You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbgst.c 80 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static complex c_b2 = {1.f,0.f};
  486. static integer c__1 = 1;
  487. /* > \brief \b CHBGST */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download CHBGST + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgst.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgst.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgst.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, */
  506. /* LDX, WORK, RWORK, INFO ) */
  507. /* CHARACTER UPLO, VECT */
  508. /* INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N */
  509. /* REAL RWORK( * ) */
  510. /* COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ), */
  511. /* $ X( LDX, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CHBGST reduces a complex Hermitian-definite banded generalized */
  518. /* > eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
  519. /* > such that C has the same bandwidth as A. */
  520. /* > */
  521. /* > B must have been previously factorized as S**H*S by CPBSTF, using a */
  522. /* > split Cholesky factorization. A is overwritten by C = X**H*A*X, where */
  523. /* > X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the */
  524. /* > bandwidth of A. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] VECT */
  529. /* > \verbatim */
  530. /* > VECT is CHARACTER*1 */
  531. /* > = 'N': do not form the transformation matrix X; */
  532. /* > = 'V': form X. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] UPLO */
  536. /* > \verbatim */
  537. /* > UPLO is CHARACTER*1 */
  538. /* > = 'U': Upper triangle of A is stored; */
  539. /* > = 'L': Lower triangle of A is stored. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N */
  543. /* > \verbatim */
  544. /* > N is INTEGER */
  545. /* > The order of the matrices A and B. N >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] KA */
  549. /* > \verbatim */
  550. /* > KA is INTEGER */
  551. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  552. /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] KB */
  556. /* > \verbatim */
  557. /* > KB is INTEGER */
  558. /* > The number of superdiagonals of the matrix B if UPLO = 'U', */
  559. /* > or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] AB */
  563. /* > \verbatim */
  564. /* > AB is COMPLEX array, dimension (LDAB,N) */
  565. /* > On entry, the upper or lower triangle of the Hermitian band */
  566. /* > matrix A, stored in the first ka+1 rows of the array. The */
  567. /* > j-th column of A is stored in the j-th column of the array AB */
  568. /* > as follows: */
  569. /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
  570. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */
  571. /* > */
  572. /* > On exit, the transformed matrix X**H*A*X, stored in the same */
  573. /* > format as A. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] LDAB */
  577. /* > \verbatim */
  578. /* > LDAB is INTEGER */
  579. /* > The leading dimension of the array AB. LDAB >= KA+1. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] BB */
  583. /* > \verbatim */
  584. /* > BB is COMPLEX array, dimension (LDBB,N) */
  585. /* > The banded factor S from the split Cholesky factorization of */
  586. /* > B, as returned by CPBSTF, stored in the first kb+1 rows of */
  587. /* > the array. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDBB */
  591. /* > \verbatim */
  592. /* > LDBB is INTEGER */
  593. /* > The leading dimension of the array BB. LDBB >= KB+1. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] X */
  597. /* > \verbatim */
  598. /* > X is COMPLEX array, dimension (LDX,N) */
  599. /* > If VECT = 'V', the n-by-n matrix X. */
  600. /* > If VECT = 'N', the array X is not referenced. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] LDX */
  604. /* > \verbatim */
  605. /* > LDX is INTEGER */
  606. /* > The leading dimension of the array X. */
  607. /* > LDX >= f2cmax(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] WORK */
  611. /* > \verbatim */
  612. /* > WORK is COMPLEX array, dimension (N) */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] RWORK */
  616. /* > \verbatim */
  617. /* > RWORK is REAL array, dimension (N) */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] INFO */
  621. /* > \verbatim */
  622. /* > INFO is INTEGER */
  623. /* > = 0: successful exit */
  624. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  625. /* > \endverbatim */
  626. /* Authors: */
  627. /* ======== */
  628. /* > \author Univ. of Tennessee */
  629. /* > \author Univ. of California Berkeley */
  630. /* > \author Univ. of Colorado Denver */
  631. /* > \author NAG Ltd. */
  632. /* > \date December 2016 */
  633. /* > \ingroup complexOTHERcomputational */
  634. /* ===================================================================== */
  635. /* Subroutine */ void chbgst_(char *vect, char *uplo, integer *n, integer *ka,
  636. integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb,
  637. complex *x, integer *ldx, complex *work, real *rwork, integer *info)
  638. {
  639. /* System generated locals */
  640. integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
  641. i__2, i__3, i__4, i__5, i__6, i__7, i__8;
  642. real r__1;
  643. complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8, q__9, q__10;
  644. /* Local variables */
  645. integer inca;
  646. extern /* Subroutine */ void crot_(integer *, complex *, integer *,
  647. complex *, integer *, real *, complex *);
  648. integer i__, j, k, l, m;
  649. extern /* Subroutine */ void cgerc_(integer *, integer *, complex *,
  650. complex *, integer *, complex *, integer *, complex *, integer *);
  651. complex t;
  652. extern logical lsame_(char *, char *);
  653. extern /* Subroutine */ void cgeru_(integer *, integer *, complex *,
  654. complex *, integer *, complex *, integer *, complex *, integer *);
  655. integer i0, i1;
  656. logical upper;
  657. integer i2, j1, j2;
  658. logical wantx;
  659. extern /* Subroutine */ void clar2v_(integer *, complex *, complex *,
  660. complex *, integer *, real *, complex *, integer *);
  661. complex ra;
  662. extern /* Subroutine */ void clacgv_(integer *, complex *, integer *);
  663. integer nr, nx;
  664. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  665. *), claset_(char *, integer *, integer *, complex *, complex *,
  666. complex *, integer *), clartg_(complex *, complex *, real
  667. *, complex *, complex *);
  668. extern int xerbla_(char *, integer *, ftnlen);
  669. extern void clargv_(integer *, complex *, integer *, complex *, integer *,
  670. real *, integer *);
  671. logical update;
  672. extern /* Subroutine */ void clartv_(integer *, complex *, integer *,
  673. complex *, integer *, real *, complex *, integer *);
  674. integer ka1, kb1;
  675. complex ra1;
  676. integer j1t, j2t;
  677. real bii;
  678. integer kbt, nrt;
  679. /* -- LAPACK computational routine (version 3.7.0) -- */
  680. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  681. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  682. /* December 2016 */
  683. /* ===================================================================== */
  684. /* Test the input parameters */
  685. /* Parameter adjustments */
  686. ab_dim1 = *ldab;
  687. ab_offset = 1 + ab_dim1 * 1;
  688. ab -= ab_offset;
  689. bb_dim1 = *ldbb;
  690. bb_offset = 1 + bb_dim1 * 1;
  691. bb -= bb_offset;
  692. x_dim1 = *ldx;
  693. x_offset = 1 + x_dim1 * 1;
  694. x -= x_offset;
  695. --work;
  696. --rwork;
  697. /* Function Body */
  698. wantx = lsame_(vect, "V");
  699. upper = lsame_(uplo, "U");
  700. ka1 = *ka + 1;
  701. kb1 = *kb + 1;
  702. *info = 0;
  703. if (! wantx && ! lsame_(vect, "N")) {
  704. *info = -1;
  705. } else if (! upper && ! lsame_(uplo, "L")) {
  706. *info = -2;
  707. } else if (*n < 0) {
  708. *info = -3;
  709. } else if (*ka < 0) {
  710. *info = -4;
  711. } else if (*kb < 0 || *kb > *ka) {
  712. *info = -5;
  713. } else if (*ldab < *ka + 1) {
  714. *info = -7;
  715. } else if (*ldbb < *kb + 1) {
  716. *info = -9;
  717. } else if (*ldx < 1 || wantx && *ldx < f2cmax(1,*n)) {
  718. *info = -11;
  719. }
  720. if (*info != 0) {
  721. i__1 = -(*info);
  722. xerbla_("CHBGST", &i__1, (ftnlen)6);
  723. return;
  724. }
  725. /* Quick return if possible */
  726. if (*n == 0) {
  727. return;
  728. }
  729. inca = *ldab * ka1;
  730. /* Initialize X to the unit matrix, if needed */
  731. if (wantx) {
  732. claset_("Full", n, n, &c_b1, &c_b2, &x[x_offset], ldx);
  733. }
  734. /* Set M to the splitting point m. It must be the same value as is */
  735. /* used in CPBSTF. The chosen value allows the arrays WORK and RWORK */
  736. /* to be of dimension (N). */
  737. m = (*n + *kb) / 2;
  738. /* The routine works in two phases, corresponding to the two halves */
