(&work[i__]), abs(r__2)) + safe1) / (rwork[i__]
  850. + safe1);
  851. s = f2cmax(r__3,r__4);
  852. }
  853. /* L80: */
  854. }
  855. berr[j] = s;
  856. /* Test stopping criterion. Continue iterating if */
  857. /* 1) The residual BERR(J) is larger than machine epsilon, and */
  858. /* 2) BERR(J) decreased by at least a factor of 2 during the */
  859. /* last iteration, and */
  860. /* 3) At most ITMAX iterations tried. */
  861. if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) {
  862. /* Update solution and try again. */
  863. csytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1],
  864. n, info);
  865. caxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
  866. lstres = berr[j];
  867. ++count;
  868. goto L20;
  869. }
  870. /* Bound error from formula */
  871. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  872. /* norm( abs(inv(A))* */
  873. /* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
  874. /* where */
  875. /* norm(Z) is the magnitude of the largest component of Z */
  876. /* inv(A) is the inverse of A */
  877. /* abs(Z) is the componentwise absolute value of the matrix or */
  878. /* vector Z */
  879. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  880. /* EPS is machine epsilon */
  881. /* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
  882. /* is incremented by SAFE1 if the i-th component of */
  883. /* abs(A)*abs(X) + abs(B) is less than SAFE2. */
  884. /* Use CLACN2 to estimate the infinity-norm of the matrix */
  885. /* inv(A) * diag(W), */
  886. /* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
  887. i__2 = *n;
  888. for (i__ = 1; i__ <= i__2; ++i__) {
  889. if (rwork[i__] > safe2) {
  890. i__3 = i__;
  891. rwork[i__] = (r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  892. r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
  893. ;
  894. } else {
  895. i__3 = i__;
  896. rwork[i__] = (r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  897. r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
  898. + safe1;
  899. }
  900. /* L90: */
  901. }
  902. kase = 0;
  903. L100:
  904. clacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
  905. if (kase != 0) {
  906. if (kase == 1) {
  907. /* Multiply by diag(W)*inv(A**T). */
  908. csytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[
  909. 1], n, info);
  910. i__2 = *n;
  911. for (i__ = 1; i__ <= i__2; ++i__) {
  912. i__3 = i__;
  913. i__4 = i__;
  914. i__5 = i__;
  915. q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4]
  916. * work[i__5].i;
  917. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  918. /* L110: */
  919. }
  920. } else if (kase == 2) {
  921. /* Multiply by inv(A)*diag(W). */
  922. i__2 = *n;
  923. for (i__ = 1; i__ <= i__2; ++i__) {
  924. i__3 = i__;
  925. i__4 = i__;
  926. i__5 = i__;
  927. q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4]
  928. * work[i__5].i;
  929. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  930. /* L120: */
  931. }
  932. csytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[
  933. 1], n, info);
  934. }
  935. goto L100;
  936. }
  937. /* Normalize error. */
  938. lstres = 0.f;
  939. i__2 = *n;
  940. for (i__ = 1; i__ <= i__2; ++i__) {
  941. /* Computing MAX */
  942. i__3 = i__ + j * x_dim1;
  943. r__3 = lstres, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 =
  944. r_imag(&x[i__ + j * x_dim1]), abs(r__2));
  945. lstres = f2cmax(r__3,r__4);
  946. /* L130: */
  947. }
  948. if (lstres != 0.f) {
  949. ferr[j] /= lstres;
  950. }
  951. /* L140: */
  952. }
  953. return;
  954. /* End of CSYRFS */
  955. } /* csyrfs_ */