You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cuncsd2by1.c 46 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c_n1 = -1;
  487. static integer c__1 = 1;
  488. static logical c_false = FALSE_;
  489. /* > \brief \b CUNCSD2BY1 */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CUNCSD2BY1 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cuncsd2
  496. by1.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cuncsd2
  499. by1.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cuncsd2
  502. by1.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, */
  508. /* X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, */
  509. /* LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, */
  510. /* INFO ) */
  511. /* CHARACTER JOBU1, JOBU2, JOBV1T */
  512. /* INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21, */
  513. /* $ M, P, Q */
  514. /* INTEGER LRWORK, LRWORKMIN, LRWORKOPT */
  515. /* REAL RWORK(*) */
  516. /* REAL THETA(*) */
  517. /* COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*), */
  518. /* $ X11(LDX11,*), X21(LDX21,*) */
  519. /* INTEGER IWORK(*) */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* >\verbatim */
  524. /* > */
  525. /* > CUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with */
  526. /* > orthonormal columns that has been partitioned into a 2-by-1 block */
  527. /* > structure: */
  528. /* > */
  529. /* > [ I1 0 0 ] */
  530. /* > [ 0 C 0 ] */
  531. /* > [ X11 ] [ U1 | ] [ 0 0 0 ] */
  532. /* > X = [-----] = [---------] [----------] V1**T . */
  533. /* > [ X21 ] [ | U2 ] [ 0 0 0 ] */
  534. /* > [ 0 S 0 ] */
  535. /* > [ 0 0 I2] */
  536. /* > */
  537. /* > X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P, */
  538. /* > (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R */
  539. /* > nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which */
  540. /* > R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a */
  541. /* > K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0). */
  542. /* > */
  543. /* > \endverbatim */
  544. /* Arguments: */
  545. /* ========== */
  546. /* > \param[in] JOBU1 */
  547. /* > \verbatim */
  548. /* > JOBU1 is CHARACTER */
  549. /* > = 'Y': U1 is computed; */
  550. /* > otherwise: U1 is not computed. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] JOBU2 */
  554. /* > \verbatim */
  555. /* > JOBU2 is CHARACTER */
  556. /* > = 'Y': U2 is computed; */
  557. /* > otherwise: U2 is not computed. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] JOBV1T */
  561. /* > \verbatim */
  562. /* > JOBV1T is CHARACTER */
  563. /* > = 'Y': V1T is computed; */
  564. /* > otherwise: V1T is not computed. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] M */
  568. /* > \verbatim */
  569. /* > M is INTEGER */
  570. /* > The number of rows in X. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] P */
  574. /* > \verbatim */
  575. /* > P is INTEGER */
  576. /* > The number of rows in X11. 0 <= P <= M. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] Q */
  580. /* > \verbatim */
  581. /* > Q is INTEGER */
  582. /* > The number of columns in X11 and X21. 0 <= Q <= M. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in,out] X11 */
  586. /* > \verbatim */
  587. /* > X11 is COMPLEX array, dimension (LDX11,Q) */
  588. /* > On entry, part of the unitary matrix whose CSD is desired. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] LDX11 */
  592. /* > \verbatim */
  593. /* > LDX11 is INTEGER */
  594. /* > The leading dimension of X11. LDX11 >= MAX(1,P). */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in,out] X21 */
  598. /* > \verbatim */
  599. /* > X21 is COMPLEX array, dimension (LDX21,Q) */
  600. /* > On entry, part of the unitary matrix whose CSD is desired. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] LDX21 */
  604. /* > \verbatim */
  605. /* > LDX21 is INTEGER */
  606. /* > The leading dimension of X21. LDX21 >= MAX(1,M-P). */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] THETA */
  610. /* > \verbatim */
  611. /* > THETA is REAL array, dimension (R), in which R = */
  612. /* > MIN(P,M-P,Q,M-Q). */
  613. /* > C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and */