  739. /* of the split Cholesky factorization of B as S**H*S where */
  740. /* S = ( U ) */
  741. /* ( M L ) */
  742. /* with U upper triangular of order m, and L lower triangular of */
  743. /* order n-m. S has the same bandwidth as B. */
  744. /* S is treated as a product of elementary matrices: */
  745. /* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
  746. /* where S(i) is determined by the i-th row of S. */
  747. /* In phase 1, the index i takes the values n, n-1, ... , m+1; */
  748. /* in phase 2, it takes the values 1, 2, ... , m. */
  749. /* For each value of i, the current matrix A is updated by forming */
  750. /* inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside */
  751. /* the band of A. The bulge is then pushed down toward the bottom of */
  752. /* A in phase 1, and up toward the top of A in phase 2, by applying */
  753. /* plane rotations. */
  754. /* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
  755. /* of them are linearly independent, so annihilating a bulge requires */
  756. /* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
  757. /* set of kb-1 rotations, and a 2nd set of kb rotations. */
  758. /* Wherever possible, rotations are generated and applied in vector */
  759. /* operations of length NR between the indices J1 and J2 (sometimes */
  760. /* replaced by modified values NRT, J1T or J2T). */
  761. /* The real cosines and complex sines of the rotations are stored in */
  762. /* the arrays RWORK and WORK, those of the 1st set in elements */
  763. /* 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n. */
  764. /* The bulges are not formed explicitly; nonzero elements outside the */
  765. /* band are created only when they are required for generating new */
  766. /* rotations; they are stored in the array WORK, in positions where */
  767. /* they are later overwritten by the sines of the rotations which */
  768. /* annihilate them. */
  769. /* **************************** Phase 1 ***************************** */
  770. /* The logical structure of this phase is: */
  771. /* UPDATE = .TRUE. */
  772. /* DO I = N, M + 1, -1 */
  773. /* use S(i) to update A and create a new bulge */
  774. /* apply rotations to push all bulges KA positions downward */
  775. /* END DO */
  776. /* UPDATE = .FALSE. */
  777. /* DO I = M + KA + 1, N - 1 */
  778. /* apply rotations to push all bulges KA positions downward */
  779. /* END DO */
  780. /* To avoid duplicating code, the two loops are merged. */
  781. update = TRUE_;
  782. i__ = *n + 1;
  783. L10:
  784. if (update) {
  785. --i__;
  786. /* Computing MIN */
  787. i__1 = *kb, i__2 = i__ - 1;
  788. kbt = f2cmin(i__1,i__2);
  789. i0 = i__ - 1;
  790. /* Computing MIN */
  791. i__1 = *n, i__2 = i__ + *ka;
  792. i1 = f2cmin(i__1,i__2);
  793. i2 = i__ - kbt + ka1;
  794. if (i__ < m + 1) {
  795. update = FALSE_;
  796. ++i__;
  797. i0 = m;
  798. if (*ka == 0) {
  799. goto L480;
  800. }
  801. goto L10;
  802. }
  803. } else {
  804. i__ += *ka;
  805. if (i__ > *n - 1) {
  806. goto L480;
  807. }
  808. }
  809. if (upper) {
  810. /* Transform A, working with the upper triangle */
  811. if (update) {
  812. /* Form inv(S(i))**H * A * inv(S(i)) */
  813. i__1 = kb1 + i__ * bb_dim1;
  814. bii = bb[i__1].r;
  815. i__1 = ka1 + i__ * ab_dim1;
  816. i__2 = ka1 + i__ * ab_dim1;
  817. r__1 = ab[i__2].r / bii / bii;
  818. ab[i__1].r = r__1, ab[i__1].i = 0.f;
  819. i__1 = i1;
  820. for (j = i__ + 1; j <= i__1; ++j) {
  821. i__2 = i__ - j + ka1 + j * ab_dim1;
  822. i__3 = i__ - j + ka1 + j * ab_dim1;
  823. q__1.r = ab[i__3].r / bii, q__1.i = ab[i__3].i / bii;
  824. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  825. /* L20: */
  826. }
  827. /* Computing MAX */
  828. i__1 = 1, i__2 = i__ - *ka;
  829. i__3 = i__ - 1;
  830. for (j = f2cmax(i__1,i__2); j <= i__3; ++j) {
  831. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  832. i__2 = j - i__ + ka1 + i__ * ab_dim1;
  833. q__1.r = ab[i__2].r / bii, q__1.i = ab[i__2].i / bii;
  834. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  835. /* L30: */
  836. }
  837. i__3 = i__ - 1;
  838. for (k = i__ - kbt; k <= i__3; ++k) {
  839. i__1 = k;
  840. for (j = i__ - kbt; j <= i__1; ++j) {
  841. i__2 = j - k + ka1 + k * ab_dim1;
  842. i__4 = j - k + ka1 + k * ab_dim1;
  843. i__5 = j - i__ + kb1 + i__ * bb_dim1;
  844. r_cnjg(&q__5, &ab[k - i__ + ka1 + i__ * ab_dim1]);
  845. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  846. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  847. q__5.r;
  848. q__3.r = ab[i__4].r - q__4.r, q__3.i = ab[i__4].i -
  849. q__4.i;
  850. r_cnjg(&q__7, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  851. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  852. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  853. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  854. .r;
  855. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  856. i__7 = ka1 + i__ * ab_dim1;
  857. r__1 = ab[i__7].r;
  858. i__8 = j - i__ + kb1 + i__ * bb_dim1;
  859. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  860. r_cnjg(&q__10, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  861. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  862. q__9.r * q__10.i + q__9.i * q__10.r;
  863. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  864. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  865. /* L40: */
  866. }
  867. /* Computing MAX */
  868. i__1 = 1, i__2 = i__ - *ka;
  869. i__4 = i__ - kbt - 1;
  870. for (j = f2cmax(i__1,i__2); j <= i__4; ++j) {
  871. i__1 = j - k + ka1 + k * ab_dim1;
  872. i__2 = j - k + ka1 + k * ab_dim1;
  873. r_cnjg(&q__3, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  874. i__5 = j - i__ + ka1 + i__ * ab_dim1;
  875. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  876. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  877. .r;
  878. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  879. q__2.i;
  880. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  881. /* L50: */
  882. }
  883. /* L60: */
  884. }
  885. i__3 = i1;
  886. for (j = i__; j <= i__3; ++j) {
  887. /* Computing MAX */
  888. i__4 = j - *ka, i__1 = i__ - kbt;
  889. i__2 = i__ - 1;
  890. for (k = f2cmax(i__4,i__1); k <= i__2; ++k) {
  891. i__4 = k - j + ka1 + j * ab_dim1;
  892. i__1 = k - j + ka1 + j * ab_dim1;
  893. i__5 = k - i__ + kb1 + i__ * bb_dim1;
  894. i__6 = i__ - j + ka1 + j * ab_dim1;
  895. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  896. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  897. * ab[i__6].r;
  898. q__1.r = ab[i__1].r - q__2.r, q__1.i = ab[i__1].i -
  899. q__2.i;
  900. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  901. /* L70: */
  902. }
  903. /* L80: */
  904. }
  905. if (wantx) {
  906. /* post-multiply X by inv(S(i)) */
  907. i__3 = *n - m;
  908. r__1 = 1.f / bii;
  909. csscal_(&i__3, &r__1, &x[m + 1 + i__ * x_dim1], &c__1);
  910. if (kbt > 0) {
  911. i__3 = *n - m;
  912. q__1.r = -1.f, q__1.i = 0.f;
  913. cgerc_(&i__3, &kbt, &q__1, &x[m + 1 + i__ * x_dim1], &
  914. c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
  915. + 1 + (i__ - kbt) * x_dim1], ldx);
  916. }
  917. }
  918. /* store a(i,i1) in RA1 for use in next loop over K */
  919. i__3 = i__ - i1 + ka1 + i1 * ab_dim1;
  920. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  921. }
  922. /* Generate and apply vectors of rotations to chase all the */
  923. /* existing bulges KA positions down toward the bottom of the */
  924. /* band */
  925. i__3 = *kb - 1;
  926. for (k = 1; k <= i__3; ++k) {
  927. if (update) {
  928. /* Determine the rotations which would annihilate the bulge */
  929. /* which has in theory just been created */
  930. if (i__ - k + *ka < *n && i__ - k > 1) {
  931. /* generate rotation to annihilate a(i,i-k+ka+1) */
  932. clartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
  933. rwork[i__ - k + *ka - m], &work[i__ - k + *ka - m]
  934. , &ra);
  935. /* create nonzero element a(i-k,i-k+ka+1) outside the */
  936. /* band and store it in WORK(i-k) */
  937. i__2 = kb1 - k + i__ * bb_dim1;
  938. q__2.r = -bb[i__2].r, q__2.i = -bb[i__2].i;
  939. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  940. * ra1.i + q__2.i * ra1.r;
  941. t.r = q__1.r, t.i = q__1.i;
  942. i__2 = i__ - k;
  943. i__4 = i__ - k + *ka - m;
  944. q__2.r = rwork[i__4] * t.r, q__2.i = rwork[i__4] * t.i;
  945. r_cnjg(&q__4, &work[i__ - k + *ka - m]);
  946. i__1 = (i__ - k + *ka) * ab_dim1 + 1;
  947. q__3.r = q__4.r * ab[i__1].r - q__4.i * ab[i__1].i,
  948. q__3.i = q__4.r * ab[i__1].i + q__4.i * ab[i__1]
  949. .r;
  950. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  951. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  952. i__2 = (i__ - k + *ka) * ab_dim1 + 1;
  953. i__4 = i__ - k + *ka - m;
  954. q__2.r = work[i__4].r * t.r - work[i__4].i * t.i, q__2.i =
  955. work[i__4].r * t.i + work[i__4].i * t.r;
  956. i__1 = i__ - k + *ka - m;
  957. i__5 = (i__ - k + *ka) * ab_dim1 + 1;
  958. q__3.r = rwork[i__1] * ab[i__5].r, q__3.i = rwork[i__1] *
  959. ab[i__5].i;
  960. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  961. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  962. ra1.r = ra.r, ra1.i = ra.i;
  963. }
  964. }
  965. /* Computing MAX */
  966. i__2 = 1, i__4 = k - i0 + 2;
  967. j2 = i__ - k - 1 + f2cmax(i__2,i__4) * ka1;
  968. nr = (*n - j2 + *ka) / ka1;
  969. j1 = j2 + (nr - 1) * ka1;
  970. if (update) {
  971. /* Computing MAX */
  972. i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
  973. j2t = f2cmax(i__2,i__4);
  974. } else {
  975. j2t = j2;
  976. }
  977. nrt = (*n - j2t + *ka) / ka1;
  978. i__2 = j1;
  979. i__4 = ka1;
  980. for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
  981. /* create nonzero element a(j-ka,j+1) outside the band */
  982. /* and store it in WORK(j-m) */
  983. i__1 = j - m;
  984. i__5 = j - m;
  985. i__6 = (j + 1) * ab_dim1 + 1;
  986. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  987. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  988. * ab[i__6].r;
  989. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  990. i__1 = (j + 1) * ab_dim1 + 1;
  991. i__5 = j - m;
  992. i__6 = (j + 1) * ab_dim1 + 1;
  993. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  994. i__6].i;
  995. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  996. /* L90: */
  997. }
  998. /* generate rotations in 1st set to annihilate elements which */
  999. /* have been created outside the band */
  1000. if (nrt > 0) {
  1001. clargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
  1002. ka1, &rwork[j2t - m], &ka1);
  1003. }
  1004. if (nr > 0) {
  1005. /* apply rotations in 1st set from the right */
  1006. i__4 = *ka - 1;
  1007. for (l = 1; l <= i__4; ++l) {
  1008. clartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1009. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 - m],
  1010. &work[j2 - m], &ka1);
  1011. /* L100: */
  1012. }
  1013. /* apply rotations in 1st set from both sides to diagonal */
  1014. /* blocks */
  1015. clar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1016. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1017. rwork[j2 - m], &work[j2 - m], &ka1);
  1018. clacgv_(&nr, &work[j2 - m], &ka1);
  1019. }
  1020. /* start applying rotations in 1st set from the left */
  1021. i__4 = *kb - k + 1;
  1022. for (l = *ka - 1; l >= i__4; --l) {
  1023. nrt = (*n - j2 + l) / ka1;
  1024. if (nrt > 0) {
  1025. clartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1026. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1027. rwork[j2 - m], &work[j2 - m], &ka1);
  1028. }
  1029. /* L110: */
  1030. }
  1031. if (wantx) {
  1032. /* post-multiply X by product of rotations in 1st set */
  1033. i__4 = j1;
  1034. i__2 = ka1;
  1035. for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
  1036. i__1 = *n - m;
  1037. r_cnjg(&q__1, &work[j - m]);
  1038. crot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1039. + 1) * x_dim1], &c__1, &rwork[j - m], &q__1);
  1040. /* L120: */
  1041. }
  1042. }
  1043. /* L130: */
  1044. }
  1045. if (update) {
  1046. if (i2 <= *n && kbt > 0) {
  1047. /* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
  1048. /* band and store it in WORK(i-kbt) */
  1049. i__3 = i__ - kbt;
  1050. i__2 = kb1 - kbt + i__ * bb_dim1;
  1051. q__2.r = -bb[i__2].r, q__2.i = -bb[i__2].i;
  1052. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  1053. ra1.i + q__2.i * ra1.r;
  1054. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1055. }
  1056. }
  1057. for (k = *kb; k >= 1; --k) {
  1058. if (update) {
  1059. /* Computing MAX */
  1060. i__3 = 2, i__2 = k - i0 + 1;
  1061. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1062. } else {
  1063. /* Computing MAX */
  1064. i__3 = 1, i__2 = k - i0 + 1;
  1065. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1066. }
  1067. /* finish applying rotations in 2nd set from the left */
  1068. for (l = *kb - k; l >= 1; --l) {
  1069. nrt = (*n - j2 + *ka + l) / ka1;
  1070. if (nrt > 0) {
  1071. clartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
  1072. l + 1 + (j2 - l + 1) * ab_dim1], &inca, &rwork[j2
  1073. - *ka], &work[j2 - *ka], &ka1);
  1074. }
  1075. /* L140: */
  1076. }
  1077. nr = (*n - j2 + *ka) / ka1;
  1078. j1 = j2 + (nr - 1) * ka1;
  1079. i__3 = j2;
  1080. i__2 = -ka1;
  1081. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1082. i__4 = j;
  1083. i__1 = j - *ka;
  1084. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1085. rwork[j] = rwork[j - *ka];
  1086. /* L150: */
  1087. }
  1088. i__2 = j1;
  1089. i__3 = ka1;
  1090. for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
  1091. /* create nonzero element a(j-ka,j+1) outside the band */
  1092. /* and store it in WORK(j) */
  1093. i__4 = j;
  1094. i__1 = j;
  1095. i__5 = (j + 1) * ab_dim1 + 1;
  1096. q__1.r = work[i__1].r * ab[i__5].r - work[i__1].i * ab[i__5]
  1097. .i, q__1.i = work[i__1].r * ab[i__5].i + work[i__1].i
  1098. * ab[i__5].r;
  1099. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1100. i__4 = (j + 1) * ab_dim1 + 1;
  1101. i__1 = j;
  1102. i__5 = (j + 1) * ab_dim1 + 1;
  1103. q__1.r = rwork[i__1] * ab[i__5].r, q__1.i = rwork[i__1] * ab[
  1104. i__5].i;
  1105. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1106. /* L160: */
  1107. }
  1108. if (update) {
  1109. if (i__ - k < *n - *ka && k <= kbt) {
  1110. i__3 = i__ - k + *ka;
  1111. i__2 = i__ - k;
  1112. work[i__3].r = work[i__2].r, work[i__3].i = work[i__2].i;
  1113. }
  1114. }
  1115. /* L170: */
  1116. }
  1117. for (k = *kb; k >= 1; --k) {
  1118. /* Computing MAX */
  1119. i__3 = 1, i__2 = k - i0 + 1;
  1120. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1121. nr = (*n - j2 + *ka) / ka1;
  1122. j1 = j2 + (nr - 1) * ka1;
  1123. if (nr > 0) {
  1124. /* generate rotations in 2nd set to annihilate elements */
  1125. /* which have been created outside the band */
  1126. clargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
  1127. rwork[j2], &ka1);
  1128. /* apply rotations in 2nd set from the right */
  1129. i__3 = *ka - 1;
  1130. for (l = 1; l <= i__3; ++l) {
  1131. clartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1132. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2], &
  1133. work[j2], &ka1);
  1134. /* L180: */
  1135. }
  1136. /* apply rotations in 2nd set from both sides to diagonal */
  1137. /* blocks */
  1138. clar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1139. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1140. rwork[j2], &work[j2], &ka1);
  1141. clacgv_(&nr, &work[j2], &ka1);
  1142. }
  1143. /* start applying rotations in 2nd set from the left */
  1144. i__3 = *kb - k + 1;
  1145. for (l = *ka - 1; l >= i__3; --l) {
  1146. nrt = (*n - j2 + l) / ka1;
  1147. if (nrt > 0) {
  1148. clartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1149. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1150. rwork[j2], &work[j2], &ka1);
  1151. }
  1152. /* L190: */
  1153. }
  1154. if (wantx) {
  1155. /* post-multiply X by product of rotations in 2nd set */
  1156. i__3 = j1;
  1157. i__2 = ka1;
  1158. for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1159. i__4 = *n - m;
  1160. r_cnjg(&q__1, &work[j]);
  1161. crot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1162. + 1) * x_dim1], &c__1, &rwork[j], &q__1);
  1163. /* L200: */
  1164. }
  1165. }
  1166. /* L210: */
  1167. }
  1168. i__2 = *kb - 1;
  1169. for (k = 1; k <= i__2; ++k) {
  1170. /* Computing MAX */
  1171. i__3 = 1, i__4 = k - i0 + 2;
  1172. j2 = i__ - k - 1 + f2cmax(i__3,i__4) * ka1;
  1173. /* finish applying rotations in 1st set from the left */
  1174. for (l = *kb - k; l >= 1; --l) {
  1175. nrt = (*n - j2 + l) / ka1;
  1176. if (nrt > 0) {
  1177. clartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1178. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1179. rwork[j2 - m], &work[j2 - m], &ka1);
  1180. }
  1181. /* L220: */
  1182. }
  1183. /* L230: */
  1184. }
  1185. if (*kb > 1) {
  1186. i__2 = j2 + *ka;
  1187. for (j = *n - 1; j >= i__2; --j) {
  1188. rwork[j - m] = rwork[j - *ka - m];
  1189. i__3 = j - m;
  1190. i__4 = j - *ka - m;
  1191. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1192. /* L240: */
  1193. }
  1194. }
  1195. } else {
  1196. /* Transform A, working with the lower triangle */
  1197. if (update) {
  1198. /* Form inv(S(i))**H * A * inv(S(i)) */
  1199. i__2 = i__ * bb_dim1 + 1;
  1200. bii = bb[i__2].r;
  1201. i__2 = i__ * ab_dim1 + 1;
  1202. i__3 = i__ * ab_dim1 + 1;
  1203. r__1 = ab[i__3].r / bii / bii;
  1204. ab[i__2].r = r__1, ab[i__2].i = 0.f;
  1205. i__2 = i1;
  1206. for (j = i__ + 1; j <= i__2; ++j) {