  614. /* > S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] U1 */
  618. /* > \verbatim */
  619. /* > U1 is COMPLEX array, dimension (P) */
  620. /* > If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in] LDU1 */
  624. /* > \verbatim */
  625. /* > LDU1 is INTEGER */
  626. /* > The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= */
  627. /* > MAX(1,P). */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] U2 */
  631. /* > \verbatim */
  632. /* > U2 is COMPLEX array, dimension (M-P) */
  633. /* > If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary */
  634. /* > matrix U2. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[in] LDU2 */
  638. /* > \verbatim */
  639. /* > LDU2 is INTEGER */
  640. /* > The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= */
  641. /* > MAX(1,M-P). */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] V1T */
  645. /* > \verbatim */
  646. /* > V1T is COMPLEX array, dimension (Q) */
  647. /* > If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary */
  648. /* > matrix V1**T. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[in] LDV1T */
  652. /* > \verbatim */
  653. /* > LDV1T is INTEGER */
  654. /* > The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= */
  655. /* > MAX(1,Q). */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] WORK */
  659. /* > \verbatim */
  660. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  661. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[in] LWORK */
  665. /* > \verbatim */
  666. /* > LWORK is INTEGER */
  667. /* > The dimension of the array WORK. */
  668. /* > */
  669. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  670. /* > only calculates the optimal size of the WORK array, returns */
  671. /* > this value as the first entry of the work array, and no error */
  672. /* > message related to LWORK is issued by XERBLA. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] RWORK */
  676. /* > \verbatim */
  677. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  678. /* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
  679. /* > If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), */
  680. /* > ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), */
  681. /* > define the matrix in intermediate bidiagonal-block form */
  682. /* > remaining after nonconvergence. INFO specifies the number */
  683. /* > of nonzero PHI's. */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[in] LRWORK */
  687. /* > \verbatim */
  688. /* > LRWORK is INTEGER */
  689. /* > The dimension of the array RWORK. */
  690. /* > */
  691. /* > If LRWORK = -1, then a workspace query is assumed; the routine */
  692. /* > only calculates the optimal size of the RWORK array, returns */
  693. /* > this value as the first entry of the work array, and no error */
  694. /* > message related to LRWORK is issued by XERBLA. */
  695. /* > \endverbatim */
  696. /* > \param[out] IWORK */
  697. /* > \verbatim */
  698. /* > IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) */
  699. /* > \endverbatim */
  700. /* > */
  701. /* > \param[out] INFO */
  702. /* > \verbatim */
  703. /* > INFO is INTEGER */
  704. /* > = 0: successful exit. */
  705. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  706. /* > > 0: CBBCSD did not converge. See the description of WORK */
  707. /* > above for details. */
  708. /* > \endverbatim */
  709. /* > \par References: */
  710. /* ================ */
  711. /* > */
  712. /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
  713. /* > Algorithms, 50(1):33-65, 2009. */
  714. /* Authors: */
  715. /* ======== */
  716. /* > \author Univ. of Tennessee */
  717. /* > \author Univ. of California Berkeley */
  718. /* > \author Univ. of Colorado Denver */
  719. /* > \author NAG Ltd. */
  720. /* > \date June 2016 */
  721. /* > \ingroup complexOTHERcomputational */
  722. /* ===================================================================== */
  723. /* Subroutine */ void cuncsd2by1_(char *jobu1, char *jobu2, char *jobv1t,
  724. integer *m, integer *p, integer *q, complex *x11, integer *ldx11,
  725. complex *x21, integer *ldx21, real *theta, complex *u1, integer *ldu1,