  1207. i__3 = j - i__ + 1 + i__ * ab_dim1;
  1208. i__4 = j - i__ + 1 + i__ * ab_dim1;
  1209. q__1.r = ab[i__4].r / bii, q__1.i = ab[i__4].i / bii;
  1210. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  1211. /* L250: */
  1212. }
  1213. /* Computing MAX */
  1214. i__2 = 1, i__3 = i__ - *ka;
  1215. i__4 = i__ - 1;
  1216. for (j = f2cmax(i__2,i__3); j <= i__4; ++j) {
  1217. i__2 = i__ - j + 1 + j * ab_dim1;
  1218. i__3 = i__ - j + 1 + j * ab_dim1;
  1219. q__1.r = ab[i__3].r / bii, q__1.i = ab[i__3].i / bii;
  1220. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1221. /* L260: */
  1222. }
  1223. i__4 = i__ - 1;
  1224. for (k = i__ - kbt; k <= i__4; ++k) {
  1225. i__2 = k;
  1226. for (j = i__ - kbt; j <= i__2; ++j) {
  1227. i__3 = k - j + 1 + j * ab_dim1;
  1228. i__1 = k - j + 1 + j * ab_dim1;
  1229. i__5 = i__ - j + 1 + j * bb_dim1;
  1230. r_cnjg(&q__5, &ab[i__ - k + 1 + k * ab_dim1]);
  1231. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  1232. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  1233. q__5.r;
  1234. q__3.r = ab[i__1].r - q__4.r, q__3.i = ab[i__1].i -
  1235. q__4.i;
  1236. r_cnjg(&q__7, &bb[i__ - k + 1 + k * bb_dim1]);
  1237. i__6 = i__ - j + 1 + j * ab_dim1;
  1238. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  1239. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  1240. .r;
  1241. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  1242. i__7 = i__ * ab_dim1 + 1;
  1243. r__1 = ab[i__7].r;
  1244. i__8 = i__ - j + 1 + j * bb_dim1;
  1245. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  1246. r_cnjg(&q__10, &bb[i__ - k + 1 + k * bb_dim1]);
  1247. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  1248. q__9.r * q__10.i + q__9.i * q__10.r;
  1249. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  1250. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  1251. /* L270: */
  1252. }
  1253. /* Computing MAX */
  1254. i__2 = 1, i__3 = i__ - *ka;
  1255. i__1 = i__ - kbt - 1;
  1256. for (j = f2cmax(i__2,i__3); j <= i__1; ++j) {
  1257. i__2 = k - j + 1 + j * ab_dim1;
  1258. i__3 = k - j + 1 + j * ab_dim1;
  1259. r_cnjg(&q__3, &bb[i__ - k + 1 + k * bb_dim1]);
  1260. i__5 = i__ - j + 1 + j * ab_dim1;
  1261. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  1262. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  1263. .r;
  1264. q__1.r = ab[i__3].r - q__2.r, q__1.i = ab[i__3].i -
  1265. q__2.i;
  1266. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1267. /* L280: */
  1268. }
  1269. /* L290: */
  1270. }
  1271. i__4 = i1;
  1272. for (j = i__; j <= i__4; ++j) {
  1273. /* Computing MAX */
  1274. i__1 = j - *ka, i__2 = i__ - kbt;
  1275. i__3 = i__ - 1;
  1276. for (k = f2cmax(i__1,i__2); k <= i__3; ++k) {
  1277. i__1 = j - k + 1 + k * ab_dim1;
  1278. i__2 = j - k + 1 + k * ab_dim1;
  1279. i__5 = i__ - k + 1 + k * bb_dim1;
  1280. i__6 = j - i__ + 1 + i__ * ab_dim1;
  1281. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1282. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1283. * ab[i__6].r;
  1284. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  1285. q__2.i;
  1286. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1287. /* L300: */
  1288. }
  1289. /* L310: */
  1290. }
  1291. if (wantx) {
  1292. /* post-multiply X by inv(S(i)) */
  1293. i__4 = *n - m;
  1294. r__1 = 1.f / bii;
  1295. csscal_(&i__4, &r__1, &x[m + 1 + i__ * x_dim1], &c__1);
  1296. if (kbt > 0) {
  1297. i__4 = *n - m;
  1298. q__1.r = -1.f, q__1.i = 0.f;
  1299. i__3 = *ldbb - 1;
  1300. cgeru_(&i__4, &kbt, &q__1, &x[m + 1 + i__ * x_dim1], &
  1301. c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
  1302. &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
  1303. }
  1304. }
  1305. /* store a(i1,i) in RA1 for use in next loop over K */
  1306. i__4 = i1 - i__ + 1 + i__ * ab_dim1;
  1307. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  1308. }
  1309. /* Generate and apply vectors of rotations to chase all the */
  1310. /* existing bulges KA positions down toward the bottom of the */
  1311. /* band */
  1312. i__4 = *kb - 1;
  1313. for (k = 1; k <= i__4; ++k) {
  1314. if (update) {
  1315. /* Determine the rotations which would annihilate the bulge */
  1316. /* which has in theory just been created */
  1317. if (i__ - k + *ka < *n && i__ - k > 1) {
  1318. /* generate rotation to annihilate a(i-k+ka+1,i) */
  1319. clartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &rwork[i__ -
  1320. k + *ka - m], &work[i__ - k + *ka - m], &ra);
  1321. /* create nonzero element a(i-k+ka+1,i-k) outside the */
  1322. /* band and store it in WORK(i-k) */
  1323. i__3 = k + 1 + (i__ - k) * bb_dim1;
  1324. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  1325. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  1326. * ra1.i + q__2.i * ra1.r;
  1327. t.r = q__1.r, t.i = q__1.i;
  1328. i__3 = i__ - k;
  1329. i__1 = i__ - k + *ka - m;
  1330. q__2.r = rwork[i__1] * t.r, q__2.i = rwork[i__1] * t.i;
  1331. r_cnjg(&q__4, &work[i__ - k + *ka - m]);
  1332. i__2 = ka1 + (i__ - k) * ab_dim1;
  1333. q__3.r = q__4.r * ab[i__2].r - q__4.i * ab[i__2].i,
  1334. q__3.i = q__4.r * ab[i__2].i + q__4.i * ab[i__2]
  1335. .r;
  1336. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  1337. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1338. i__3 = ka1 + (i__ - k) * ab_dim1;
  1339. i__1 = i__ - k + *ka - m;
  1340. q__2.r = work[i__1].r * t.r - work[i__1].i * t.i, q__2.i =
  1341. work[i__1].r * t.i + work[i__1].i * t.r;
  1342. i__2 = i__ - k + *ka - m;
  1343. i__5 = ka1 + (i__ - k) * ab_dim1;
  1344. q__3.r = rwork[i__2] * ab[i__5].r, q__3.i = rwork[i__2] *
  1345. ab[i__5].i;
  1346. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1347. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  1348. ra1.r = ra.r, ra1.i = ra.i;
  1349. }
  1350. }
  1351. /* Computing MAX */
  1352. i__3 = 1, i__1 = k - i0 + 2;
  1353. j2 = i__ - k - 1 + f2cmax(i__3,i__1) * ka1;
  1354. nr = (*n - j2 + *ka) / ka1;
  1355. j1 = j2 + (nr - 1) * ka1;
  1356. if (update) {
  1357. /* Computing MAX */
  1358. i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
  1359. j2t = f2cmax(i__3,i__1);
  1360. } else {
  1361. j2t = j2;
  1362. }
  1363. nrt = (*n - j2t + *ka) / ka1;
  1364. i__3 = j1;
  1365. i__1 = ka1;
  1366. for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1367. /* create nonzero element a(j+1,j-ka) outside the band */
  1368. /* and store it in WORK(j-m) */
  1369. i__2 = j - m;
  1370. i__5 = j - m;
  1371. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1372. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1373. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1374. * ab[i__6].r;
  1375. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1376. i__2 = ka1 + (j - *ka + 1) * ab_dim1;
  1377. i__5 = j - m;
  1378. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1379. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  1380. i__6].i;
  1381. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1382. /* L320: */
  1383. }
  1384. /* generate rotations in 1st set to annihilate elements which */
  1385. /* have been created outside the band */
  1386. if (nrt > 0) {
  1387. clargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
  1388. j2t - m], &ka1, &rwork[j2t - m], &ka1);
  1389. }
  1390. if (nr > 0) {
  1391. /* apply rotations in 1st set from the left */
  1392. i__1 = *ka - 1;
  1393. for (l = 1; l <= i__1; ++l) {
  1394. clartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1395. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2 - m]
  1396. , &work[j2 - m], &ka1);
  1397. /* L330: */
  1398. }
  1399. /* apply rotations in 1st set from both sides to diagonal */
  1400. /* blocks */
  1401. clar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1402. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2 - m], &
  1403. work[j2 - m], &ka1);
  1404. clacgv_(&nr, &work[j2 - m], &ka1);
  1405. }
  1406. /* start applying rotations in 1st set from the right */
  1407. i__1 = *kb - k + 1;
  1408. for (l = *ka - 1; l >= i__1; --l) {
  1409. nrt = (*n - j2 + l) / ka1;
  1410. if (nrt > 0) {
  1411. clartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1412. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1413. m], &work[j2 - m], &ka1);
  1414. }
  1415. /* L340: */
  1416. }
  1417. if (wantx) {
  1418. /* post-multiply X by product of rotations in 1st set */
  1419. i__1 = j1;
  1420. i__3 = ka1;
  1421. for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1422. i__2 = *n - m;
  1423. crot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1424. + 1) * x_dim1], &c__1, &rwork[j - m], &work[j - m]
  1425. );
  1426. /* L350: */
  1427. }
  1428. }
  1429. /* L360: */
  1430. }
  1431. if (update) {
  1432. if (i2 <= *n && kbt > 0) {
  1433. /* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
  1434. /* band and store it in WORK(i-kbt) */
  1435. i__4 = i__ - kbt;
  1436. i__3 = kbt + 1 + (i__ - kbt) * bb_dim1;
  1437. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  1438. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  1439. ra1.i + q__2.i * ra1.r;
  1440. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1441. }
  1442. }
  1443. for (k = *kb; k >= 1; --k) {
  1444. if (update) {
  1445. /* Computing MAX */
  1446. i__4 = 2, i__3 = k - i0 + 1;
  1447. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1448. } else {
  1449. /* Computing MAX */
  1450. i__4 = 1, i__3 = k - i0 + 1;
  1451. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1452. }
  1453. /* finish applying rotations in 2nd set from the right */
  1454. for (l = *kb - k; l >= 1; --l) {
  1455. nrt = (*n - j2 + *ka + l) / ka1;
  1456. if (nrt > 0) {
  1457. clartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
  1458. inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
  1459. inca, &rwork[j2 - *ka], &work[j2 - *ka], &ka1);
  1460. }
  1461. /* L370: */
  1462. }
  1463. nr = (*n - j2 + *ka) / ka1;
  1464. j1 = j2 + (nr - 1) * ka1;
  1465. i__4 = j2;
  1466. i__3 = -ka1;
  1467. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1468. i__1 = j;
  1469. i__2 = j - *ka;
  1470. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1471. rwork[j] = rwork[j - *ka];
  1472. /* L380: */
  1473. }
  1474. i__3 = j1;
  1475. i__4 = ka1;
  1476. for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1477. /* create nonzero element a(j+1,j-ka) outside the band */
  1478. /* and store it in WORK(j) */
  1479. i__1 = j;
  1480. i__2 = j;
  1481. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1482. q__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1483. .i, q__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1484. * ab[i__5].r;
  1485. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1486. i__1 = ka1 + (j - *ka + 1) * ab_dim1;
  1487. i__2 = j;
  1488. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1489. q__1.r = rwork[i__2] * ab[i__5].r, q__1.i = rwork[i__2] * ab[
  1490. i__5].i;
  1491. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1492. /* L390: */
  1493. }
  1494. if (update) {
  1495. if (i__ - k < *n - *ka && k <= kbt) {
  1496. i__4 = i__ - k + *ka;
  1497. i__3 = i__ - k;
  1498. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  1499. }
  1500. }
  1501. /* L400: */
  1502. }
  1503. for (k = *kb; k >= 1; --k) {
  1504. /* Computing MAX */
  1505. i__4 = 1, i__3 = k - i0 + 1;
  1506. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1507. nr = (*n - j2 + *ka) / ka1;
  1508. j1 = j2 + (nr - 1) * ka1;
  1509. if (nr > 0) {
  1510. /* generate rotations in 2nd set to annihilate elements */
  1511. /* which have been created outside the band */
  1512. clargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
  1513. , &ka1, &rwork[j2], &ka1);
  1514. /* apply rotations in 2nd set from the left */
  1515. i__4 = *ka - 1;
  1516. for (l = 1; l <= i__4; ++l) {
  1517. clartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1518. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2], &
  1519. work[j2], &ka1);
  1520. /* L410: */
  1521. }
  1522. /* apply rotations in 2nd set from both sides to diagonal */
  1523. /* blocks */
  1524. clar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1525. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2], &work[
  1526. j2], &ka1);
  1527. clacgv_(&nr, &work[j2], &ka1);
  1528. }
  1529. /* start applying rotations in 2nd set from the right */
  1530. i__4 = *kb - k + 1;
  1531. for (l = *ka - 1; l >= i__4; --l) {
  1532. nrt = (*n - j2 + l) / ka1;
  1533. if (nrt > 0) {
  1534. clartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1535. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2],
  1536. &work[j2], &ka1);
  1537. }
  1538. /* L420: */
  1539. }
  1540. if (wantx) {
  1541. /* post-multiply X by product of rotations in 2nd set */
  1542. i__4 = j1;
  1543. i__3 = ka1;
  1544. for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1545. i__1 = *n - m;
  1546. crot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1547. + 1) * x_dim1], &c__1, &rwork[j], &work[j]);
  1548. /* L430: */
  1549. }
  1550. }
  1551. /* L440: */
  1552. }
  1553. i__3 = *kb - 1;
  1554. for (k = 1; k <= i__3; ++k) {
  1555. /* Computing MAX */
  1556. i__4 = 1, i__1 = k - i0 + 2;
  1557. j2 = i__ - k - 1 + f2cmax(i__4,i__1) * ka1;
  1558. /* finish applying rotations in 1st set from the right */
  1559. for (l = *kb - k; l >= 1; --l) {
  1560. nrt = (*n - j2 + l) / ka1;
  1561. if (nrt > 0) {
  1562. clartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1563. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1564. m], &work[j2 - m], &ka1);
  1565. }
  1566. /* L450: */
  1567. }
  1568. /* L460: */
  1569. }
  1570. if (*kb > 1) {
  1571. i__3 = j2 + *ka;
  1572. for (j = *n - 1; j >= i__3; --j) {
  1573. rwork[j - m] = rwork[j - *ka - m];
  1574. i__4 = j - m;
  1575. i__1 = j - *ka - m;
  1576. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1577. /* L470: */
  1578. }
  1579. }
  1580. }
  1581. goto L10;
  1582. L480:
  1583. /* **************************** Phase 2 ***************************** */
  1584. /* The logical structure of this phase is: */
  1585. /* UPDATE = .TRUE. */
  1586. /* DO I = 1, M */
  1587. /* use S(i) to update A and create a new bulge */
  1588. /* apply rotations to push all bulges KA positions upward */
  1589. /* END DO */
  1590. /* UPDATE = .FALSE. */
  1591. /* DO I = M - KA - 1, 2, -1 */
  1592. /* apply rotations to push all bulges KA positions upward */
  1593. /* END DO */
  1594. /* To avoid duplicating code, the two loops are merged. */
  1595. update = TRUE_;
  1596. i__ = 0;
  1597. L490:
  1598. if (update) {
  1599. ++i__;
  1600. /* Computing MIN */
  1601. i__3 = *kb, i__4 = m - i__;
  1602. kbt = f2cmin(i__3,i__4);
  1603. i0 = i__ + 1;
  1604. /* Computing MAX */
  1605. i__3 = 1, i__4 = i__ - *ka;
  1606. i1 = f2cmax(i__3,i__4);
  1607. i2 = i__ + kbt - ka1;
  1608. if (i__ > m) {
  1609. update = FALSE_;
  1610. --i__;
  1611. i0 = m + 1;
  1612. if (*ka == 0) {
  1613. return;
  1614. }
  1615. goto L490;
  1616. }
  1617. } else {
  1618. i__ -= *ka;
  1619. if (i__ < 2) {
  1620. return;
  1621. }
  1622. }
  1623. if (i__ < m - kbt) {
  1624. nx = m;
  1625. } else {
  1626. nx = *n;
  1627. }
  1628. if (upper) {
  1629. /* Transform A, working with the upper triangle */
  1630. if (update) {
  1631. /* Form inv(S(i))**H * A * inv(S(i)) */
  1632. i__3 = kb1 + i__ * bb_dim1;
  1633. bii = bb[i__3].r;
  1634. i__3 = ka1 + i__ * ab_dim1;
  1635. i__4 = ka1 + i__ * ab_dim1;
  1636. r__1 = ab[i__4].r / bii / bii;
  1637. ab[i__3].r = r__1, ab[i__3].i = 0.f;
  1638. i__3 = i__ - 1;
  1639. for (j = i1; j <= i__3; ++j) {
  1640. i__4 = j - i__ + ka1 + i__ * ab_dim1;
  1641. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  1642. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  1643. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1644. /* L500: */
  1645. }
  1646. /* Computing MIN */
  1647. i__4 = *n, i__1 = i__ + *ka;
  1648. i__3 = f2cmin(i__4,i__1);
  1649. for (j = i__ + 1; j <= i__3; ++j) {
  1650. i__4 = i__ - j + ka1 + j * ab_dim1;
  1651. i__1 = i__ - j + ka1 + j * ab_dim1;
  1652. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  1653. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1654. /* L510: */
  1655. }
  1656. i__3 = i__ + kbt;
  1657. for (k = i__ + 1; k <= i__3; ++k) {
  1658. i__4 = i__ + kbt;
  1659. for (j = k; j <= i__4; ++j) {
  1660. i__1 = k - j + ka1 + j * ab_dim1;
  1661. i__2 = k - j + ka1 + j * ab_dim1;
  1662. i__5 = i__ - j + kb1 + j * bb_dim1;
  1663. r_cnjg(&q__5, &ab[i__ - k + ka1 + k * ab_dim1]);
  1664. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  1665. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  1666. q__5.r;
  1667. q__3.r = ab[i__2].r - q__4.r, q__3.i = ab[i__2].i -
  1668. q__4.i;
  1669. r_cnjg(&q__7, &bb[i__ - k + kb1 + k * bb_dim1]);
  1670. i__6 = i__ - j + ka1 + j * ab_dim1;
  1671. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  1672. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  1673. .r;
  1674. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  1675. i__7 = ka1 + i__ * ab_dim1;
  1676. r__1 = ab[i__7].r;
  1677. i__8 = i__ - j + kb1 + j * bb_dim1;
  1678. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  1679. r_cnjg(&q__10, &bb[i__ - k + kb1 + k * bb_dim1]);
  1680. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  1681. q__9.r * q__10.i + q__9.i * q__10.r;
  1682. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  1683. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1684. /* L520: */
  1685. }
  1686. /* Computing MIN */
  1687. i__1 = *n, i__2 = i__ + *ka;
  1688. i__4 = f2cmin(i__1,i__2);
  1689. for (j = i__ + kbt + 1; j <= i__4; ++j) {
  1690. i__1 = k - j + ka1 + j * ab_dim1;