  726. complex *u2, integer *ldu2, complex *v1t, integer *ldv1t, complex *
  727. work, integer *lwork, real *rwork, integer *lrwork, integer *iwork,
  728. integer *info)
  729. {
  730. /* System generated locals */
  731. integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
  732. x11_dim1, x11_offset, x21_dim1, x21_offset, i__1, i__2, i__3;
  733. /* Local variables */
  734. integer ib11d, ib11e, ib12d, ib12e, ib21d, ib21e, ib22d, ib22e;
  735. complex cdum[1] /* was [1][1] */;
  736. integer iphi, lworkmin, lworkopt, i__, j, r__;
  737. extern logical lsame_(char *, char *);
  738. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  739. complex *, integer *);
  740. integer childinfo, lorglqmin, lorgqrmin, lorglqopt, lrworkmin, itaup1,
  741. itaup2, itauq1, lorgqropt;
  742. logical wantu1, wantu2;
  743. extern /* Subroutine */ void cbbcsd_(char *, char *, char *, char *, char *
  744. , integer *, integer *, integer *, real *, real *, complex *,
  745. integer *, complex *, integer *, complex *, integer *, complex *,
  746. integer *, real *, real *, real *, real *, real *, real *, real *,
  747. real *, real *, integer *, integer *);
  748. integer lrworkopt, ibbcsd, lbbcsd, iorbdb, lorbdb;
  749. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  750. *, integer *, complex *, integer *);
  751. extern int xerbla_(char *, integer *, ftnlen);
  752. extern void clapmr_(logical *, integer *, integer *,
  753. complex *, integer *, integer *), clapmt_(logical *, integer *,
  754. integer *, complex *, integer *, integer *), cunglq_(integer *,
  755. integer *, integer *, complex *, integer *, complex *, complex *,
  756. integer *, integer *);
  757. integer iorglq;
  758. extern /* Subroutine */ void cungqr_(integer *, integer *, integer *,
  759. complex *, integer *, complex *, complex *, integer *, integer *);
  760. integer lorglq, iorgqr, lorgqr;
  761. extern /* Subroutine */ void cunbdb1_(integer *, integer *, integer *,
  762. complex *, integer *, complex *, integer *, real *, real *,
  763. complex *, complex *, complex *, complex *, integer *, integer *),
  764. cunbdb2_(integer *, integer *, integer *, complex *, integer *,
  765. complex *, integer *, real *, real *, complex *, complex *,
  766. complex *, complex *, integer *, integer *);
  767. logical lquery;
  768. extern /* Subroutine */ void cunbdb3_(integer *, integer *, integer *,
  769. complex *, integer *, complex *, integer *, real *, real *,
  770. complex *, complex *, complex *, complex *, integer *, integer *),
  771. cunbdb4_(integer *, integer *, integer *, complex *, integer *,
  772. complex *, integer *, real *, real *, complex *, complex *,
  773. complex *, complex *, complex *, integer *, integer *);
  774. logical wantv1t;
  775. real dum[1];
  776. /* -- LAPACK computational routine (version 3.7.1) -- */
  777. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  778. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  779. /* June 2016 */
  780. /* ===================================================================== */
  781. /* Test input arguments */
  782. /* Parameter adjustments */
  783. x11_dim1 = *ldx11;
  784. x11_offset = 1 + x11_dim1 * 1;
  785. x11 -= x11_offset;
  786. x21_dim1 = *ldx21;
  787. x21_offset = 1 + x21_dim1 * 1;
  788. x21 -= x21_offset;
  789. --theta;
  790. u1_dim1 = *ldu1;
  791. u1_offset = 1 + u1_dim1 * 1;
  792. u1 -= u1_offset;
  793. u2_dim1 = *ldu2;
  794. u2_offset = 1 + u2_dim1 * 1;
  795. u2 -= u2_offset;
  796. v1t_dim1 = *ldv1t;
  797. v1t_offset = 1 + v1t_dim1 * 1;
  798. v1t -= v1t_offset;
  799. --work;
  800. --rwork;
  801. --iwork;
  802. /* Function Body */
  803. *info = 0;
  804. wantu1 = lsame_(jobu1, "Y");
  805. wantu2 = lsame_(jobu2, "Y");
  806. wantv1t = lsame_(jobv1t, "Y");
  807. lquery = *lwork == -1;
  808. if (*m < 0) {
  809. *info = -4;
  810. } else if (*p < 0 || *p > *m) {
  811. *info = -5;
  812. } else if (*q < 0 || *q > *m) {
  813. *info = -6;
  814. } else if (*ldx11 < f2cmax(1,*p)) {
  815. *info = -8;
  816. } else /* if(complicated condition) */ {
  817. /* Computing MAX */
  818. i__1 = 1, i__2 = *m - *p;
  819. if (*ldx21 < f2cmax(i__1,i__2)) {
  820. *info = -10;