  1691. i__2 = k - j + ka1 + j * ab_dim1;
  1692. r_cnjg(&q__3, &bb[i__ - k + kb1 + k * bb_dim1]);
  1693. i__5 = i__ - j + ka1 + j * ab_dim1;
  1694. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  1695. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  1696. .r;
  1697. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  1698. q__2.i;
  1699. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1700. /* L530: */
  1701. }
  1702. /* L540: */
  1703. }
  1704. i__3 = i__;
  1705. for (j = i1; j <= i__3; ++j) {
  1706. /* Computing MIN */
  1707. i__1 = j + *ka, i__2 = i__ + kbt;
  1708. i__4 = f2cmin(i__1,i__2);
  1709. for (k = i__ + 1; k <= i__4; ++k) {
  1710. i__1 = j - k + ka1 + k * ab_dim1;
  1711. i__2 = j - k + ka1 + k * ab_dim1;
  1712. i__5 = i__ - k + kb1 + k * bb_dim1;
  1713. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  1714. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1715. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1716. * ab[i__6].r;
  1717. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  1718. q__2.i;
  1719. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1720. /* L550: */
  1721. }
  1722. /* L560: */
  1723. }
  1724. if (wantx) {
  1725. /* post-multiply X by inv(S(i)) */
  1726. r__1 = 1.f / bii;
  1727. csscal_(&nx, &r__1, &x[i__ * x_dim1 + 1], &c__1);
  1728. if (kbt > 0) {
  1729. q__1.r = -1.f, q__1.i = 0.f;
  1730. i__3 = *ldbb - 1;
  1731. cgeru_(&nx, &kbt, &q__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1732. *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
  1733. x_dim1 + 1], ldx);
  1734. }
  1735. }
  1736. /* store a(i1,i) in RA1 for use in next loop over K */
  1737. i__3 = i1 - i__ + ka1 + i__ * ab_dim1;
  1738. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  1739. }
  1740. /* Generate and apply vectors of rotations to chase all the */
  1741. /* existing bulges KA positions up toward the top of the band */
  1742. i__3 = *kb - 1;
  1743. for (k = 1; k <= i__3; ++k) {
  1744. if (update) {
  1745. /* Determine the rotations which would annihilate the bulge */
  1746. /* which has in theory just been created */
  1747. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1748. /* generate rotation to annihilate a(i+k-ka-1,i) */
  1749. clartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &rwork[i__ + k
  1750. - *ka], &work[i__ + k - *ka], &ra);
  1751. /* create nonzero element a(i+k-ka-1,i+k) outside the */
  1752. /* band and store it in WORK(m-kb+i+k) */
  1753. i__4 = kb1 - k + (i__ + k) * bb_dim1;
  1754. q__2.r = -bb[i__4].r, q__2.i = -bb[i__4].i;
  1755. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  1756. * ra1.i + q__2.i * ra1.r;
  1757. t.r = q__1.r, t.i = q__1.i;
  1758. i__4 = m - *kb + i__ + k;
  1759. i__1 = i__ + k - *ka;
  1760. q__2.r = rwork[i__1] * t.r, q__2.i = rwork[i__1] * t.i;
  1761. r_cnjg(&q__4, &work[i__ + k - *ka]);
  1762. i__2 = (i__ + k) * ab_dim1 + 1;
  1763. q__3.r = q__4.r * ab[i__2].r - q__4.i * ab[i__2].i,
  1764. q__3.i = q__4.r * ab[i__2].i + q__4.i * ab[i__2]
  1765. .r;
  1766. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  1767. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1768. i__4 = (i__ + k) * ab_dim1 + 1;
  1769. i__1 = i__ + k - *ka;
  1770. q__2.r = work[i__1].r * t.r - work[i__1].i * t.i, q__2.i =
  1771. work[i__1].r * t.i + work[i__1].i * t.r;
  1772. i__2 = i__ + k - *ka;
  1773. i__5 = (i__ + k) * ab_dim1 + 1;
  1774. q__3.r = rwork[i__2] * ab[i__5].r, q__3.i = rwork[i__2] *
  1775. ab[i__5].i;
  1776. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1777. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1778. ra1.r = ra.r, ra1.i = ra.i;
  1779. }
  1780. }
  1781. /* Computing MAX */
  1782. i__4 = 1, i__1 = k + i0 - m + 1;
  1783. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  1784. nr = (j2 + *ka - 1) / ka1;
  1785. j1 = j2 - (nr - 1) * ka1;
  1786. if (update) {
  1787. /* Computing MIN */
  1788. i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1789. j2t = f2cmin(i__4,i__1);
  1790. } else {
  1791. j2t = j2;
  1792. }
  1793. nrt = (j2t + *ka - 1) / ka1;
  1794. i__4 = j2t;
  1795. i__1 = ka1;
  1796. for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
  1797. /* create nonzero element a(j-1,j+ka) outside the band */
  1798. /* and store it in WORK(j) */
  1799. i__2 = j;
  1800. i__5 = j;
  1801. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1802. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1803. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1804. * ab[i__6].r;
  1805. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1806. i__2 = (j + *ka - 1) * ab_dim1 + 1;
  1807. i__5 = j;
  1808. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1809. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  1810. i__6].i;
  1811. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1812. /* L570: */
  1813. }
  1814. /* generate rotations in 1st set to annihilate elements which */
  1815. /* have been created outside the band */
  1816. if (nrt > 0) {
  1817. clargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
  1818. &ka1, &rwork[j1], &ka1);
  1819. }
  1820. if (nr > 0) {
  1821. /* apply rotations in 1st set from the left */
  1822. i__1 = *ka - 1;
  1823. for (l = 1; l <= i__1; ++l) {
  1824. clartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1825. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[
  1826. j1], &work[j1], &ka1);
  1827. /* L580: */
  1828. }
  1829. /* apply rotations in 1st set from both sides to diagonal */
  1830. /* blocks */
  1831. clar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1832. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[j1],
  1833. &work[j1], &ka1);
  1834. clacgv_(&nr, &work[j1], &ka1);
  1835. }
  1836. /* start applying rotations in 1st set from the right */
  1837. i__1 = *kb - k + 1;
  1838. for (l = *ka - 1; l >= i__1; --l) {
  1839. nrt = (j2 + l - 1) / ka1;
  1840. j1t = j2 - (nrt - 1) * ka1;
  1841. if (nrt > 0) {
  1842. clartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1843. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  1844. j1t], &ka1);
  1845. }
  1846. /* L590: */
  1847. }
  1848. if (wantx) {
  1849. /* post-multiply X by product of rotations in 1st set */
  1850. i__1 = j2;
  1851. i__4 = ka1;
  1852. for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
  1853. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1854. + 1], &c__1, &rwork[j], &work[j]);
  1855. /* L600: */
  1856. }
  1857. }
  1858. /* L610: */
  1859. }
  1860. if (update) {
  1861. if (i2 > 0 && kbt > 0) {
  1862. /* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
  1863. /* band and store it in WORK(m-kb+i+kbt) */
  1864. i__3 = m - *kb + i__ + kbt;
  1865. i__4 = kb1 - kbt + (i__ + kbt) * bb_dim1;
  1866. q__2.r = -bb[i__4].r, q__2.i = -bb[i__4].i;
  1867. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  1868. ra1.i + q__2.i * ra1.r;
  1869. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1870. }
  1871. }
  1872. for (k = *kb; k >= 1; --k) {
  1873. if (update) {
  1874. /* Computing MAX */
  1875. i__3 = 2, i__4 = k + i0 - m;
  1876. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1877. } else {
  1878. /* Computing MAX */
  1879. i__3 = 1, i__4 = k + i0 - m;
  1880. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1881. }
  1882. /* finish applying rotations in 2nd set from the right */
  1883. for (l = *kb - k; l >= 1; --l) {
  1884. nrt = (j2 + *ka + l - 1) / ka1;
  1885. j1t = j2 - (nrt - 1) * ka1;
  1886. if (nrt > 0) {
  1887. clartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
  1888. l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &rwork[
  1889. m - *kb + j1t + *ka], &work[m - *kb + j1t + *ka],
  1890. &ka1);
  1891. }
  1892. /* L620: */
  1893. }
  1894. nr = (j2 + *ka - 1) / ka1;
  1895. j1 = j2 - (nr - 1) * ka1;
  1896. i__3 = j2;
  1897. i__4 = ka1;
  1898. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1899. i__1 = m - *kb + j;
  1900. i__2 = m - *kb + j + *ka;
  1901. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1902. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  1903. /* L630: */
  1904. }
  1905. i__4 = j2;
  1906. i__3 = ka1;
  1907. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1908. /* create nonzero element a(j-1,j+ka) outside the band */
  1909. /* and store it in WORK(m-kb+j) */
  1910. i__1 = m - *kb + j;
  1911. i__2 = m - *kb + j;
  1912. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1913. q__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1914. .i, q__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1915. * ab[i__5].r;
  1916. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1917. i__1 = (j + *ka - 1) * ab_dim1 + 1;
  1918. i__2 = m - *kb + j;
  1919. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1920. q__1.r = rwork[i__2] * ab[i__5].r, q__1.i = rwork[i__2] * ab[