  821. } else if (wantu1 && *ldu1 < f2cmax(1,*p)) {
  822. *info = -13;
  823. } else /* if(complicated condition) */ {
  824. /* Computing MAX */
  825. i__1 = 1, i__2 = *m - *p;
  826. if (wantu2 && *ldu2 < f2cmax(i__1,i__2)) {
  827. *info = -15;
  828. } else if (wantv1t && *ldv1t < f2cmax(1,*q)) {
  829. *info = -17;
  830. }
  831. }
  832. }
  833. /* Computing MIN */
  834. i__1 = *p, i__2 = *m - *p, i__1 = f2cmin(i__1,i__2), i__1 = f2cmin(i__1,*q),
  835. i__2 = *m - *q;
  836. r__ = f2cmin(i__1,i__2);
  837. /* Compute workspace */
  838. /* WORK layout: */
  839. /* |-----------------------------------------| */
  840. /* | LWORKOPT (1) | */
  841. /* |-----------------------------------------| */
  842. /* | TAUP1 (MAX(1,P)) | */
  843. /* | TAUP2 (MAX(1,M-P)) | */
  844. /* | TAUQ1 (MAX(1,Q)) | */
  845. /* |-----------------------------------------| */
  846. /* | CUNBDB WORK | CUNGQR WORK | CUNGLQ WORK | */
  847. /* | | | | */
  848. /* | | | | */
  849. /* | | | | */
  850. /* | | | | */
  851. /* |-----------------------------------------| */
  852. /* RWORK layout: */
  853. /* |------------------| */
  854. /* | LRWORKOPT (1) | */
  855. /* |------------------| */
  856. /* | PHI (MAX(1,R-1)) | */
  857. /* |------------------| */
  858. /* | B11D (R) | */
  859. /* | B11E (R-1) | */
  860. /* | B12D (R) | */
  861. /* | B12E (R-1) | */
  862. /* | B21D (R) | */
  863. /* | B21E (R-1) | */
  864. /* | B22D (R) | */
  865. /* | B22E (R-1) | */
  866. /* | CBBCSD RWORK | */
  867. /* |------------------| */
  868. if (*info == 0) {
  869. iphi = 2;
  870. /* Computing MAX */
  871. i__1 = 1, i__2 = r__ - 1;
  872. ib11d = iphi + f2cmax(i__1,i__2);
  873. ib11e = ib11d + f2cmax(1,r__);
  874. /* Computing MAX */
  875. i__1 = 1, i__2 = r__ - 1;
  876. ib12d = ib11e + f2cmax(i__1,i__2);
  877. ib12e = ib12d + f2cmax(1,r__);
  878. /* Computing MAX */
  879. i__1 = 1, i__2 = r__ - 1;
  880. ib21d = ib12e + f2cmax(i__1,i__2);
  881. ib21e = ib21d + f2cmax(1,r__);
  882. /* Computing MAX */
  883. i__1 = 1, i__2 = r__ - 1;
  884. ib22d = ib21e + f2cmax(i__1,i__2);
  885. ib22e = ib22d + f2cmax(1,r__);
  886. /* Computing MAX */
  887. i__1 = 1, i__2 = r__ - 1;
  888. ibbcsd = ib22e + f2cmax(i__1,i__2);
  889. itaup1 = 2;
  890. itaup2 = itaup1 + f2cmax(1,*p);
  891. /* Computing MAX */
  892. i__1 = 1, i__2 = *m - *p;
  893. itauq1 = itaup2 + f2cmax(i__1,i__2);
  894. iorbdb = itauq1 + f2cmax(1,*q);
  895. iorgqr = itauq1 + f2cmax(1,*q);
  896. iorglq = itauq1 + f2cmax(1,*q);
  897. lorgqrmin = 1;
  898. lorgqropt = 1;
  899. lorglqmin = 1;
  900. lorglqopt = 1;
  901. if (r__ == *q) {
  902. cunbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  903. ldx21, &theta[1], dum, cdum, cdum, cdum, &work[1], &c_n1,
  904. &childinfo);
  905. lorbdb = (integer) work[1].r;
  906. if (wantu1 && *p > 0) {
  907. cungqr_(p, p, q, &u1[u1_offset], ldu1, cdum, &work[1], &c_n1,
  908. &childinfo);
  909. lorgqrmin = f2cmax(lorgqrmin,*p);
  910. /* Computing MAX */
  911. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  912. lorgqropt = f2cmax(i__1,i__2);
  913. }
  914. if (wantu2 && *m - *p > 0) {
  915. i__1 = *m - *p;
  916. i__2 = *m - *p;
  917. cungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, cdum, &work[1],
  918. &c_n1, &childinfo);
  919. /* Computing MAX */
  920. i__1 = lorgqrmin, i__2 = *m - *p;
  921. lorgqrmin = f2cmax(i__1,i__2);
  922. /* Computing MAX */
  923. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  924. lorgqropt = f2cmax(i__1,i__2);
  925. }
  926. if (wantv1t && *q > 0) {
  927. i__1 = *q - 1;
  928. i__2 = *q - 1;
  929. i__3 = *q - 1;
  930. cunglq_(&i__1, &i__2, &i__3, &v1t[v1t_offset], ldv1t, cdum, &
  931. work[1], &c_n1, &childinfo);
  932. /* Computing MAX */
  933. i__1 = lorglqmin, i__2 = *q - 1;
  934. lorglqmin = f2cmax(i__1,i__2);
  935. /* Computing MAX */
  936. i__1 = lorglqopt, i__2 = (integer) work[1].r;
  937. lorglqopt = f2cmax(i__1,i__2);
  938. }
  939. cbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], dum, &
  940. u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  941. v1t_offset], ldv1t, cdum, &c__1, dum, dum, dum, dum, dum,
  942. dum, dum, dum, &rwork[1], &c_n1, &childinfo);
  943. lbbcsd = (integer) rwork[1];
  944. } else if (r__ == *p) {
  945. cunbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  946. ldx21, &theta[1], dum, cdum, cdum, cdum, &work[1], &c_n1,
  947. &childinfo);
  948. lorbdb = (integer) work[1].r;
  949. if (wantu1 && *p > 0) {
  950. i__1 = *p - 1;
  951. i__2 = *p - 1;
  952. i__3 = *p - 1;
  953. cungqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1,
  954. cdum, &work[1], &c_n1, &childinfo);
  955. /* Computing MAX */
  956. i__1 = lorgqrmin, i__2 = *p - 1;
  957. lorgqrmin = f2cmax(i__1,i__2);
  958. /* Computing MAX */
  959. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  960. lorgqropt = f2cmax(i__1,i__2);
  961. }
  962. if (wantu2 && *m - *p > 0) {
  963. i__1 = *m - *p;
  964. i__2 = *m - *p;
  965. cungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, cdum, &work[1],
  966. &c_n1, &childinfo);
  967. /* Computing MAX */
  968. i__1 = lorgqrmin, i__2 = *m - *p;
  969. lorgqrmin = f2cmax(i__1,i__2);
  970. /* Computing MAX */
  971. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  972. lorgqropt = f2cmax(i__1,i__2);
  973. }
  974. if (wantv1t && *q > 0) {
  975. cunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, cdum, &work[1], &
  976. c_n1, &childinfo);
  977. lorglqmin = f2cmax(lorglqmin,*q);
  978. /* Computing MAX */
  979. i__1 = lorglqopt, i__2 = (integer) work[1].r;
  980. lorglqopt = f2cmax(i__1,i__2);
  981. }
  982. cbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], dum, &
  983. v1t[v1t_offset], ldv1t, cdum, &c__1, &u1[u1_offset], ldu1,
  984. &u2[u2_offset], ldu2, dum, dum, dum, dum, dum, dum, dum,
  985. dum, &rwork[1], &c_n1, &childinfo);
  986. lbbcsd = (integer) rwork[1];
  987. } else if (r__ == *m - *p) {
  988. cunbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  989. ldx21, &theta[1], dum, cdum, cdum, cdum, &work[1], &c_n1,
  990. &childinfo);
  991. lorbdb = (integer) work[1].r;
  992. if (wantu1 && *p > 0) {
  993. cungqr_(p, p, q, &u1[u1_offset], ldu1, cdum, &work[1], &c_n1,
  994. &childinfo);
  995. lorgqrmin = f2cmax(lorgqrmin,*p);
  996. /* Computing MAX */
  997. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  998. lorgqropt = f2cmax(i__1,i__2);
  999. }
  1000. if (wantu2 && *m - *p > 0) {
  1001. i__1 = *m - *p - 1;
  1002. i__2 = *m - *p - 1;
  1003. i__3 = *m - *p - 1;
  1004. cungqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2,
  1005. cdum, &work[1], &c_n1, &childinfo);
  1006. /* Computing MAX */
  1007. i__1 = lorgqrmin, i__2 = *m - *p - 1;
  1008. lorgqrmin = f2cmax(i__1,i__2);
  1009. /* Computing MAX */
  1010. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  1011. lorgqropt = f2cmax(i__1,i__2);
  1012. }
  1013. if (wantv1t && *q > 0) {
  1014. cunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, cdum, &work[1], &
  1015. c_n1, &childinfo);
  1016. lorglqmin = f2cmax(lorglqmin,*q);
  1017. /* Computing MAX */
  1018. i__1 = lorglqopt, i__2 = (integer) work[1].r;
  1019. lorglqopt = f2cmax(i__1,i__2);
  1020. }
  1021. i__1 = *m - *q;
  1022. i__2 = *m - *p;
  1023. cbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1]
  1024. , dum, cdum, &c__1, &v1t[v1t_offset], ldv1t, &u2[
  1025. u2_offset], ldu2, &u1[u1_offset], ldu1, dum, dum, dum,
  1026. dum, dum, dum, dum, dum, &rwork[1], &c_n1, &childinfo);
  1027. lbbcsd = (integer) rwork[1];
  1028. } else {
  1029. cunbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  1030. ldx21, &theta[1], dum, cdum, cdum, cdum, cdum, &work[1], &
  1031. c_n1, &childinfo);
  1032. lorbdb = *m + (integer) work[1].r;
  1033. if (wantu1 && *p > 0) {
  1034. i__1 = *m - *q;
  1035. cungqr_(p, p, &i__1, &u1[u1_offset], ldu1, cdum, &work[1], &
  1036. c_n1, &childinfo);
  1037. lorgqrmin = f2cmax(lorgqrmin,*p);
  1038. /* Computing MAX */
  1039. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  1040. lorgqropt = f2cmax(i__1,i__2);
  1041. }
  1042. if (wantu2 && *m - *p > 0) {
  1043. i__1 = *m - *p;
  1044. i__2 = *m - *p;
  1045. i__3 = *m - *q;
  1046. cungqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, cdum, &
  1047. work[1], &c_n1, &childinfo);
  1048. /* Computing MAX */
  1049. i__1 = lorgqrmin, i__2 = *m - *p;
  1050. lorgqrmin = f2cmax(i__1,i__2);