  1921. i__5].i;
  1922. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1923. /* L640: */
  1924. }
  1925. if (update) {
  1926. if (i__ + k > ka1 && k <= kbt) {
  1927. i__3 = m - *kb + i__ + k - *ka;
  1928. i__4 = m - *kb + i__ + k;
  1929. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1930. }
  1931. }
  1932. /* L650: */
  1933. }
  1934. for (k = *kb; k >= 1; --k) {
  1935. /* Computing MAX */
  1936. i__3 = 1, i__4 = k + i0 - m;
  1937. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1938. nr = (j2 + *ka - 1) / ka1;
  1939. j1 = j2 - (nr - 1) * ka1;
  1940. if (nr > 0) {
  1941. /* generate rotations in 2nd set to annihilate elements */
  1942. /* which have been created outside the band */
  1943. clargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
  1944. kb + j1], &ka1, &rwork[m - *kb + j1], &ka1);
  1945. /* apply rotations in 2nd set from the left */
  1946. i__3 = *ka - 1;
  1947. for (l = 1; l <= i__3; ++l) {
  1948. clartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1949. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[m
  1950. - *kb + j1], &work[m - *kb + j1], &ka1);
  1951. /* L660: */
  1952. }
  1953. /* apply rotations in 2nd set from both sides to diagonal */
  1954. /* blocks */
  1955. clar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1956. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[m - *
  1957. kb + j1], &work[m - *kb + j1], &ka1);
  1958. clacgv_(&nr, &work[m - *kb + j1], &ka1);
  1959. }
  1960. /* start applying rotations in 2nd set from the right */
  1961. i__3 = *kb - k + 1;
  1962. for (l = *ka - 1; l >= i__3; --l) {
  1963. nrt = (j2 + l - 1) / ka1;
  1964. j1t = j2 - (nrt - 1) * ka1;
  1965. if (nrt > 0) {
  1966. clartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1967. j1t - 1) * ab_dim1], &inca, &rwork[m - *kb + j1t],
  1968. &work[m - *kb + j1t], &ka1);
  1969. }
  1970. /* L670: */
  1971. }
  1972. if (wantx) {
  1973. /* post-multiply X by product of rotations in 2nd set */
  1974. i__3 = j2;
  1975. i__4 = ka1;
  1976. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1977. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1978. + 1], &c__1, &rwork[m - *kb + j], &work[m - *kb +
  1979. j]);
  1980. /* L680: */
  1981. }
  1982. }
  1983. /* L690: */
  1984. }
  1985. i__4 = *kb - 1;
  1986. for (k = 1; k <= i__4; ++k) {
  1987. /* Computing MAX */
  1988. i__3 = 1, i__1 = k + i0 - m + 1;
  1989. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  1990. /* finish applying rotations in 1st set from the right */
  1991. for (l = *kb - k; l >= 1; --l) {
  1992. nrt = (j2 + l - 1) / ka1;
  1993. j1t = j2 - (nrt - 1) * ka1;
  1994. if (nrt > 0) {
  1995. clartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1996. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  1997. j1t], &ka1);
  1998. }
  1999. /* L700: */
  2000. }
  2001. /* L710: */
  2002. }
  2003. if (*kb > 1) {
  2004. i__4 = i2 - *ka;
  2005. for (j = 2; j <= i__4; ++j) {
  2006. rwork[j] = rwork[j + *ka];
  2007. i__3 = j;
  2008. i__1 = j + *ka;
  2009. work[i__3].r = work[i__1].r, work[i__3].i = work[i__1].i;
  2010. /* L720: */
  2011. }
  2012. }
  2013. } else {
  2014. /* Transform A, working with the lower triangle */
  2015. if (update) {
  2016. /* Form inv(S(i))**H * A * inv(S(i)) */
  2017. i__4 = i__ * bb_dim1 + 1;
  2018. bii = bb[i__4].r;
  2019. i__4 = i__ * ab_dim1 + 1;
  2020. i__3 = i__ * ab_dim1 + 1;
  2021. r__1 = ab[i__3].r / bii / bii;
  2022. ab[i__4].r = r__1, ab[i__4].i = 0.f;
  2023. i__4 = i__ - 1;
  2024. for (j = i1; j <= i__4; ++j) {
  2025. i__3 = i__ - j + 1 + j * ab_dim1;
  2026. i__1 = i__ - j + 1 + j * ab_dim1;
  2027. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  2028. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  2029. /* L730: */
  2030. }
  2031. /* Computing MIN */
  2032. i__3 = *n, i__1 = i__ + *ka;
  2033. i__4 = f2cmin(i__3,i__1);
  2034. for (j = i__ + 1; j <= i__4; ++j) {
  2035. i__3 = j - i__ + 1 + i__ * ab_dim1;
  2036. i__1 = j - i__ + 1 + i__ * ab_dim1;
  2037. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  2038. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  2039. /* L740: */
  2040. }
  2041. i__4 = i__ + kbt;
  2042. for (k = i__ + 1; k <= i__4; ++k) {
  2043. i__3 = i__ + kbt;
  2044. for (j = k; j <= i__3; ++j) {
  2045. i__1 = j - k + 1 + k * ab_dim1;
  2046. i__2 = j - k + 1 + k * ab_dim1;
  2047. i__5 = j - i__ + 1 + i__ * bb_dim1;
  2048. r_cnjg(&q__5, &ab[k - i__ + 1 + i__ * ab_dim1]);
  2049. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  2050. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  2051. q__5.r;
  2052. q__3.r = ab[i__2].r - q__4.r, q__3.i = ab[i__2].i -
  2053. q__4.i;
  2054. r_cnjg(&q__7, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2055. i__6 = j - i__ + 1 + i__ * ab_dim1;
  2056. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  2057. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  2058. .r;
  2059. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  2060. i__7 = i__ * ab_dim1 + 1;
  2061. r__1 = ab[i__7].r;
  2062. i__8 = j - i__ + 1 + i__ * bb_dim1;
  2063. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  2064. r_cnjg(&q__10, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2065. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  2066. q__9.r * q__10.i + q__9.i * q__10.r;
  2067. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  2068. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2069. /* L750: */
  2070. }
  2071. /* Computing MIN */
  2072. i__1 = *n, i__2 = i__ + *ka;
  2073. i__3 = f2cmin(i__1,i__2);
  2074. for (j = i__ + kbt + 1; j <= i__3; ++j) {
  2075. i__1 = j - k + 1 + k * ab_dim1;
  2076. i__2 = j - k + 1 + k * ab_dim1;
  2077. r_cnjg(&q__3, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2078. i__5 = j - i__ + 1 + i__ * ab_dim1;
  2079. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  2080. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  2081. .r;
  2082. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  2083. q__2.i;
  2084. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2085. /* L760: */
  2086. }
  2087. /* L770: */
  2088. }
  2089. i__4 = i__;
  2090. for (j = i1; j <= i__4; ++j) {
  2091. /* Computing MIN */
  2092. i__1 = j + *ka, i__2 = i__ + kbt;
  2093. i__3 = f2cmin(i__1,i__2);
  2094. for (k = i__ + 1; k <= i__3; ++k) {
  2095. i__1 = k - j + 1 + j * ab_dim1;
  2096. i__2 = k - j + 1 + j * ab_dim1;
  2097. i__5 = k - i__ + 1 + i__ * bb_dim1;
  2098. i__6 = i__ - j + 1 + j * ab_dim1;
  2099. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  2100. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  2101. * ab[i__6].r;
  2102. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  2103. q__2.i;
  2104. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2105. /* L780: */
  2106. }
  2107. /* L790: */
  2108. }
  2109. if (wantx) {
  2110. /* post-multiply X by inv(S(i)) */
  2111. r__1 = 1.f / bii;
  2112. csscal_(&nx, &r__1, &x[i__ * x_dim1 + 1], &c__1);
  2113. if (kbt > 0) {
  2114. q__1.r = -1.f, q__1.i = 0.f;
  2115. cgerc_(&nx, &kbt, &q__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  2116. i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
  2117. + 1], ldx);
  2118. }
  2119. }
  2120. /* store a(i,i1) in RA1 for use in next loop over K */
  2121. i__4 = i__ - i1 + 1 + i1 * ab_dim1;
  2122. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  2123. }
  2124. /* Generate and apply vectors of rotations to chase all the */
  2125. /* existing bulges KA positions up toward the top of the band */
  2126. i__4 = *kb - 1;
  2127. for (k = 1; k <= i__4; ++k) {
  2128. if (update) {
  2129. /* Determine the rotations which would annihilate the bulge */
  2130. /* which has in theory just been created */
  2131. if (i__ + k - ka1 > 0 && i__ + k < m) {
  2132. /* generate rotation to annihilate a(i,i+k-ka-1) */
  2133. clartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
  2134. rwork[i__ + k - *ka], &work[i__ + k - *ka], &ra);
  2135. /* create nonzero element a(i+k,i+k-ka-1) outside the */
  2136. /* band and store it in WORK(m-kb+i+k) */
  2137. i__3 = k + 1 + i__ * bb_dim1;
  2138. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  2139. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  2140. * ra1.i + q__2.i * ra1.r;
  2141. t.r = q__1.r, t.i = q__1.i;
  2142. i__3 = m - *kb + i__ + k;
  2143. i__1 = i__ + k - *ka;
  2144. q__2.r = rwork[i__1] * t.r, q__2.i = rwork[i__1] * t.i;
  2145. r_cnjg(&q__4, &work[i__ + k - *ka]);
  2146. i__2 = ka1 + (i__ + k - *ka) * ab_dim1;
  2147. q__3.r = q__4.r * ab[i__2].r - q__4.i * ab[i__2].i,
  2148. q__3.i = q__4.r * ab[i__2].i + q__4.i * ab[i__2]
  2149. .r;
  2150. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  2151. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  2152. i__3 = ka1 + (i__ + k - *ka) * ab_dim1;
  2153. i__1 = i__ + k - *ka;