  1051. /* Computing MAX */
  1052. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  1053. lorgqropt = f2cmax(i__1,i__2);
  1054. }
  1055. if (wantv1t && *q > 0) {
  1056. cunglq_(q, q, q, &v1t[v1t_offset], ldv1t, cdum, &work[1], &
  1057. c_n1, &childinfo);
  1058. lorglqmin = f2cmax(lorglqmin,*q);
  1059. /* Computing MAX */
  1060. i__1 = lorglqopt, i__2 = (integer) work[1].r;
  1061. lorglqopt = f2cmax(i__1,i__2);
  1062. }
  1063. i__1 = *m - *p;
  1064. i__2 = *m - *q;
  1065. cbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1]
  1066. , dum, &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, cdum, &
  1067. c__1, &v1t[v1t_offset], ldv1t, dum, dum, dum, dum, dum,
  1068. dum, dum, dum, &rwork[1], &c_n1, &childinfo);
  1069. lbbcsd = (integer) rwork[1];
  1070. }
  1071. lrworkmin = ibbcsd + lbbcsd - 1;
  1072. lrworkopt = lrworkmin;
  1073. rwork[1] = (real) lrworkopt;
  1074. /* Computing MAX */
  1075. i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqrmin - 1, i__1 = f2cmax(
  1076. i__1,i__2), i__2 = iorglq + lorglqmin - 1;
  1077. lworkmin = f2cmax(i__1,i__2);
  1078. /* Computing MAX */
  1079. i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqropt - 1, i__1 = f2cmax(
  1080. i__1,i__2), i__2 = iorglq + lorglqopt - 1;
  1081. lworkopt = f2cmax(i__1,i__2);
  1082. work[1].r = (real) lworkopt, work[1].i = 0.f;
  1083. if (*lwork < lworkmin && ! lquery) {
  1084. *info = -19;
  1085. }
  1086. }
  1087. if (*info != 0) {
  1088. i__1 = -(*info);
  1089. xerbla_("CUNCSD2BY1", &i__1, (ftnlen)10);
  1090. return;
  1091. } else if (lquery) {
  1092. return;
  1093. }
  1094. lorgqr = *lwork - iorgqr + 1;
  1095. lorglq = *lwork - iorglq + 1;
  1096. /* Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q, */
  1097. /* in which R = MIN(P,M-P,Q,M-Q) */
  1098. if (r__ == *q) {
  1099. /* Case 1: R = Q */
  1100. /* Simultaneously bidiagonalize X11 and X21 */
  1101. cunbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1102. theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[
  1103. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1104. /* Accumulate Householder reflectors */
  1105. if (wantu1 && *p > 0) {
  1106. clacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1107. cungqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1108. iorgqr], &lorgqr, &childinfo);
  1109. }
  1110. if (wantu2 && *m - *p > 0) {
  1111. i__1 = *m - *p;
  1112. clacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1113. ldu2);
  1114. i__1 = *m - *p;
  1115. i__2 = *m - *p;
  1116. cungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1117. work[iorgqr], &lorgqr, &childinfo);
  1118. }
  1119. if (wantv1t && *q > 0) {
  1120. i__1 = v1t_dim1 + 1;
  1121. v1t[i__1].r = 1.f, v1t[i__1].i = 0.f;
  1122. i__1 = *q;
  1123. for (j = 2; j <= i__1; ++j) {
  1124. i__2 = j * v1t_dim1 + 1;
  1125. v1t[i__2].r = 0.f, v1t[i__2].i = 0.f;
  1126. i__2 = j + v1t_dim1;
  1127. v1t[i__2].r = 0.f, v1t[i__2].i = 0.f;
  1128. }
  1129. i__1 = *q - 1;
  1130. i__2 = *q - 1;
  1131. clacpy_("U", &i__1, &i__2, &x21[(x21_dim1 << 1) + 1], ldx21, &v1t[
  1132. (v1t_dim1 << 1) + 2], ldv1t);
  1133. i__1 = *q - 1;
  1134. i__2 = *q - 1;
  1135. i__3 = *q - 1;
  1136. cunglq_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
  1137. work[itauq1], &work[iorglq], &lorglq, &childinfo);
  1138. }
  1139. /* Simultaneously diagonalize X11 and X21. */
  1140. cbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], &rwork[
  1141. iphi], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  1142. v1t_offset], ldv1t, cdum, &c__1, &rwork[ib11d], &rwork[ib11e],
  1143. &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[ib21e], &
  1144. rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd, &
  1145. childinfo);
  1146. /* Permute rows and columns to place zero submatrices in */
  1147. /* preferred positions */
  1148. if (*q > 0 && wantu2) {
  1149. i__1 = *q;
  1150. for (i__ = 1; i__ <= i__1; ++i__) {
  1151. iwork[i__] = *m - *p - *q + i__;
  1152. }
  1153. i__1 = *m - *p;
  1154. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1155. iwork[i__] = i__ - *q;
  1156. }
  1157. i__1 = *m - *p;
  1158. i__2 = *m - *p;
  1159. clapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1160. }
  1161. } else if (r__ == *p) {
  1162. /* Case 2: R = P */
  1163. /* Simultaneously bidiagonalize X11 and X21 */
  1164. cunbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1165. theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[
  1166. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1167. /* Accumulate Householder reflectors */
  1168. if (wantu1 && *p > 0) {
  1169. i__1 = u1_dim1 + 1;
  1170. u1[i__1].r = 1.f, u1[i__1].i = 0.f;
  1171. i__1 = *p;
  1172. for (j = 2; j <= i__1; ++j) {
  1173. i__2 = j * u1_dim1 + 1;
  1174. u1[i__2].r = 0.f, u1[i__2].i = 0.f;
  1175. i__2 = j + u1_dim1;
  1176. u1[i__2].r = 0.f, u1[i__2].i = 0.f;
  1177. }
  1178. i__1 = *p - 1;
  1179. i__2 = *p - 1;
  1180. clacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[(
  1181. u1_dim1 << 1) + 2], ldu1);
  1182. i__1 = *p - 1;
  1183. i__2 = *p - 1;
  1184. i__3 = *p - 1;
  1185. cungqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1, &work[
  1186. itaup1], &work[iorgqr], &lorgqr, &childinfo);
  1187. }
  1188. if (wantu2 && *m - *p > 0) {
  1189. i__1 = *m - *p;
  1190. clacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1191. ldu2);
  1192. i__1 = *m - *p;
  1193. i__2 = *m - *p;
  1194. cungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1195. work[iorgqr], &lorgqr, &childinfo);
  1196. }
  1197. if (wantv1t && *q > 0) {
  1198. clacpy_("U", p, q, &x11[x11_offset], ldx11, &v1t[v1t_offset],
  1199. ldv1t);
  1200. cunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1201. iorglq], &lorglq, &childinfo);
  1202. }
  1203. /* Simultaneously diagonalize X11 and X21. */
  1204. cbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], &rwork[
  1205. iphi], &v1t[v1t_offset], ldv1t, cdum, &c__1, &u1[u1_offset],
  1206. ldu1, &u2[u2_offset], ldu2, &rwork[ib11d], &rwork[ib11e], &
  1207. rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[ib21e], &
  1208. rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd, &
  1209. childinfo);
  1210. /* Permute rows and columns to place identity submatrices in */
  1211. /* preferred positions */
  1212. if (*q > 0 && wantu2) {
  1213. i__1 = *q;
  1214. for (i__ = 1; i__ <= i__1; ++i__) {
  1215. iwork[i__] = *m - *p - *q + i__;
  1216. }
  1217. i__1 = *m - *p;
  1218. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1219. iwork[i__] = i__ - *q;
  1220. }
  1221. i__1 = *m - *p;
  1222. i__2 = *m - *p;
  1223. clapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1224. }
  1225. } else if (r__ == *m - *p) {
  1226. /* Case 3: R = M-P */
  1227. /* Simultaneously bidiagonalize X11 and X21 */
  1228. cunbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1229. theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[
  1230. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1231. /* Accumulate Householder reflectors */
  1232. if (wantu1 && *p > 0) {
  1233. clacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1234. cungqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1235. iorgqr], &lorgqr, &childinfo);
  1236. }
  1237. if (wantu2 && *m - *p > 0) {
  1238. i__1 = u2_dim1 + 1;
  1239. u2[i__1].r = 1.f, u2[i__1].i = 0.f;
  1240. i__1 = *m - *p;
  1241. for (j = 2; j <= i__1; ++j) {
  1242. i__2 = j * u2_dim1 + 1;
  1243. u2[i__2].r = 0.f, u2[i__2].i = 0.f;
  1244. i__2 = j + u2_dim1;
  1245. u2[i__2].r = 0.f, u2[i__2].i = 0.f;
  1246. }
  1247. i__1 = *m - *p - 1;
  1248. i__2 = *m - *p - 1;
  1249. clacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[(
  1250. u2_dim1 << 1) + 2], ldu2);
  1251. i__1 = *m - *p - 1;
  1252. i__2 = *m - *p - 1;
  1253. i__3 = *m - *p - 1;
  1254. cungqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2, &work[
  1255. itaup2], &work[iorgqr], &lorgqr, &childinfo);
  1256. }
  1257. if (wantv1t && *q > 0) {
  1258. i__1 = *m - *p;
  1259. clacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset],
  1260. ldv1t);
  1261. cunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1262. iorglq], &lorglq, &childinfo);
  1263. }
  1264. /* Simultaneously diagonalize X11 and X21. */
  1265. i__1 = *m - *q;
  1266. i__2 = *m - *p;
  1267. cbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1], &