  2154. q__2.r = work[i__1].r * t.r - work[i__1].i * t.i, q__2.i =
  2155. work[i__1].r * t.i + work[i__1].i * t.r;
  2156. i__2 = i__ + k - *ka;
  2157. i__5 = ka1 + (i__ + k - *ka) * ab_dim1;
  2158. q__3.r = rwork[i__2] * ab[i__5].r, q__3.i = rwork[i__2] *
  2159. ab[i__5].i;
  2160. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  2161. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  2162. ra1.r = ra.r, ra1.i = ra.i;
  2163. }
  2164. }
  2165. /* Computing MAX */
  2166. i__3 = 1, i__1 = k + i0 - m + 1;
  2167. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  2168. nr = (j2 + *ka - 1) / ka1;
  2169. j1 = j2 - (nr - 1) * ka1;
  2170. if (update) {
  2171. /* Computing MIN */
  2172. i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  2173. j2t = f2cmin(i__3,i__1);
  2174. } else {
  2175. j2t = j2;
  2176. }
  2177. nrt = (j2t + *ka - 1) / ka1;
  2178. i__3 = j2t;
  2179. i__1 = ka1;
  2180. for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  2181. /* create nonzero element a(j+ka,j-1) outside the band */
  2182. /* and store it in WORK(j) */
  2183. i__2 = j;
  2184. i__5 = j;
  2185. i__6 = ka1 + (j - 1) * ab_dim1;
  2186. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  2187. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  2188. * ab[i__6].r;
  2189. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  2190. i__2 = ka1 + (j - 1) * ab_dim1;
  2191. i__5 = j;
  2192. i__6 = ka1 + (j - 1) * ab_dim1;
  2193. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  2194. i__6].i;
  2195. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  2196. /* L800: */
  2197. }
  2198. /* generate rotations in 1st set to annihilate elements which */
  2199. /* have been created outside the band */
  2200. if (nrt > 0) {
  2201. clargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
  2202. &rwork[j1], &ka1);
  2203. }
  2204. if (nr > 0) {
  2205. /* apply rotations in 1st set from the right */
  2206. i__1 = *ka - 1;
  2207. for (l = 1; l <= i__1; ++l) {
  2208. clartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2209. + (j1 - 1) * ab_dim1], &inca, &rwork[j1], &work[
  2210. j1], &ka1);
  2211. /* L810: */
  2212. }
  2213. /* apply rotations in 1st set from both sides to diagonal */
  2214. /* blocks */
  2215. clar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2216. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[j1], &
  2217. work[j1], &ka1);
  2218. clacgv_(&nr, &work[j1], &ka1);
  2219. }
  2220. /* start applying rotations in 1st set from the left */
  2221. i__1 = *kb - k + 1;
  2222. for (l = *ka - 1; l >= i__1; --l) {
  2223. nrt = (j2 + l - 1) / ka1;
  2224. j1t = j2 - (nrt - 1) * ka1;
  2225. if (nrt > 0) {
  2226. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2227. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2228. &inca, &rwork[j1t], &work[j1t], &ka1);
  2229. }
  2230. /* L820: */
  2231. }
  2232. if (wantx) {
  2233. /* post-multiply X by product of rotations in 1st set */
  2234. i__1 = j2;
  2235. i__3 = ka1;
  2236. for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  2237. r_cnjg(&q__1, &work[j]);
  2238. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2239. + 1], &c__1, &rwork[j], &q__1);
  2240. /* L830: */
  2241. }
  2242. }
  2243. /* L840: */
  2244. }
  2245. if (update) {
  2246. if (i2 > 0 && kbt > 0) {
  2247. /* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
  2248. /* band and store it in WORK(m-kb+i+kbt) */
  2249. i__4 = m - *kb + i__ + kbt;
  2250. i__3 = kbt + 1 + i__ * bb_dim1;
  2251. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  2252. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  2253. ra1.i + q__2.i * ra1.r;
  2254. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  2255. }
  2256. }
  2257. for (k = *kb; k >= 1; --k) {
  2258. if (update) {
  2259. /* Computing MAX */
  2260. i__4 = 2, i__3 = k + i0 - m;
  2261. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2262. } else {
  2263. /* Computing MAX */
  2264. i__4 = 1, i__3 = k + i0 - m;
  2265. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2266. }
  2267. /* finish applying rotations in 2nd set from the left */
  2268. for (l = *kb - k; l >= 1; --l) {
  2269. nrt = (j2 + *ka + l - 1) / ka1;
  2270. j1t = j2 - (nrt - 1) * ka1;
  2271. if (nrt > 0) {
  2272. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
  2273. &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
  2274. inca, &rwork[m - *kb + j1t + *ka], &work[m - *kb
  2275. + j1t + *ka], &ka1);
  2276. }
  2277. /* L850: */
  2278. }
  2279. nr = (j2 + *ka - 1) / ka1;
  2280. j1 = j2 - (nr - 1) * ka1;
  2281. i__4 = j2;
  2282. i__3 = ka1;
  2283. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2284. i__1 = m - *kb + j;
  2285. i__2 = m - *kb + j + *ka;
  2286. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  2287. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  2288. /* L860: */
  2289. }
  2290. i__3 = j2;
  2291. i__4 = ka1;
  2292. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  2293. /* create nonzero element a(j+ka,j-1) outside the band */
  2294. /* and store it in WORK(m-kb+j) */
  2295. i__1 = m - *kb + j;
  2296. i__2 = m - *kb + j;
  2297. i__5 = ka1 + (j - 1) * ab_dim1;
  2298. q__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  2299. .i, q__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  2300. * ab[i__5].r;
  2301. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  2302. i__1 = ka1 + (j - 1) * ab_dim1;
  2303. i__2 = m - *kb + j;
  2304. i__5 = ka1 + (j - 1) * ab_dim1;
  2305. q__1.r = rwork[i__2] * ab[i__5].r, q__1.i = rwork[i__2] * ab[
  2306. i__5].i;
  2307. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2308. /* L870: */
  2309. }
  2310. if (update) {
  2311. if (i__ + k > ka1 && k <= kbt) {
  2312. i__4 = m - *kb + i__ + k - *ka;
  2313. i__3 = m - *kb + i__ + k;
  2314. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  2315. }
  2316. }
  2317. /* L880: */
  2318. }
  2319. for (k = *kb; k >= 1; --k) {
  2320. /* Computing MAX */
  2321. i__4 = 1, i__3 = k + i0 - m;
  2322. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2323. nr = (j2 + *ka - 1) / ka1;
  2324. j1 = j2 - (nr - 1) * ka1;
  2325. if (nr > 0) {
  2326. /* generate rotations in 2nd set to annihilate elements */
  2327. /* which have been created outside the band */
  2328. clargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
  2329. j1], &ka1, &rwork[m - *kb + j1], &ka1);
  2330. /* apply rotations in 2nd set from the right */
  2331. i__4 = *ka - 1;
  2332. for (l = 1; l <= i__4; ++l) {
  2333. clartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2334. + (j1 - 1) * ab_dim1], &inca, &rwork[m - *kb + j1]
  2335. , &work[m - *kb + j1], &ka1);
  2336. /* L890: */
  2337. }
  2338. /* apply rotations in 2nd set from both sides to diagonal */
  2339. /* blocks */
  2340. clar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2341. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[m - *
  2342. kb + j1], &work[m - *kb + j1], &ka1);
  2343. clacgv_(&nr, &work[m - *kb + j1], &ka1);
  2344. }
  2345. /* start applying rotations in 2nd set from the left */
  2346. i__4 = *kb - k + 1;
  2347. for (l = *ka - 1; l >= i__4; --l) {
  2348. nrt = (j2 + l - 1) / ka1;
  2349. j1t = j2 - (nrt - 1) * ka1;
  2350. if (nrt > 0) {
  2351. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2352. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2353. &inca, &rwork[m - *kb + j1t], &work[m - *kb +
  2354. j1t], &ka1);
  2355. }
  2356. /* L900: */
  2357. }
  2358. if (wantx) {
  2359. /* post-multiply X by product of rotations in 2nd set */
  2360. i__4 = j2;
  2361. i__3 = ka1;
  2362. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2363. r_cnjg(&q__1, &work[m - *kb + j]);
  2364. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2365. + 1], &c__1, &rwork[m - *kb + j], &q__1);
  2366. /* L910: */
  2367. }
  2368. }
  2369. /* L920: */
  2370. }
  2371. i__3 = *kb - 1;
  2372. for (k = 1; k <= i__3; ++k) {
  2373. /* Computing MAX */
  2374. i__4 = 1, i__1 = k + i0 - m + 1;
  2375. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  2376. /* finish applying rotations in 1st set from the left */
  2377. for (l = *kb - k; l >= 1; --l) {
  2378. nrt = (j2 + l - 1) / ka1;
  2379. j1t = j2 - (nrt - 1) * ka1;
  2380. if (nrt > 0) {
  2381. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2382. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2383. &inca, &rwork[j1t], &work[j1t], &ka1);
  2384. }
  2385. /* L930: */
  2386. }
  2387. /* L940: */
  2388. }
  2389. if (*kb > 1) {
  2390. i__3 = i2 - *ka;
  2391. for (j = 2; j <= i__3; ++j) {
  2392. rwork[j] = rwork[j + *ka];
  2393. i__4 = j;
  2394. i__1 = j + *ka;
  2395. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  2396. /* L950: */
  2397. }
  2398. }
  2399. }
  2400. goto L490;
  2401. /* End of CHBGST */
  2402. } /* chbgst_ */