  1268. rwork[iphi], cdum, &c__1, &v1t[v1t_offset], ldv1t, &u2[
  1269. u2_offset], ldu2, &u1[u1_offset], ldu1, &rwork[ib11d], &rwork[
  1270. ib11e], &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[
  1271. ib21e], &rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd,
  1272. &childinfo);
  1273. /* Permute rows and columns to place identity submatrices in */
  1274. /* preferred positions */
  1275. if (*q > r__) {
  1276. i__1 = r__;
  1277. for (i__ = 1; i__ <= i__1; ++i__) {
  1278. iwork[i__] = *q - r__ + i__;
  1279. }
  1280. i__1 = *q;
  1281. for (i__ = r__ + 1; i__ <= i__1; ++i__) {
  1282. iwork[i__] = i__ - r__;
  1283. }
  1284. if (wantu1) {
  1285. clapmt_(&c_false, p, q, &u1[u1_offset], ldu1, &iwork[1]);
  1286. }
  1287. if (wantv1t) {
  1288. clapmr_(&c_false, q, q, &v1t[v1t_offset], ldv1t, &iwork[1]);
  1289. }
  1290. }
  1291. } else {
  1292. /* Case 4: R = M-Q */
  1293. /* Simultaneously bidiagonalize X11 and X21 */
  1294. i__1 = lorbdb - *m;
  1295. cunbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1296. theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[
  1297. itauq1], &work[iorbdb], &work[iorbdb + *m], &i__1, &childinfo)
  1298. ;
  1299. /* Accumulate Householder reflectors */
  1300. if (wantu1 && *p > 0) {
  1301. ccopy_(p, &work[iorbdb], &c__1, &u1[u1_offset], &c__1);
  1302. i__1 = *p;
  1303. for (j = 2; j <= i__1; ++j) {
  1304. i__2 = j * u1_dim1 + 1;
  1305. u1[i__2].r = 0.f, u1[i__2].i = 0.f;
  1306. }
  1307. i__1 = *p - 1;
  1308. i__2 = *m - *q - 1;
  1309. clacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[(
  1310. u1_dim1 << 1) + 2], ldu1);
  1311. i__1 = *m - *q;
  1312. cungqr_(p, p, &i__1, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1313. iorgqr], &lorgqr, &childinfo);
  1314. }
  1315. if (wantu2 && *m - *p > 0) {
  1316. i__1 = *m - *p;
  1317. ccopy_(&i__1, &work[iorbdb + *p], &c__1, &u2[u2_offset], &c__1);
  1318. i__1 = *m - *p;
  1319. for (j = 2; j <= i__1; ++j) {
  1320. i__2 = j * u2_dim1 + 1;
  1321. u2[i__2].r = 0.f, u2[i__2].i = 0.f;
  1322. }
  1323. i__1 = *m - *p - 1;
  1324. i__2 = *m - *q - 1;
  1325. clacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[(
  1326. u2_dim1 << 1) + 2], ldu2);
  1327. i__1 = *m - *p;
  1328. i__2 = *m - *p;
  1329. i__3 = *m - *q;
  1330. cungqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, &work[itaup2],
  1331. &work[iorgqr], &lorgqr, &childinfo);
  1332. }
  1333. if (wantv1t && *q > 0) {
  1334. i__1 = *m - *q;
  1335. clacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset],
  1336. ldv1t);
  1337. i__1 = *p - (*m - *q);
  1338. i__2 = *q - (*m - *q);
  1339. clacpy_("U", &i__1, &i__2, &x11[*m - *q + 1 + (*m - *q + 1) *
  1340. x11_dim1], ldx11, &v1t[*m - *q + 1 + (*m - *q + 1) *
  1341. v1t_dim1], ldv1t);
  1342. i__1 = -(*p) + *q;
  1343. i__2 = *q - *p;
  1344. clacpy_("U", &i__1, &i__2, &x21[*m - *q + 1 + (*p + 1) * x21_dim1]
  1345. , ldx21, &v1t[*p + 1 + (*p + 1) * v1t_dim1], ldv1t);
  1346. cunglq_(q, q, q, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1347. iorglq], &lorglq, &childinfo);
  1348. }
  1349. /* Simultaneously diagonalize X11 and X21. */
  1350. i__1 = *m - *p;
  1351. i__2 = *m - *q;
  1352. cbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1], &
  1353. rwork[iphi], &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, cdum,
  1354. &c__1, &v1t[v1t_offset], ldv1t, &rwork[ib11d], &rwork[ib11e],
  1355. &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[ib21e], &
  1356. rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd, &
  1357. childinfo);
  1358. /* Permute rows and columns to place identity submatrices in */
  1359. /* preferred positions */
  1360. if (*p > r__) {
  1361. i__1 = r__;
  1362. for (i__ = 1; i__ <= i__1; ++i__) {
  1363. iwork[i__] = *p - r__ + i__;
  1364. }
  1365. i__1 = *p;
  1366. for (i__ = r__ + 1; i__ <= i__1; ++i__) {
  1367. iwork[i__] = i__ - r__;
  1368. }
  1369. if (wantu1) {
  1370. clapmt_(&c_false, p, p, &u1[u1_offset], ldu1, &iwork[1]);
  1371. }
  1372. if (wantv1t) {
  1373. clapmr_(&c_false, p, q, &v1t[v1t_offset], ldv1t, &iwork[1]);
  1374. }
  1375. }
  1376. }
  1377. return;
  1378. /* End of CUNCSD2BY1 */
  1379. } /* cuncsd2by1_ */